

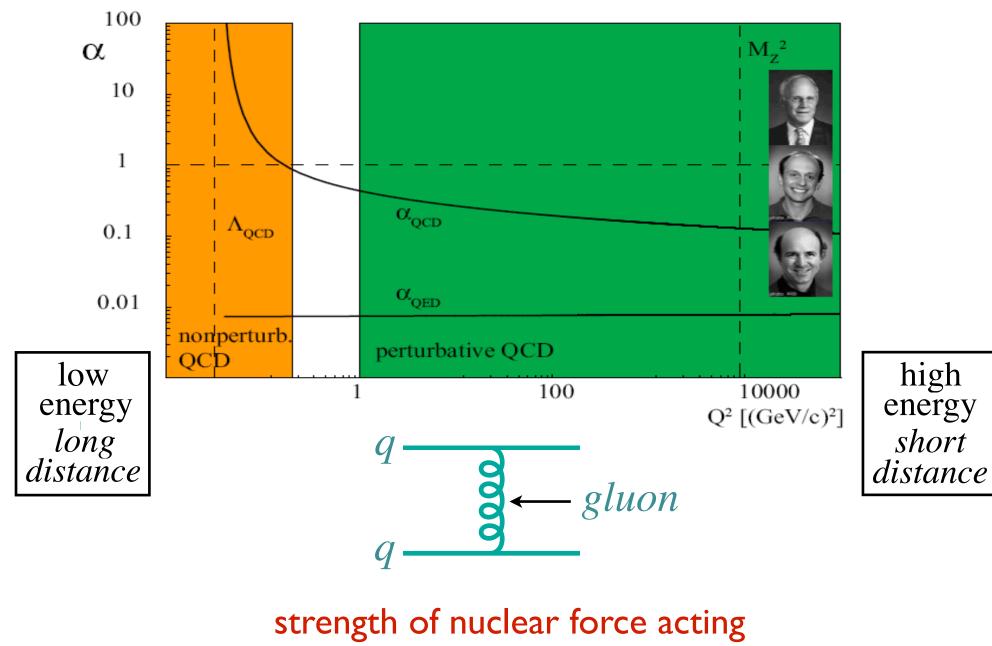
Florida International University January 21, 2011

Duality: Towards Bridging the Quark-Hadron Chasm

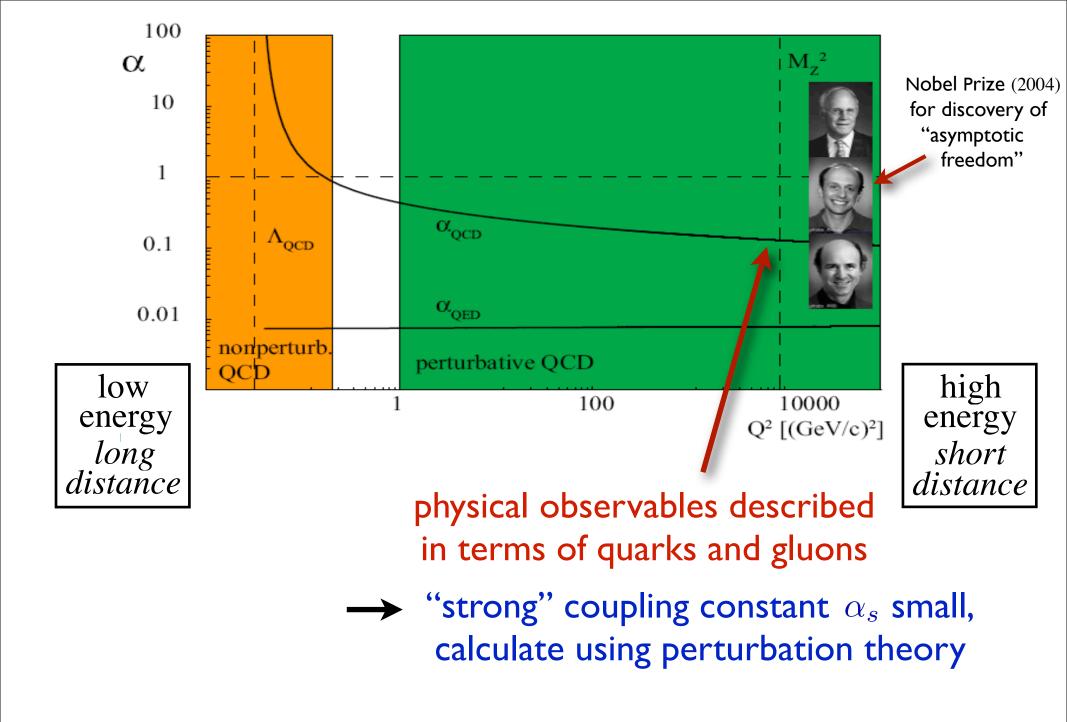
Wally Melnitchouk

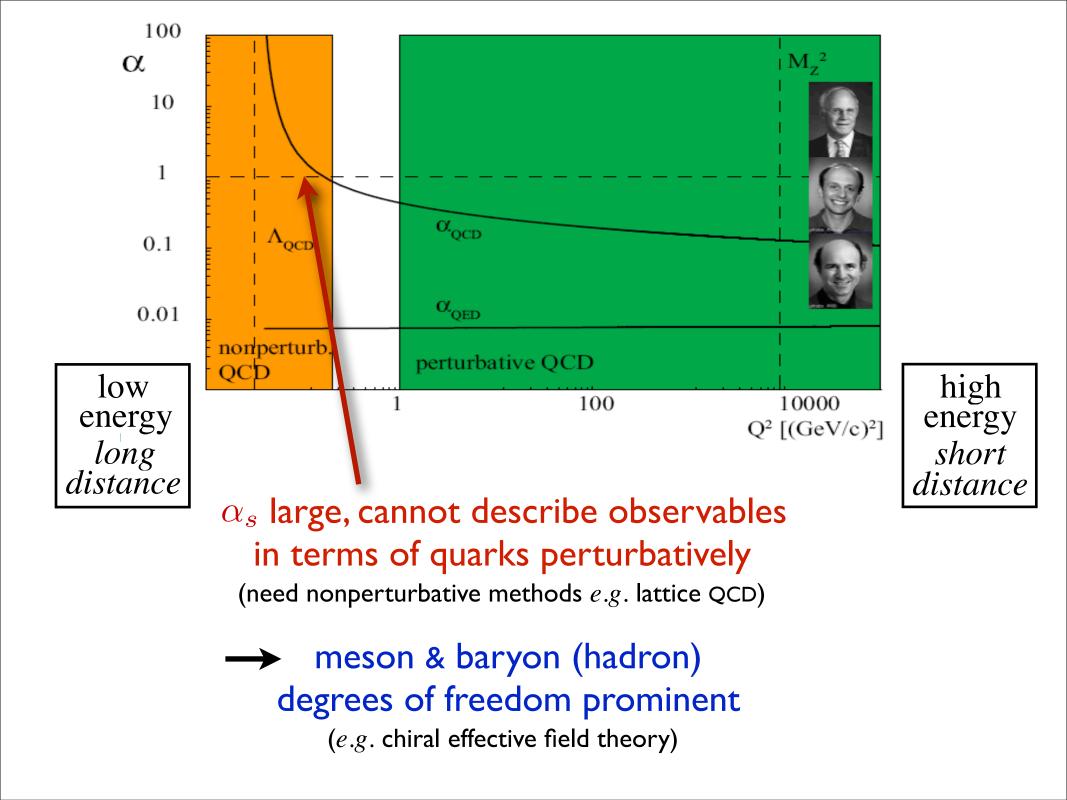
Outline

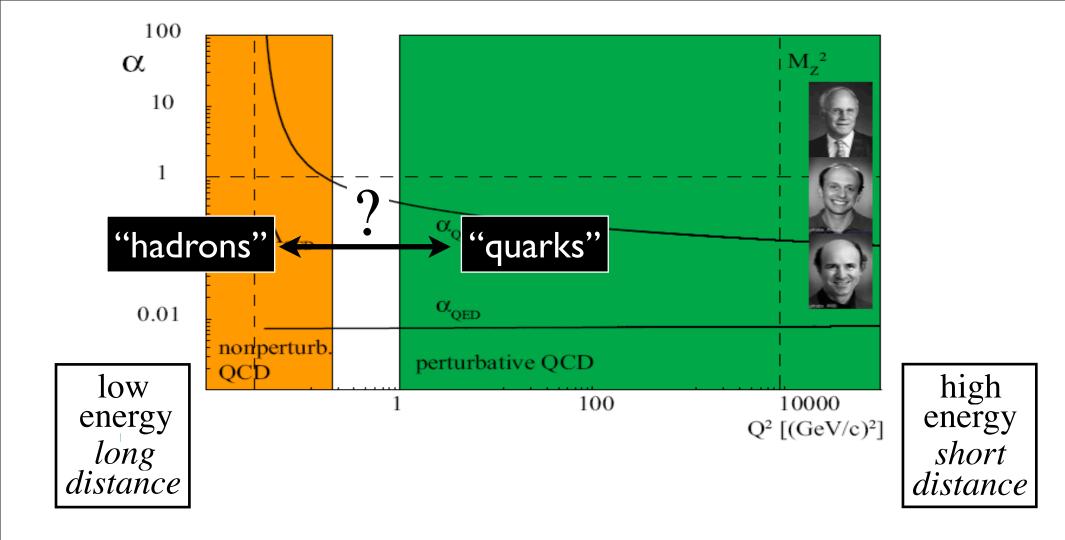
- Quark-hadron duality: historical perspective
- Duality and Quantum ChromoDynamics (QCD)
 - \rightarrow twists and moments
 - \rightarrow insights from nonperturbative models
- Implications of duality for quark distributions
- Outlook



between quarks given by $\alpha_{\rm QCD}$ (or α_s)







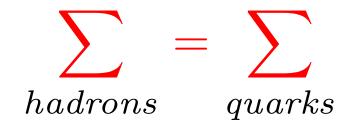
Looking for quarks in hadrons is like looking for the Mafia in Sicily – everybody *knows* they're there, but it's hard to find the evidence!

Anonymous

one way of seeing connections...

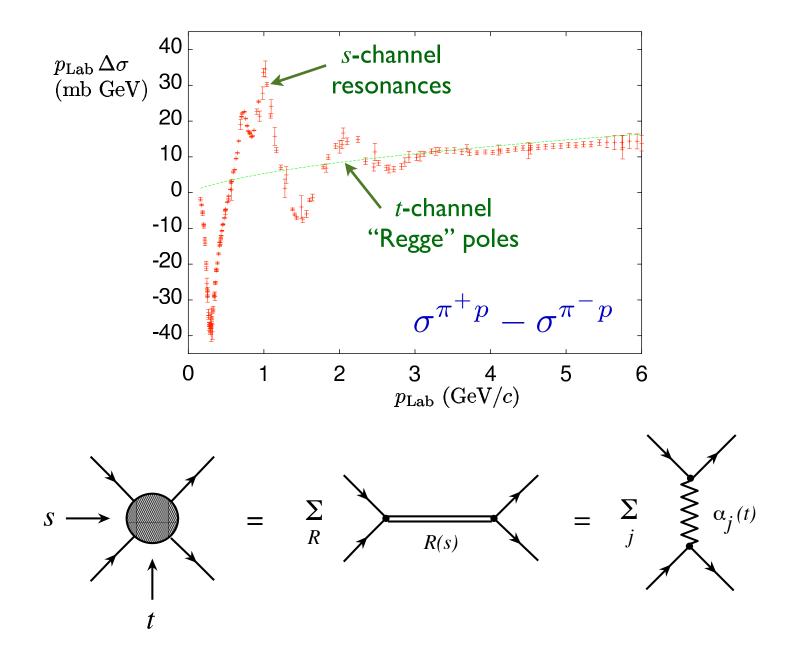
Quark-hadron duality

Complementarity between *quark* and *hadron* descriptions of observables



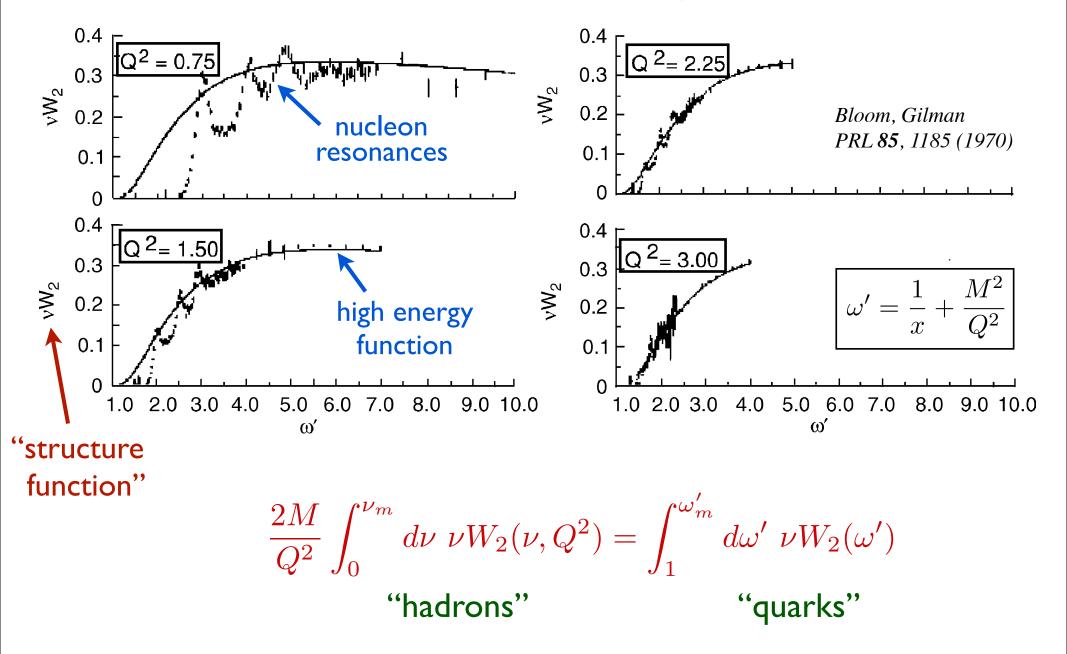
Can use either set of *complete* basis states to describe physical phenomena

Duality in hadron-hadron scattering



Duality in electron-hadron scattering

"Bloom-Gilman duality"



Electron-nucleon scattering

Inclusive cross section for $eN \rightarrow eX$

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha^2 E'^2 \cos^2\frac{\theta}{2}}{Q^4} \left(2\tan^2\frac{\theta}{2}\frac{F_1}{M} + \frac{F_2}{\nu}\right)$$

$$e \qquad e' \\ \overbrace{} \\ \gamma^* \\ \overbrace{} \\ N \qquad X$$

$$\nu = E - E'$$

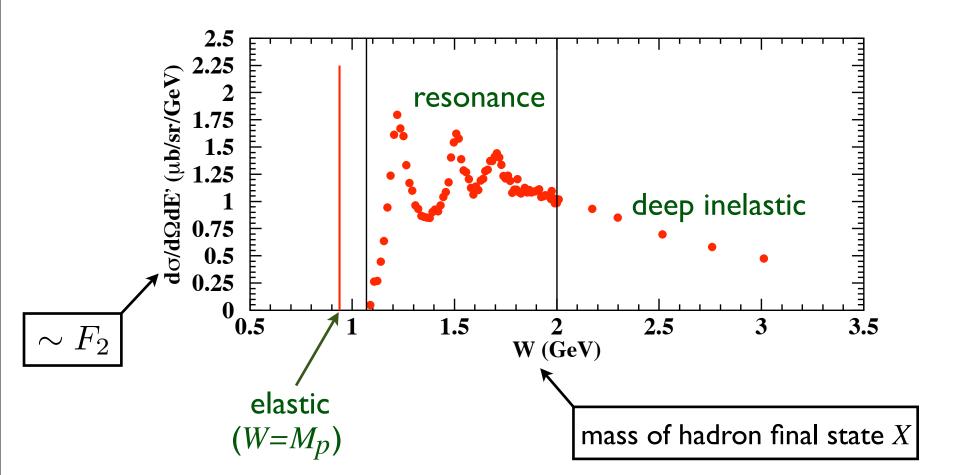
$$Q^{2} = \vec{q}^{2} - \nu^{2} = 4EE' \sin^{2} \frac{\theta}{2} \quad \left\{ \begin{array}{c} x = \frac{Q^{2}}{2M\nu} \\ Biorken \ scaling \ variable \end{array} \right\}$$

\blacksquare F_1 , F_2 "structure functions"

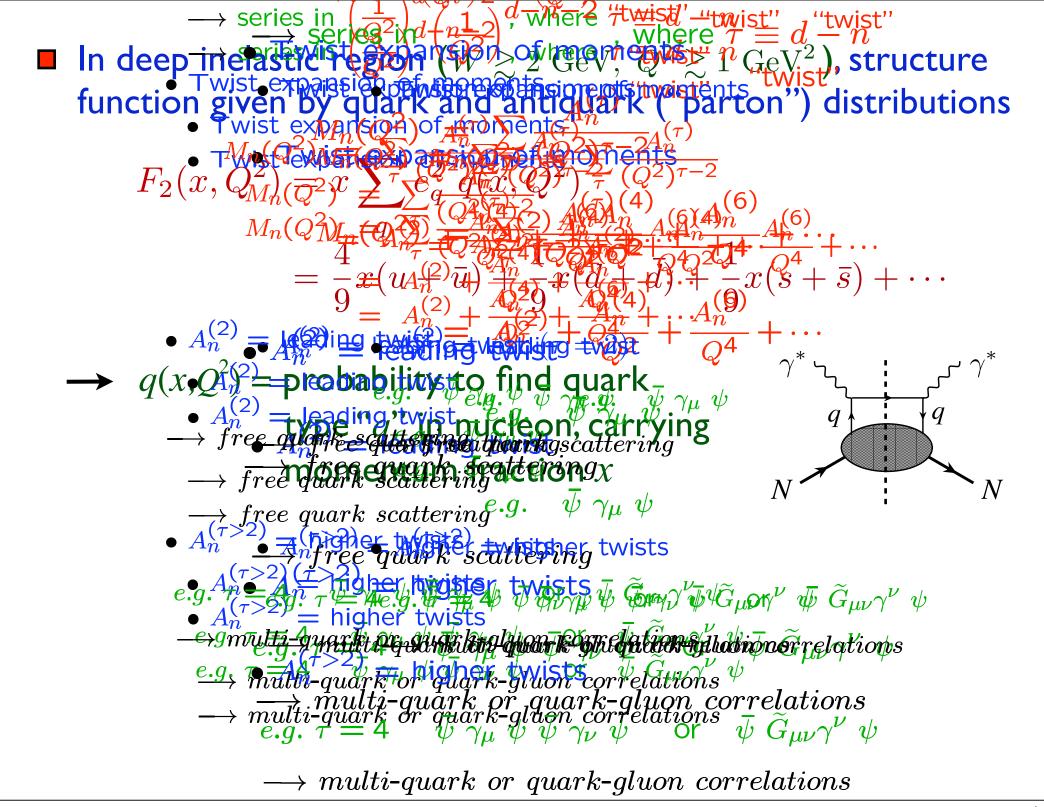
 \rightarrow contain all information about structure of nucleon

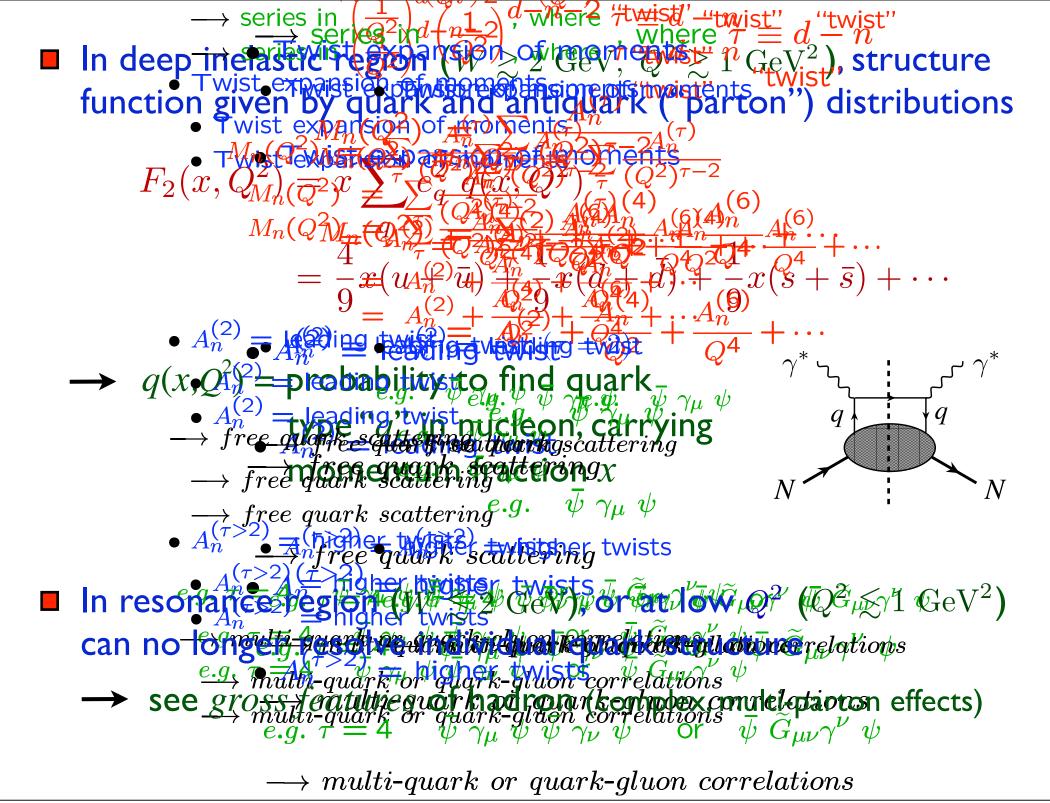
$$\rightarrow$$
 functions of x, Q^2 in general

Electron-nucleon scattering

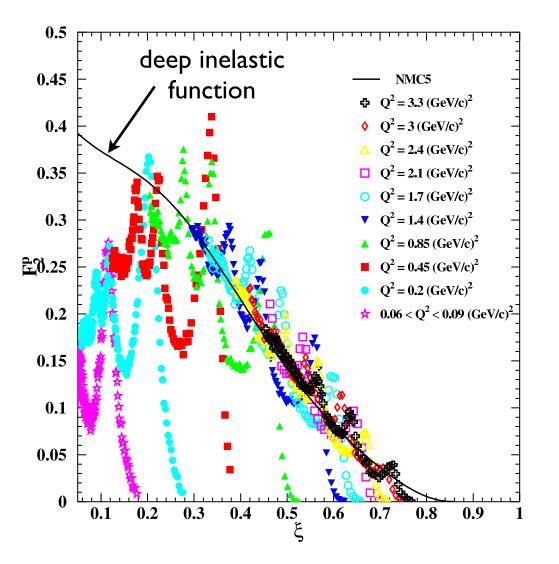


Bjorken variable in terms of Q^2 & W: $x = \frac{Q^2}{W^2 - M^2 + Q^2}$





Duality in electron-hadron scattering

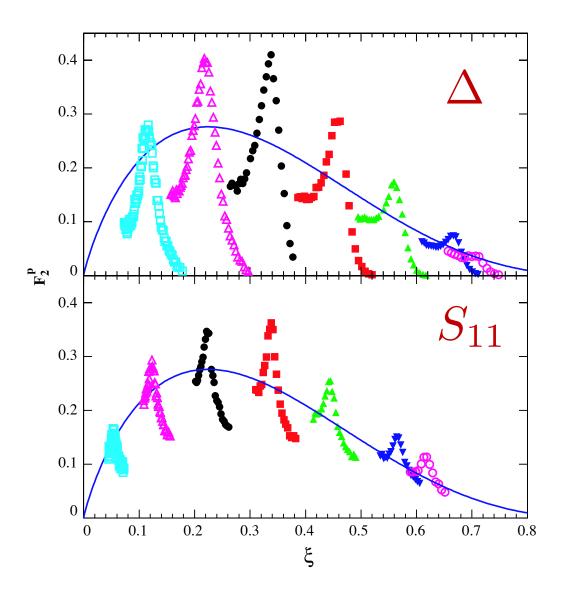


Niculescu et al., PRL 85, 1182 (2000)

average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function

"Nachtmann" scaling variable
$$\xi = \frac{2x}{1 + \sqrt{1 + 4M^2x^2/Q^2}}$$

Duality in electron-hadron scattering



also exists *locally* in individual resonance regions

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

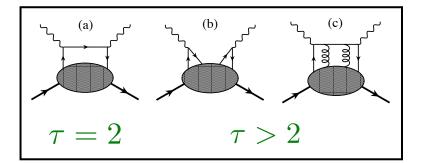
$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

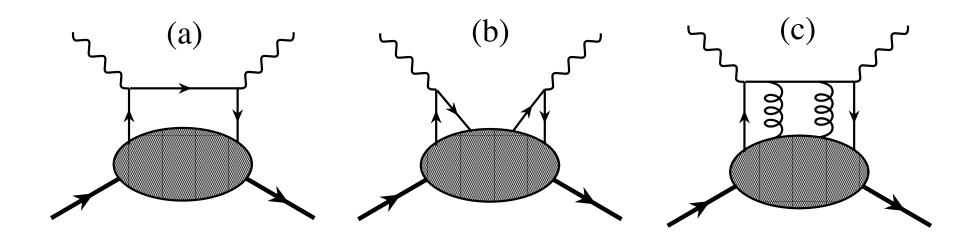
- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific "twist" $\boldsymbol{\tau}$

 $\tau = \text{dimension} - \text{spin}$





 $\tau = 2$

 $\tau > 2$

single quark scattering

 $e.g.~~ar{\psi}~\gamma_\mu~\psi$

qq and qg correlations

 $e.g. \ \overline{\psi} \ \gamma_{\mu} \ \psi \ \overline{\psi} \ \gamma_{\nu} \ \psi$ $or \ \overline{\psi} \ \widetilde{G}_{\mu\nu} \gamma^{\nu} \ \psi$

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

de Rujula, Georgi, Politzer Ann. Phys. **103**, 315 (1975)

- If moment ≈ independent of Q^2 → higher twist terms $A_n^{(\tau>2)}$ small

Seldom have sufficient data to form complete moments \rightarrow usually require $x \rightarrow 0$ and $x \rightarrow 1$ extrapolations

- Seldom have sufficient data to form complete moments \rightarrow usually require $x \rightarrow 0$ and $x \rightarrow 1$ extrapolations
- Truncated moments allow study of restricted regions in x (or W) within pQCD in well-defined, systematic way

$$\overline{M}_n(\Delta x, Q^2) = \int_{\Delta x} dx \ x^{n-2} \ F_2(x, Q^2)$$

- Seldom have sufficient data to form complete moments \rightarrow usually require $x \rightarrow 0$ and $x \rightarrow 1$ extrapolations
- Truncated moments allow study of restricted regions in x (or W) within pQCD in well-defined, systematic way

$$\overline{M}_n(\Delta x, Q^2) = \int_{\Delta x} dx \ x^{n-2} \ F_2(x, Q^2)$$

Obey DGLAP-like evolution equations, similar to PDFs

$$\frac{dM_n(\Delta x, Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \left(P'_{(n)} \otimes \overline{M}_n \right) \left(\Delta x, Q^2 \right)$$

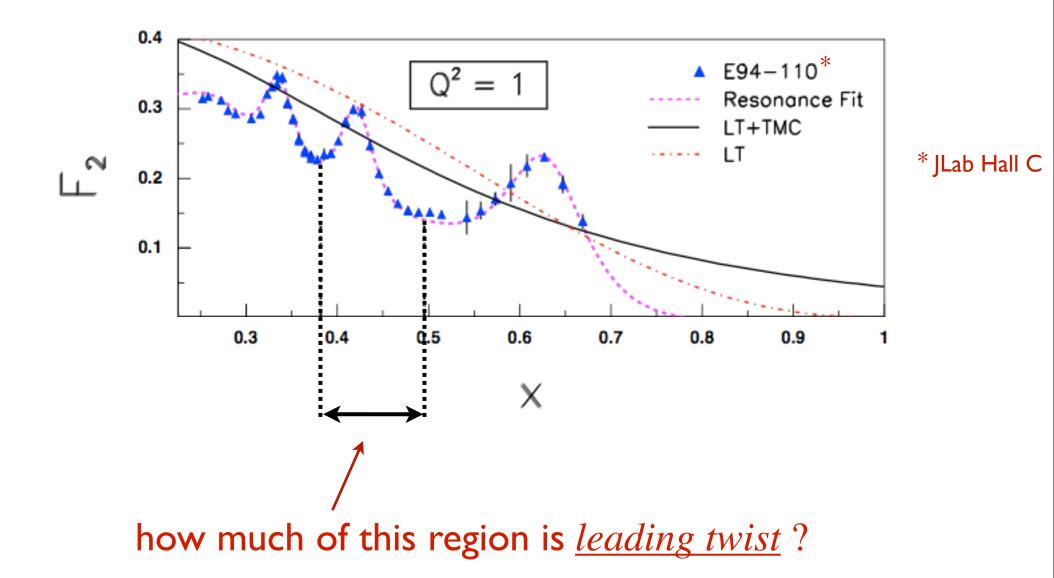
$$P'_{(n)}(z, \alpha_s) = z^n P_{NS,S}(z, \alpha_s)$$

$$Forte Kotlow$$

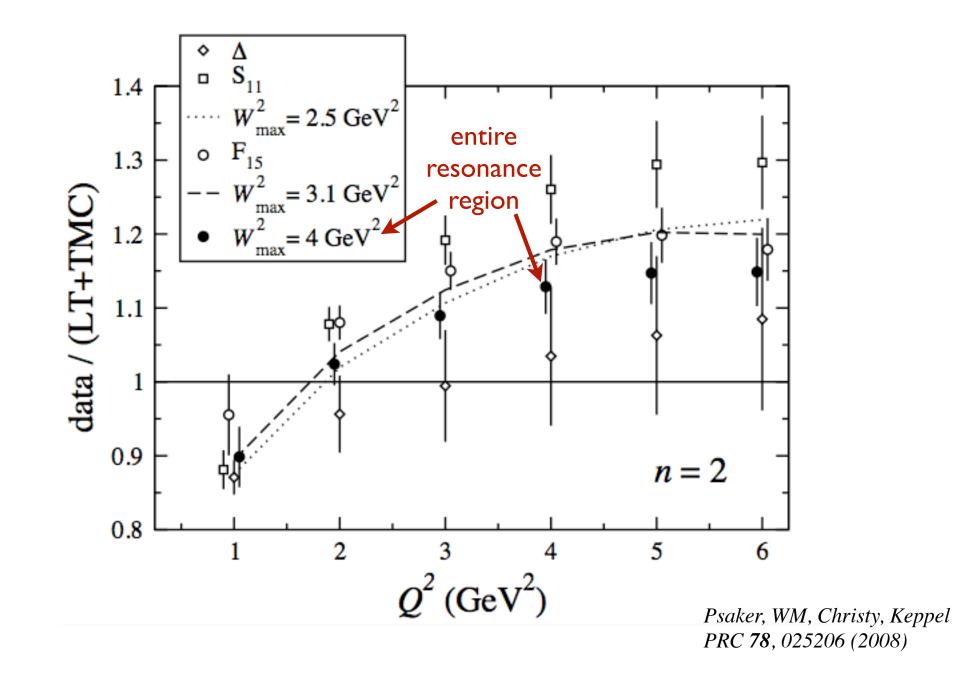
$$Forte Kotlow$$

Forte, Magnea, PLB **448**, 295 (1999) Kotlorz, Kotlorz, PLB **644**, 284 (2007)

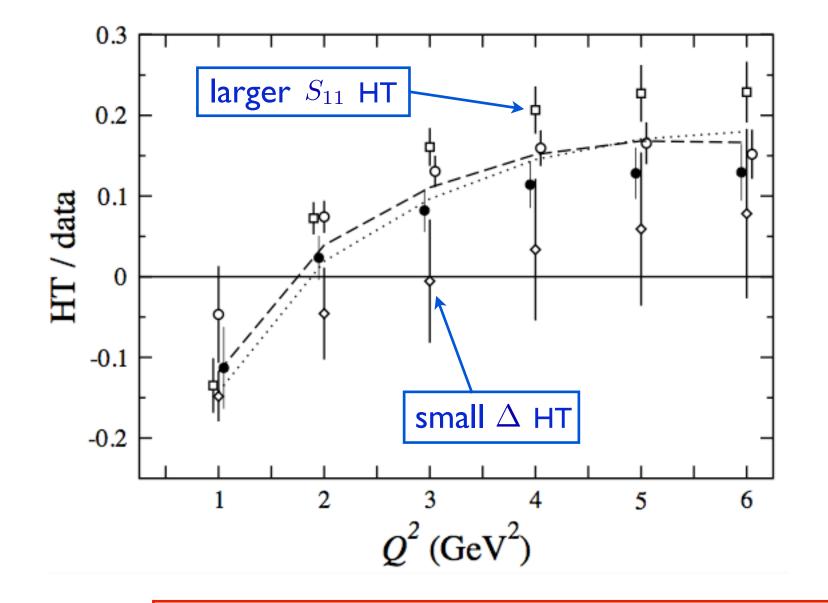
■ Follow evolution of specific resonance (region) with Q² in pQCD framework



Analysis of JLab F_2^p resonance region data



Analysis of JLab F_2^p resonance region data



higher twists < 10–15% for $Q^2 > 1 \text{ GeV}^2$

Resonances & twists

- **Total higher twist "small"** at scales $Q^2 \sim \mathcal{O}(1 \text{ GeV}^2)$
- On average, nonperturbative interactions between quarks and gluons not dominant (at these scales)
 - \rightarrow nontrivial interference between resonances

Resonances & twists

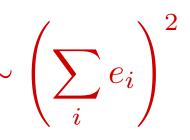
- Total higher twist "small" at scales $Q^2 \sim \mathcal{O}(1 \text{ GeV}^2)$
- On average, nonperturbative interactions between quarks and gluons not dominant (at these scales)
 - \rightarrow nontrivial interference between resonances

- Can we understand this dynamically, at quark level?
 → is duality an accident?
- Can we use resonance region data to learn about leading twist structure functions?
 - expanded data set has potentially significant implications for global PDF studies

Consider simple quark model with spin-flavor symmetric wave function

form factors

 \rightarrow coherent scattering from quarks $d\sigma \sim \left(\sum_{i} e_i\right)^2$



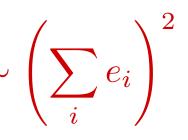
structure functions

 \rightarrow incoherent scattering from quarks $d\sigma \sim \sum e_i^2$

Consider simple quark model with spin-flavor symmetric wave function

form factors

 \rightarrow coherent scattering from quarks $d\sigma \sim \left(\sum_{i} e_i\right)^2$

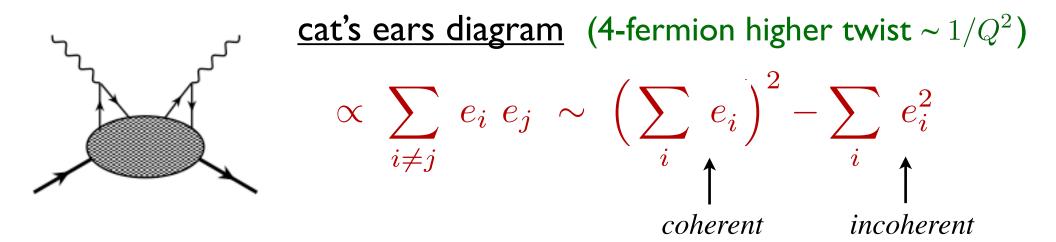


structure functions

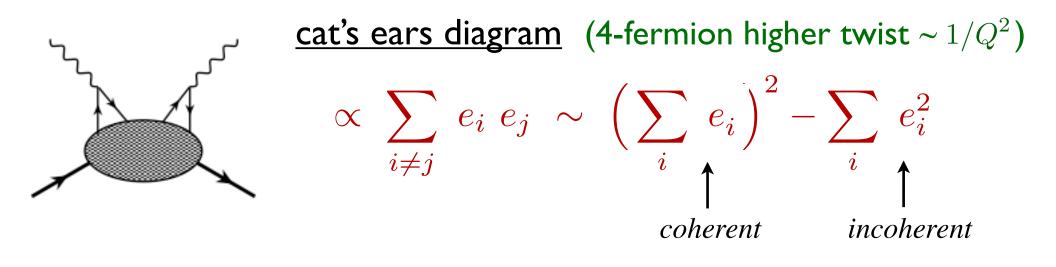
 \rightarrow incoherent scattering from quarks $d\sigma \sim \sum e_i^2$

- For duality to work, these must be equal
 - \rightarrow how can <u>square of a sum</u> become <u>sum of squares</u>?

Accidental cancellations of charges?



Accidental cancellations of charges?



proton HT ~ 1 -
$$\left(2 \times \frac{4}{9} + \frac{1}{9}\right) = 0$$
!
neutron HT ~ 0 - $\left(\frac{4}{9} + 2 \times \frac{1}{9}\right) \neq 0$
Brodsky
hep-ph/0006310

→ duality in proton a *coincidence!*→ should *not* hold for neutron

Dynamical cancellations?

 \rightarrow e.g. for toy model of two quarks bound in a harmonic oscillator potential, structure function given by

$$F(\nu, \mathbf{q}^2) \sim \sum_n \left| G_{0,n}(\mathbf{q}^2) \right|^2 \delta(E_n - E_0 - \nu)$$

→ charge operator $\Sigma_i \ e_i \exp(i\mathbf{q} \cdot \mathbf{r}_i)$ excites even partial waves with strength $\propto (e_1 + e_2)^2$ odd partial waves with strength $\propto (e_1 - e_2)^2$

Dynamical cancellations?

- → *e.g.* for toy model of two quarks bound in a harmonic oscillator potential, structure function given by $F(\nu, \mathbf{q}^2) \sim \sum |G_{0,n}(\mathbf{q}^2)|^2 \delta(E_n - E_0 - \nu)$
- → charge operator $\Sigma_i \ e_i \exp(i\mathbf{q} \cdot \mathbf{r}_i)$ excites even partial waves with strength $\propto (e_1 + e_2)^2$ odd partial waves with strength $\propto (e_1 - e_2)^2$
- $\rightarrow \text{ resulting structure function} \\ F(\nu, \mathbf{q}^2) \sim \sum_n \left\{ (e_1 + e_2)^2 \ G_{0,2n}^2 + (e_1 e_2)^2 \ G_{0,2n+1}^2 \right\}$
- → if states degenerate, cross terms ($\sim e_1 e_2$) cancel when averaged over nearby even and odd parity states

Dynamical cancellations?

duality is realized by summing over at least one
 complete set of <u>even</u> and <u>odd</u> parity resonances *

Close, Isgur, PLB 509, 81 (2001)

- \rightarrow in NR Quark Model, even & odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)
 - assume magnetic coupling of photon to quarks (better approximation at high Q²)
 - in this limit Callan-Gross relation valid $F_2 = 2xF_1$
 - structure function given by squared sum of transition FFs

$$F_1(\nu, \vec{q}^2) \sim \sum_R |F_{N \to R}(\vec{q}^2)|^2 \delta(E_R - E_N - \nu)$$

* realized in many models: 't Hooft model, large N_c , RQM, ... see WM et al., Phys. Rep. 406, 127 (2005)

- Dynamical cancellations?
 - → duality is realized by summing over at least one complete set of <u>even</u> and <u>odd</u> parity resonances

Close, Isgur, PLB 509, 81 (2001)

 \rightarrow in NR Quark Model, even & odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
$ \begin{array}{c} F_1^p \\ F_1^n \\ F_1^n \end{array} $	$\frac{9\rho^2}{(3\rho+\lambda)^2/4}$	$\frac{8\lambda^2}{8\lambda^2}$	$\frac{9\rho^2}{(3\rho-\lambda)^2/4}$	$0 \\ 4\lambda^2$	$\lambda^2 \ \lambda^2$	$\frac{18\rho^2 + 9\lambda^2}{(9\rho^2 + 27\lambda^2)/2}$

 $\lambda \ (\rho) =$ (anti) symmetric component of ground state wfn.

Close, WM, PRC 68, 035210 (2003)

SU(6) limit $\longrightarrow \lambda = \rho$

\longrightarrow relative strengths of $N \rightarrow N^*$ transitions:

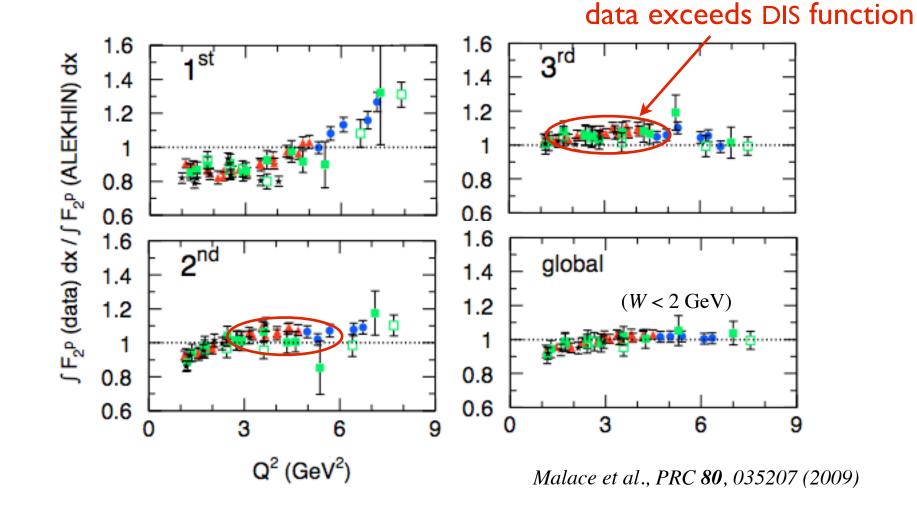
SU($(6): [56, 0^+]^2 8$	$[{f 56}, 0^+]^4 10$	$[{f 70},1^-]^{f 2}{f 8}$	$[{f 70}, 1^-]^{f 48}$	$[70, 1^-]^2 10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18

■ summing over all resonances in 56⁺ and 70⁻ multiplets → $\frac{F_1^n}{F_1^p} = \frac{18}{27} = \frac{2}{3}$

at the quark level, *n*/*p* ratio is

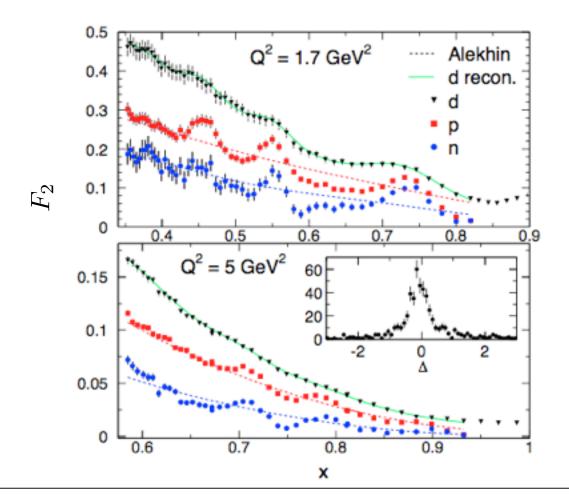
$$\rightarrow \ \frac{F_1^n}{F_1^p} = \frac{4d+u}{d+4u} = \frac{6}{9} = \frac{2}{3} \quad \text{if } u = 2d$$

Proton data expected to overestimate DIS function in 2nd and 3rd resonance regions (odd parity states)

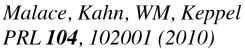


 \rightarrow duality violation for proton $\lesssim 10\%$, integrated over x

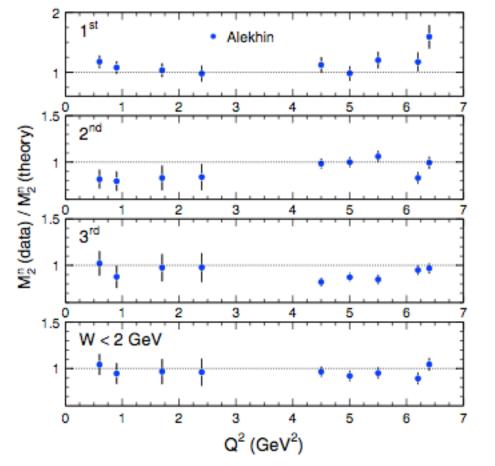
- Duality in <u>neutron</u> not tested because of absence of free neutron targets
- New extraction method (using iterative procedure for solving integral convolution equations) has allowed first determination of F_2^n in resonance region & test of neutron duality



Kahn, WM, Kulagin PRC **79**, 035205 (2009)



■ Neutron data expected to lie *below* DIS function in 2nd region



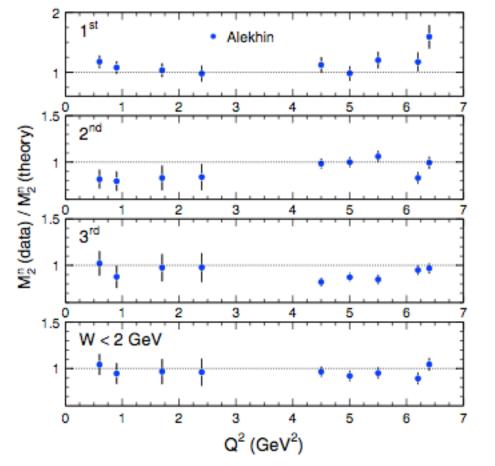
- → "theory": fit to W > 2 GeV data Alekhin et al., 0908.2762 [hep-ph]
- → locally, violations of duality in resonance regions < 15-20% (largest in △ region)

$$\rightarrow$$
 globally, violations < 10%

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

duality is <u>not</u> accidental, but a general feature of resonance-scaling transition!

■ Neutron data expected to lie *below* DIS function in 2nd region



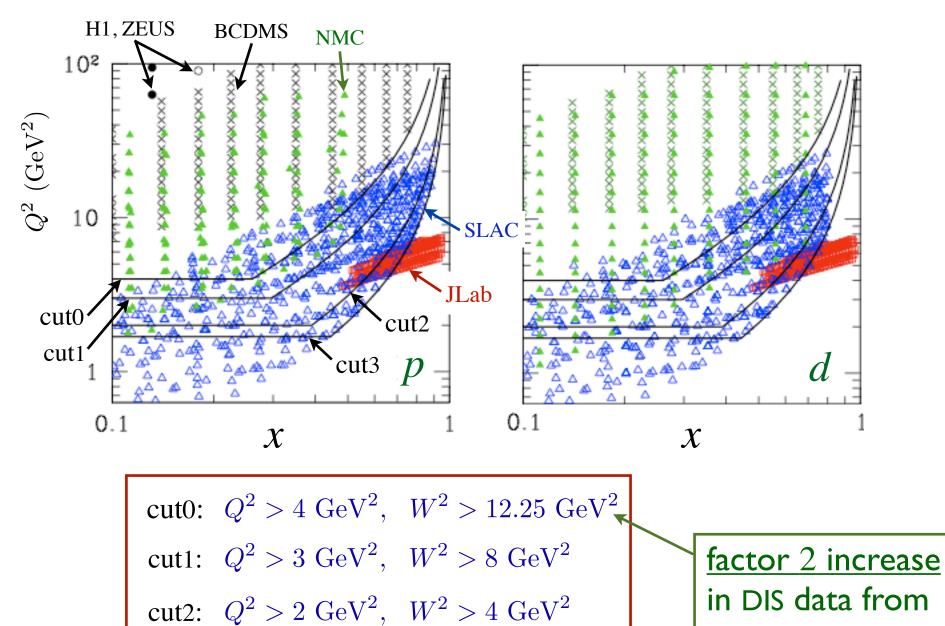
- → "theory": fit to W > 2 GeV data Alekhin et al., 0908.2762 [hep-ph]
- → locally, violations of duality in resonance regions < 15-20% (largest in △ region)
- \rightarrow globally, violations < 10%

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

use resonance region data to learn about leading twist structure functions? CTEQ6X global PDF analysis

- New global QCD (next-to-leading order) analysis of expanded set of p and d data, including large-x, low-Q² region
 - → joint JLab-CTEQ theory/experiment collaboration (with Hampton, FSU, FNAL, Duke)
- Systematically study effects of $Q^2 \& W$ cuts
 - \rightarrow as low as $Q \sim m_c$ and $W \sim 1.7 \text{ GeV}$
- Include large-x corrections
 - \rightarrow TMCs & higher twists $F_2(x,Q^2) = F_2^{LT}(x,Q^2)(1+C(x)/Q^2)$
 - realistic nuclear effects in deuteron (binding + off-shell) (most analyses assume no nuclear corrections)

CTEQ6X – kinematic cuts

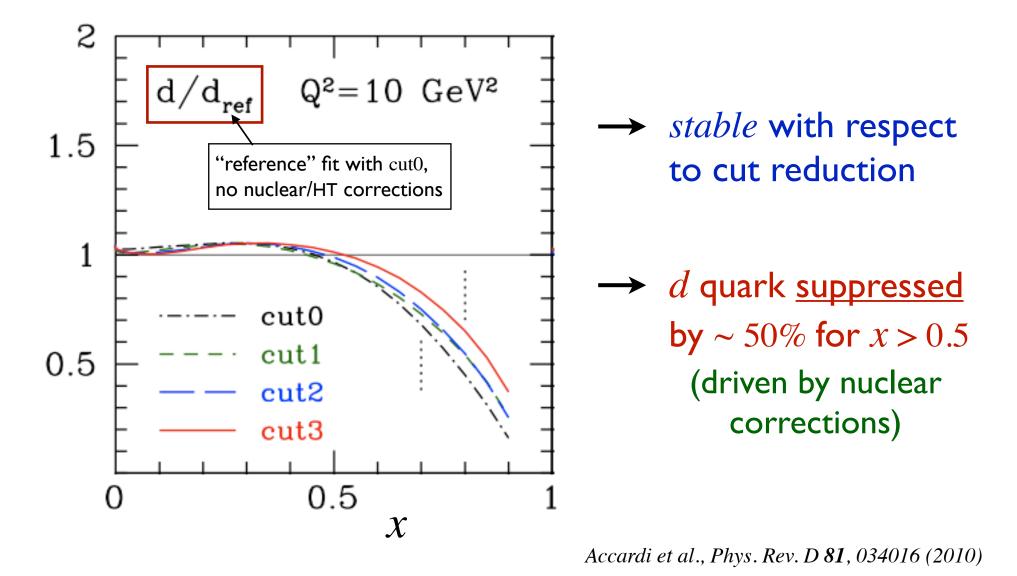


cut3: $Q^2 > m_c^2$, $W^2 > 3 \text{ GeV}^2$

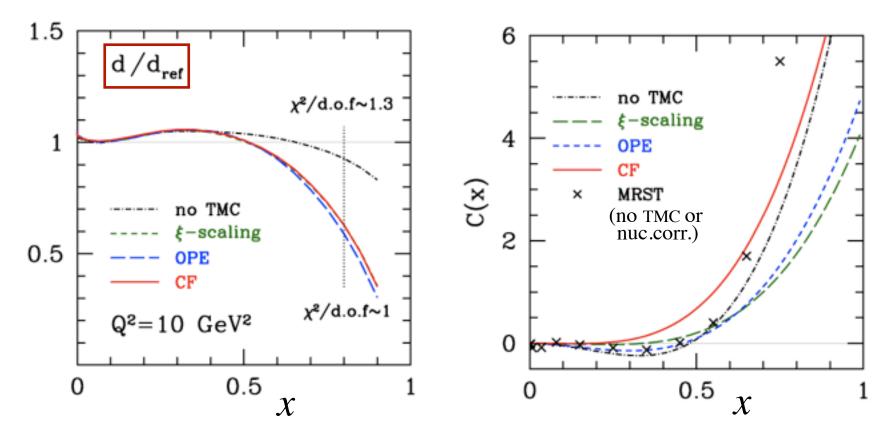
 $cut0 \rightarrow cut3$

CTEQ6X – kinematic cuts

Systematically reduce Q² and W cuts, including TMC, HT
 & nuclear corrections

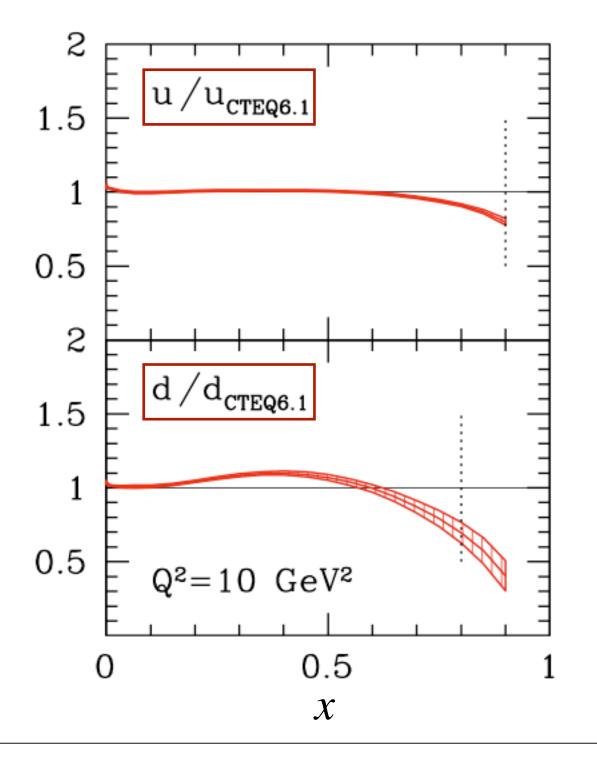


CTEQ6X – $1/Q^2$ corrections



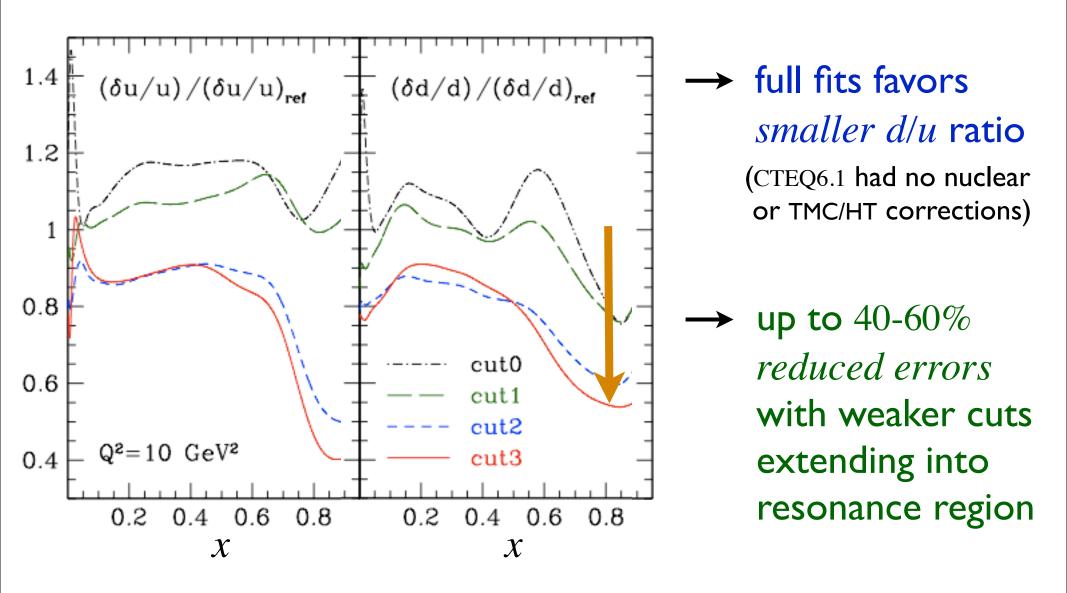
- → important interplay between TMCs and higher twist: HT alone *cannot* accommodate full Q^2 dependence
- stable leading twist when <u>both</u> TMCs and HTs included

CTEQ6X – final PDF results



→ full fits favors smaller d/u ratio (CTEQ6.1 had no nuclear or TMC/HT corrections)

CTEQ6X – final PDF results



Accardi et al., Phys. Rev. D 81, 034016 (2010)

Summary

Remarkable confirmation of quark-hadron duality in *proton* and *neutron* structure functions

 \rightarrow duality-violating higher twists ~ 10–15% in few-GeV range

- Confirmation of duality in *neutron* suggests origin in dynamical cancellations of higher twists
 - \rightarrow duality <u>not</u> due to accidental cancellations of quark charges
- Practical application of duality
 - \rightarrow use resonance region data to constrain *leading twist* PDFs
 - → stable fits at low Q^2 and large x with significantly reduced uncertainties

The End