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Parity-violating e scattering

Left-right polarization asymmetry in                  scattering!e p → e p

APV =
σL − σR

σL + σR
= −

�
GF Q2

4
√

2α

�
(AV + AA + As)

X

Born (tree) level

measure interference between e.m. and weak currents
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Parity-violating e scattering

Left-right polarization asymmetry in                  scattering!e p → e p

APV =
σL − σR

σL + σR
= −

�
GF Q2

4
√

2α

�
(AV + AA + As)

in forward limit measures weak charge of proton          

APV → GF Qp
W

4
√

2πα
t

k

p
qγ∗ Z

k’    k≈

p’    p≈

t = (k − k�)2 → 0
forward limit

s = (k + p)2

= M(M + 2E)

Qp
W
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Proton weak charge

Qp
W = 1− 4 sin2 θW

At tree level        gives weak mixing angle Qp
W

current best values

Qp
W small number - sensitive to higher-order corrections

scale dependence from
radiative effects

QWEAK: precision test of Standard Model

Wµ
± =

1√
2

(Aµ
1 ± iAµ

2 )

Zµ = cos θW Aµ
3 + sin θW Bµ

Aµ = − sin θW Aµ
3 + cos θW Bµ

MW

MZ
= cos θW

g = − e

sin θW

g� = − e

cos θW

PDGsin θW (M2
Z) = 0.23113± 0.00015

Weak mixing angle: central role in SM

sin2 θW (0) = 0.23807± 0.00017 Erler et al. ‘04
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QWEAK experiment: 4% determination of weak charge of the proton (2% exp. + 2% theory) - 
0.3% determination of the weak angle

Weak charge of the proton in SM

Deviation from SM value: New Physics at low energies 
Agreement with SM value: constraints on NP

Qp
W (0) = 1− 4 sin2 θW ≈ 0.075

Friday, January 15, 2010

sin2 θW (M2
Z) = 0.23116(16)

sin2 θW (0) = 0.23867(13)
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Fig. 2. γ − Z mixing diagrams and W -loop contribution to the anapole moment.

Because of the (1 − 4 sin2 θW ) dependence of ALR(e−e−), even with relatively
modest angular coverage limited to 0.1 ≤ y ≤ 0.9, Møller scattering can be used to
measure sin2 θW rather precisely, to about ±0.0003 at

√
s ≈ 1 TeV. Although not

likely to compete with future potential very high statistics Z pole measurements, it
will be competitive with present day measurements. In addition, Møller scattering
can be used as a powerful probe for “new physics” effects. Indeed, for electron
composite effects parametrized by the four fermion interaction11 2π

Λ2 eLγµeLeLγµeL

one finds ∆ALR ≈ sy(1 − y)c2
W /αΛ2 for e−e− Møller scattering. It can, therefore,

be more sensitive than e+e− → e+e− (about 50% better) and could probe Λ ∼
150 TeV.

If one is interested in an even more precise determination of sin2 θW via Møller
scattering, extremely forward events must be detected. For example, assuming
detector acceptance down to about 5◦ (y = 0.0019), Cuypers and Gambino6 have
shown that ∆ sin2 θW ≈ ±0.0001 may be possible at a

√
s = 2 TeV e−e− collider

with P1 = P2 = 90%.

4. Radiative Corrections and sin2 θW (Q2)

The tree level ALR for both E158 and future e−e− collider studies are propor-
tional to 1 − 4 sin2 θW and hence suppressed because sin2 θW ' 0.23. Since some
electroweak radiative corrections are not suppressed by 1 − 4 sin2 θW , they can be
potentially very large. A complete calculation has been carried out12 for small s as
appropriate to E158. There it was shown that such effects reduce ALR by 40% and
must be included in any detailed study. Here, we comment on the primary sources
of those large corrections and show how much of the effect can be incorporated into
a running sin2 θW (Q2). We also discuss how those large effects carry over to collider
energies. For a complete study of radiative corrections to Møller scattering at high
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Corrections to proton weak charge

vacuum 
polarization

�

two-photon exchange
vanishes at t = 0

+ ...
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WW  and ZZ box diagrams dominated by short distances, 
evaluated perturbatively  (WW box gives ~ 25% correction!)

box diagrams

O γZ = O
A
γZ + O

V
γZ

      box diagram sensitive to long distance physics,
has two contributions
γZ

vector e - axial h axial e - vector h
(vanishes at E=0)(finite at E=0)

= 0.0713± 0.0008

including higher order radiative corrections      

Q
p
W = (1 + ∆ρ + ∆e)(1− 4 sin2

θW (0) + ∆�
e)

+ O WW + O ZZ + O γZ

Erler et al., PRD 72 (2005) 073003

Corrections to proton weak charge

6



low-energy part approximated by Born 
contribution (elastic intermediate state)

high-energy part (above scale          GeV)
computed in terms of scattering from
free quarks

Λ ∼ 1

Marciano, Sirlin, PRD 29 (1984) 75; Erler et al., PRD 68 (2003) 016006

O
A
γZ =

5α

2π
(1− 4 sin2 θW )

�
ln

M2
Z

Λ2
+ CγZ(Λ)

�

computed by Marciano & Sirlin (1980s) as sum of two parts:

axial h correction         dominant      correction in
atomic parity violation at very low (zero) energy

O
A
γZ γZ

Axial h correction

q q
q q
q q

≈ 0.0052(5) ≈short-distance long-distance     3/2    1±
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Axial h correction

axial h correction         dominant      correction in
atomic parity violation at very low (zero) energy

O
A
γZ γZ

k

p
qγ∗ Z

k’    k≈

p’    p≈

repeat calculation using forward dispersion relations
with realistic (structure function) input

�e OA
γZ(E) = 2

π

�∞
0 dE� E�

E�2−E2 �m OA
γZ(E

�)

axial h contribution antisymmetric under E       -E  :’ ’

negative energy part corresponds to crossed box
(crossing symmetry           )s → u
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Axial h correction

imaginary part given by interference        structure functionF γZ
3

with

Im A
γZ(E) =

1

(2ME)2

� s

M2

dW 2

� Q2
max

0
dQ2 ve(Q2)α(Q2)

1 +Q2/M2
Z

×
�

2ME

W 2 −M2 +Q2
− 1

2

�
F γZ
3

ve(Q
2) = 1− 4κ(Q2) sin2 θW (Q2)

γZ     interference
structure function

scale dependence of          given by
vacuum polarization corrections,  e.g.
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Fig. 2. γ − Z mixing diagrams and W -loop contribution to the anapole moment.
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α

α(Q2)
= 1−∆αlep(Q

2)−∆α(5)
had(Q

2)

α−1(M2
Z) = 128.94

... similarly for weak charges 
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Axial h correction

0 1 2 3

E (GeV)
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 γ

ZA
(E

) 
  
(x

 1
0

-4
)

elastic
resonance

elastic part

resonance part from parametrization of    scattering data
(includes lowest four spin-1/2 and 3/2 states)

ν
Lalakulich, Paschos (2006)

F γZ(el)
3 = −Q2 Gp

M (Q2)GZ
A(Q

2) δ(W 2 −M2)
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DIS part dominated by leading twist PDFs at high W (small x)

Axial h correction

F γZ(DIS)
3 =

�

q

2eq g
q
A

�
q(x,Q2)− q̄(x,Q2)

�
e.g. at LO,

switching order of integration (energy integral analytic!),
expand integrand in         in DIS region (                    )Q2 � 1 GeV21/Q2

Re A(DIS)
γZ (E) =

3

2π

� ∞

Q2
0

dQ2 ve(Q2)α(Q2)

1 +Q2/M2
Z

×
�
MγZ(1)

3 − 2M2

9Q4 (5E2 − 3Q2)MγZ(3)
3

�

with moments MγZ(n)
3 (Q2) =

1�

0
dx xn−1F γZ

3 (x,Q2)
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Axial h correction

structure function moments

MγZ(1)
3 (Q2) = 5

3

�
1− αs(Q

2)
π

�

analog of Gross-Llewellyn Smith sum ruleγZ

n = 1

n = 3

related to x  -weighted moment of valence quarks

Re A(DIS)
γZ ≈ (1− 4ŝ2) 5α2π

∞�

Q2
0

dQ2

Q2(1+Q2/M2
Z)

�
1− αs(Q

2)
π

�

precisely result from Marciano & Sirlin!
(works because result depends on lowest moment of
 valence PDF, with model-independent normalization!)

2

MγZ(3)
3 (Q2) = 1

3

�
2�x2�u + �x2�d

� �
1 + 5αs(Q

2)
12π

�
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Axial h correction

“DIS” region at                     does not afford PDF description

in absence of data, consider models with general constraints

Q2 < 1 GeV2

should not diverge in limitF γZ
3 (xmax, Q2) Q2 → 0

F γZ
3 (x,Q2) Q2 = 1GeV2should match PDF description at

F γZ
3 (x,Q2) =

�
1 + Λ2/Q2

0

1 + Λ2/Q2

�
F γZ

3 (x,Q2
0)Model 1

Model 2

F γZ
3 ∼ (Q2)0.3 as Q2 → 0

F γZ
3 finite as Q2 → 0

F γZ
3 frozen at Q2 = 1 value for all W 2
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E (GeV)

−1

0
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R
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 γ

ZA
(E

) 
  

(x
 1

0
-4

)

elastic
                                                 .

resonance                             l
.

DIS (Q
2
<1), Model 1

DIS (Q
2
<1), Model 2

DIS (Q
2
>1, n ≥ 3)

Axial h correction

Blunden, WM, Thomas (2011)

dominated by n = 1 DIS moment: 
(weak E dependence)

32.8× 10−4
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Axial h correction

correction at E = 0

correction at E = 1.165 GeV (Qweak)

cf.  MS value:  0.0052(5)  (~1% shift in       )Qp
W

elastic resonance DIS

�e�A
γZ = 0.00064 + 0.00023 + 0.00350 → 0.0044(4)

�e�A
γZ = 0.00005 + 0.00011 + 0.00352 = 0.0037(4)

shifts        from  0.0713(8)        0.0705(8)Qp
W
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Vector h correction

forward dispersion relation

integration over E < 0 corresponds to crossed-box, 
vector h contribution symmetric under E       -E

’
’ ’

vector h correction         vanishes at E = 0, but experiment
has E ~ 1 GeV - what is energy dependence?                 

O
V
γZ

�e OV
γZ(E) = 2E

π

�∞
0 dE� 1

E�2−E2 �m OV
γZ(E

�)

imaginary part given by

�mO V
γZ(E) =

α

(s−M2)2

� s

W 2
π

dW 2

� Q2
max

0

dQ2

1 + Q2/M2
Z

×
�

F γZ
1 + F γZ

2

s (Q2
max −Q2)

Q2(W 2 −M2 + Q2)

�
factor 2 larger than GH;

confirmed by Rislow & Carlson,
arXiv:1011:2397 [hep-ph]

Gorchtein, Horowitz, PRL 102 (2009) 091806
Gorchtein, Horowitz, Ramsey-Musolf, arXiv:1003.4300
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parton model for DIS region F γZ
2 = 2x

�

q

eq gq
V (q + q̄) = 2xF γZ

1

good approximation at low xF γZ
2 ≈ F γ

2

provides upper limit at large x (F γZ
2 � F γ

2 )

Vector h correction

structure functionsF γZ
1,2

in resonance region use phenomenological input for F , 
empirical (SLAC) fit for R

2

for transitions to I = 3/2 states (e.g.    ),  CVC
and isospin symmetry give  

∆
F γZ
i = (1 +Qp

W )F γ
i

for transitions to I = 1/2 states,  SU(6) wave functions
predict Z &    transition couplings equal to a few %γ
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low W high W

GVMD model
(used as input by  
 Gorchtein & Horowitz)

Vector h correction

compare structure function input with data
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total         correctionO
V
γZ

Qweak
E=1.165 GeV

resonance

high W or                of uncorrected Qp
W6.6+1.5

−0.6 %

Vector h correction

Sibirtsev, Blunden, WM, Thomas
PRD 82 (2010) 013011

�e�V
γZ = 0.0047+0.0011

−0.0004
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Gorchtein, Horowitz, PRL 102 (2009) 091806

Qweak

resonance

Regge

GH omit factor (1-x) in definition of F 
(~ 30% enhancement)

1,2

GH use       ~ 0.05  cf. ~ 0.07
(~ 40% enhancement)

Qp
W

mostly from high-W
(“Regge”) contribution

�e δγZ = �eO V
γZ/Qp

W ≈ 6%

numerical agreement for       coincidental (?)

(see also Gorchtein, Horowitz, Ramsey-Musolf,
AIP Conf. Proc. 1265 (2010) 328)

confirmed by
Rislow/Carlson
arXiv:1011.2397 

δVγZ

our formula for              factor 2 larger
( “nuclear physics” vs. “particle physics” conventions for
  weak charges in structure function definitions?)

�m O
V
γZ *

*
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Combined vector and axial h correction

Qp
W = 0.0713 → 0.0705 (at E=0)

At E=1.165 GeV
E-dependent 
correction
is +0.0040

0 1 2 3

E (GeV)

0.2

0.4

0.6

0.8

1.0

1.2

R
e 

  
γZ

(E
) 

 (
x
 1

0
-2
)

MS

V+A

A

+0.0047

-0.0007
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*

* 4% measurement of Qp
W

Bentz et al., PLB 693 (2010) 462

shift in central value w/out correction

significant shift in central value, errors within 
projected experimental uncertainty ∆Qp

W = ±0.003

Combined vector and axial h correction

∆ sin2 θW ≈ 0.0013
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t dependence

Extrapolation from t = -0.03 GeV   to t = 02

phenomenological ansatz

�γZ(E, t) = �γZ(0, 0)
e−B|t|/2

Fγp
1 (t)

Gorchtein, Horowitz, PRL 102 (2009) 091806

B = (7± 1)GeV−2with                            from forward Compton scattering

~ 2% reduction of  �γZ
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Summary

Dramatic effect of           corrections at forward angles
on proton weak charge,          ~ 6%,  cf. PDG

γ(Zγ)
∆Qp

W

better constraints from direct measurement of           
(e.g. in PVDIS at JLab)

F γZ
1,2,3

would significantly shift extracted weak angle

New formulation in terms of moments of structure functions

places on firm footing earlier derivation of 
Marciano/Sirlin in “free quark model”

may have some effect on atomic PV predictions (e.g. Cs, Fr)
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The End
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