# Two-Boson Exchange in Electron-Nucleon Scattering 

Wally Melnitchouk Jefferson Lab
with Peter Blunden (Manitoba), John Tjon (Utrecht), Alex Sibirtsev (Juelich), Tony Thomas (Adelaide)

## Outline

- Elastic ep scattering
- Two-photon exchange
$\rightarrow$ Rosenbluth separation $v s$. polarization transfer
$\rightarrow$ first global analysis of form factors including TPE
- Parity-violating electron scattering
$\rightarrow$ photon-Z interference \& strangeness in the proton
$\rightarrow$ dispersive corrections to proton's weak charge
- Summary


## Elastic $e N$ scattering

## - Elastic cross section

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\sigma_{\mathrm{Mott}} \frac{\tau}{\varepsilon(1+\tau)} \sigma_{R} \\
\tau & =Q^{2} / 4 M^{2} \\
\varepsilon & =\left(1+2(1+\tau) \tan ^{2}(\theta / 2)\right)^{-1}
\end{aligned}
$$

$$
\sigma_{\mathrm{Mott}}=\frac{\alpha^{2} E^{\prime} \cos ^{2} \frac{\theta}{2}}{4 E^{3} \sin ^{4} \frac{\theta}{2}} \longleftarrow \begin{aligned}
& \text { cross section for scattering } \\
& \text { from point particle }
\end{aligned}
$$

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right) \longleftarrow \text { reduced cross section }
$$

$$
G_{E}, G_{M} \longleftarrow \text { Sachs electric and magnetic form factors }
$$

## Traditional interpretation

- In Breit frame

$$
\nu=0, \quad Q^{2}=\vec{q}^{2}
$$

electromagnetic current is

$$
\bar{u}\left(p^{\prime}, s^{\prime}\right) \Gamma^{\mu} u(p, s)=\chi_{s^{\prime}}^{\dagger}\left(G_{E}+\frac{i \vec{\sigma} \times \vec{q}}{2 M} G_{M}\right) \chi_{s}
$$


$\rightarrow c f$. classical (Non-Relativistic) current density

$$
\begin{aligned}
J^{\mathrm{NR}} & =\left(e \rho_{E}^{\mathrm{NR}}, \mu \vec{\sigma} \times \vec{\nabla} \rho_{M}^{\mathrm{NR}}\right) \\
\rightarrow \quad \rho_{E}^{\mathrm{NR}}(r) & =\frac{2}{\pi} \int_{0}^{\infty} d q \vec{q}^{2} j_{0}(q r) G_{E}\left(\vec{q}^{2}\right) \longleftarrow \text { charge density } \\
\mu \rho_{M}^{\mathrm{NR}}(r) & =\frac{2}{\pi} \int_{0}^{\infty} d q \vec{q}^{2} j_{0}(q r) G_{M}\left(\vec{q}^{2}\right) \longleftarrow \text { magnetization density }
\end{aligned}
$$

## Proton $G_{E} / G_{M}$ ratio



## Proton $G_{E} / G_{M}$ ratio



LT method

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)
$$

$\rightarrow G_{E}$ from slope in $\varepsilon$ plot
$\rightarrow$ suppressed at large $Q^{2}$
$\rightarrow P_{T, L}$ recoil proton polarization in $\vec{e} p \rightarrow e \vec{p}$

## Proton $G_{E} / G_{M}$ ratio



LT method

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)
$$

PT method

$$
\frac{G_{E}}{G_{M}}=-\sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon} \frac{P}{P_{L}}}
$$

$\rightarrow$ are the $G_{E}^{p} / G_{M}^{p}$ data consistent?

Two-photon exchange

## QED radiative corrections

- cross section modified by $1 \gamma$ loop effects



## QED radiative corrections

- cross section modified by $1 \gamma$ loop effects



## Two-photon exchange

- interference between Born and TPE amplitudes

- contribution to cross section:

$$
\delta^{(2 \gamma)}=\frac{2 \mathcal{R} e\left\{\mathcal{M}_{0}^{\dagger} \mathcal{M}_{\gamma \gamma}\right\}}{\left|\mathcal{M}_{0}\right|^{2}}
$$

- "soft photon approximation" (used in most data analyses)
$\longrightarrow$ approximate integrand in $\mathcal{M}_{\gamma \gamma}$ by values at $\gamma^{*}$ poles
$\longrightarrow$ neglect nucleon structure (no form factors)


## Two-photon exchange


where

$$
\begin{aligned}
& N(k)=\bar{u}\left(p_{3}\right) \gamma_{\mu}\left(\not p_{1}-\not p+m_{e}\right) \gamma_{\nu} u\left(p_{1}\right) \\
& \quad \times \bar{u}\left(p_{4}\right) \Gamma^{\mu}(q-k)\left(\not p_{2}+\not ้+M\right) \Gamma^{\nu}(k) u\left(p_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
D(k) & =\left(k^{2}-\lambda^{2}\right)\left((k-q)^{2}-\lambda^{2}\right) \\
& \times\left(\left(p_{1}-k\right)^{2}-m^{2}\right)\left(\left(p_{2}+k\right)^{2}-M^{2}\right)
\end{aligned}
$$

with $\lambda$ an IR regulator, and e.m. current is

$$
\Gamma^{\mu}(q)=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}\left(q^{2}\right)
$$

- Mo-Tsai: soft $\gamma$ approximation
$\longrightarrow$ integrand most singular when $k=0$ and $k=q$
$\longrightarrow$ replace $\gamma$ propagator which is not at pole by $1 / q^{2}$
$\longrightarrow$ approximate numerator $N(k) \approx N(0)$
$\longrightarrow$ neglect all structure effects
- Maximon-Tjon: improved loop calculation
$\longrightarrow$ exact treatment of propagators
$\longrightarrow$ still evaluate $N(k)$ at $k=0$
$\longrightarrow$ first study of form factor effects
$\longrightarrow$ additional $\varepsilon$ dependence
- Blunden-WM-Tjon: exact loop calculation $\longrightarrow$ no approximation in $N(k)$ or $D(k)$
$\longrightarrow$ include form factors


## Two-photon exchange

■ "exact" calculation of loop diagram (including hadron structure)

$\rightarrow$ few \% magnitude, non-linear in $\varepsilon$
$\rightarrow$ positive slope
(will reduce Rosenbluth ratio)

## Two-photon exchange

■"exact" calculation of loop diagram (including hadron structure)

$\rightarrow$ results do not depend strongly on input form factors

Higher-mass intermediate states


- lowest mass excitation is $P_{33} \Delta(1232)$ resonance
$\rightarrow$ relativistic $\gamma^{*} N \Delta$ vertex

$$
\text { form factor } \frac{\Lambda_{\Delta}^{4}}{\left(\Lambda_{\Delta}^{2}-q^{2}\right)^{2}}
$$

$$
\begin{aligned}
& \Gamma_{\gamma \Delta \rightarrow N}^{\nu \alpha}(p, q) \equiv i V_{\Delta i n}^{\nu \alpha}(p, q)=i \frac{e F_{\Delta}\left(q^{2}\right)}{2 M_{\Delta}^{2}}\left\{g_{1}\left[g^{\nu \alpha} \not p q-p^{\nu} \gamma^{\alpha} \phi q-\gamma^{\nu} \gamma^{\alpha} p \cdot q+\gamma^{\nu} \not p q^{\alpha}\right]\right. \\
& \left.\quad+g_{2}\left[p^{\nu} q^{\alpha}-g^{\nu \alpha} p \cdot q\right]+\left(g_{3} / M_{\Delta}\right)\left[q^{2}\left(p^{\nu} \gamma^{\alpha}-g^{\nu \alpha} \not p\right)+q^{\nu}\left(q^{\alpha} \not p-\gamma^{\alpha} p \cdot q\right)\right]\right\} \gamma_{5} T_{3}
\end{aligned}
$$

$\rightarrow$ coupling constants $\quad g_{1}$ magnetic $\quad \Rightarrow 7$

$$
\begin{aligned}
g_{2}-g_{1} & \text { electric }
\end{aligned} \quad \Rightarrow 991+g_{3} \text { Coulomb } \quad \Rightarrow-2 \ldots 0
$$

## - TPE amplitude with $\Delta$ intermediate state

$$
\mathcal{M}_{\Delta}^{\gamma \gamma}=-e^{4} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{N_{b o x}^{\Delta}(k)}{D_{b o x}^{\Delta}(k)}-e^{4} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{N_{x-b o x}^{\Delta}(k)}{D_{x-b o x}^{\Delta}(k)}
$$

with numerators

$$
\begin{aligned}
N_{b o x}^{\Delta}(k) & =\bar{U}\left(p_{4}\right) V_{\Delta i n}^{\mu \alpha}\left(p_{2}+k, q-k\right)\left[\not p_{2}+\not \nmid+M_{\Delta}\right] \mathcal{P}_{\alpha \beta}^{3 / 2}\left(p_{2}+k\right) V_{\Delta o u t}^{\beta \nu}\left(p_{2}+k, k\right) U\left(p_{2}\right) \\
& \times \bar{u}\left(p_{3}\right) \gamma_{\mu}\left[\not p_{1}-\not p+m_{e}\right] \gamma_{\nu} u\left(p_{1}\right) \\
N_{x-b o x}^{\Delta}(k) & =\bar{U}\left(p_{4}\right) V_{\Delta i n}^{\mu \alpha}\left(p_{2}+k, q-k\right)\left[\not p_{2}+\not \neq M_{\Delta}\right] \mathcal{P}_{\alpha \beta}^{3 / 2}\left(p_{2}+k\right) V_{\Delta o u t}^{\beta \nu}\left(p_{2}+k, k\right) U\left(p_{2}\right) \\
& \times \bar{u}\left(p_{3}\right) \gamma_{\nu}\left[\not \not p_{3}+\not \neq+m_{e}\right] \gamma_{\mu} u\left(p_{1}\right)
\end{aligned}
$$

spin-3/2 projection operator

$$
\mathcal{P}_{\alpha \beta}^{3 / 2}(p)=g_{\alpha \beta}-\frac{1}{3} \gamma_{\alpha} \gamma_{\beta}-\frac{1}{3 p^{2}}\left(\not p \gamma_{\alpha} p_{\beta}+p_{\alpha} \gamma_{\beta} \not p\right)
$$

- higher-mass intermediate states
$\rightarrow$ more model dependent, since couplings \& form factors not as well known (especially at high $Q^{2}$ )


Kondratyuk, Blunden,
Melnitchouk, Tjon
PRL 95 (2005) 172503
Kondratyuk, Blunden
PRC 75 (2007) 038201
$\rightarrow$ dominant contribution from $N$
$\rightarrow \Delta$ partially cancels $N$ contribution

- higher-mass intermediate states


Kondratyuk, Blunden
PRC 75 (2007) 038201
$\rightarrow$ higher mass resonance contributions small
$\rightarrow$ much better fit to data including TPE

Global analysis

## Global analysis

- reanalyze all elastic $e p$ data (Rosenbluth, PT), including TPE corrections consistently from the beginning
- use explicit calculation of $N$ elastic contribution
- approximate higher mass contributions by phenomenological form, based on $N^{*}$ calculations:

$$
\delta_{\text {high mass }}^{(2 \gamma)}=-0.01(1-\varepsilon) \log Q^{2} / \log 2.2
$$

for $Q^{2}>1 \mathrm{GeV}^{2}$, with $\pm 100 \%$ uncertainty
$\rightarrow$ decreases $\varepsilon=0$ cross section by $1 \%$ ( $2 \%$ )

$$
\text { at } Q^{2}=2.2(4.8) \mathrm{GeV}^{2}
$$

## Global analysis



## Non-linearity in $\varepsilon$

- unique feature of TPE correction to cross section
- observation of non-linearity in $\varepsilon$ would provide direct evidence of TPE in elastic scattering
- fit reduced cross section as:

$$
\sigma_{R}=P_{0}\left[1+P_{1}\left(\varepsilon-\frac{1}{2}\right)+P_{2}\left(\varepsilon-\frac{1}{2}\right)^{2}\right]
$$

- current data give average non-linearity parameter:

$$
\left\langle P_{2}\right\rangle=4.3 \pm 2.8 \%
$$

- Hall C experiment E-05-017 will provide accurate measurement of $\varepsilon$ dependence


## $e^{+} / e^{-}$comparison

- $1 \gamma(2 \gamma)$ exchange changes sign (invariant) under $e^{+} \leftrightarrow e^{-}$ $\rightarrow$ ratio of $e^{+} p / e^{-} p$ cross sections sensitive to $\Delta\left(\varepsilon, Q^{2}\right)$

$$
\sigma_{e^{+} p} / \sigma_{e^{-} p} \approx 1-2 \Delta
$$


$\rightarrow$ simultaneous $e^{-} p / e^{+} p$ measurement using tertiary $e^{+} / e^{-}$beam to $Q^{2} \sim 1-2 \mathrm{GeV}^{2}$
(Hall B experiment E-04-116)

- $1 \gamma(2 \gamma)$ exchange changes sign (invariant) under $e^{+} \leftrightarrow e^{-}$


## Very preliminary Novosibirsk data

$$
e^{+}-p / e^{-}-p \text { cross section ratio }
$$



Arrington, Holt et al. (2010)


## final form factor results

 from global analysis including TPE corrections$$
\left\{G_{E}, \frac{G_{M}}{\mu_{p}}\right\}=\frac{1+\sum_{i=1}^{n} a_{i} \tau^{i}}{1+\sum_{i=1}^{n+2} b_{i} \tau^{i}}
$$

| Parameter | $G_{M} / \mu_{p}$ | $G_{E}$ |
| :--- | ---: | ---: |
| $a_{1}$ | -1.465 | 3.439 |
| $a_{2}$ | 1.260 | -1.602 |
| $a_{3}$ | 0.262 | 0.068 |
| $b_{1}$ | 9.627 | 15.055 |
| $b_{2}$ | 0.000 | 48.061 |
| $b_{3}$ | 0.000 | 99.304 |
| $b_{4}$ | 11.179 | 0.012 |
| $b_{5}$ | 13.245 | 8.650 |

## Charge density



## Parity-violating <br> electron scattering

## Parity-violating e scattering

- Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

$\rightarrow$ measure interference between e.m. and weak currents


## Parity-violating e scattering

- Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

$\rightarrow$ measure interference between e.m. and weak currents

$$
A_{V}=g_{A}^{e} \rho \overbrace{\substack{\text { radiative corrections, } \\ \text { including TBE }}}^{\left[\left(1-4 \kappa \sin ^{2} \theta_{W}\right)-\left(\varepsilon G_{E}^{\gamma p} G_{E}^{\gamma n}+\tau G_{M}^{\gamma p} G_{M}^{\gamma n}\right) / \sigma^{\gamma p}\right]}
$$

$\rightarrow$ using relations between weak and e.m. form factors

$$
G_{E, M}^{Z p}=\left(1-4 \sin ^{2} \theta_{W}\right) G_{E, M}^{\gamma p}-G_{E, M}^{\gamma n}-G_{E, M}^{s}
$$

## Parity-violating e scattering

- Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

$\rightarrow$ measure interference between e.m. and weak currents

$$
\begin{array}{r}
A_{A}=g_{V}^{e} \sqrt{\tau(1+\tau)\left(1-\varepsilon^{2}\right)} \widetilde{G}_{A}^{Z_{p}} G_{M}^{\gamma p} / \sigma^{\gamma p} \\
\\
\text { includes axial RCs + anapole term }
\end{array}
$$

$$
A_{s}=-g_{A}^{e} \rho\left(\varepsilon G_{E}^{\gamma p} G_{E}^{s}+\tau G_{M}^{\gamma p} G_{M}^{s}\right) / \sigma^{\gamma p}
$$

$$
\begin{gathered}
\text { strange electric \& } \\
\text { magnetic form factors }
\end{gathered}
$$

## Two-boson exchange corrections



- current PDG estimates computed at $Q^{2}=0$

Marciano, Sirlin (1980)
Erler, Ramsey-Musolf (2003)

- do not include hadron structure effects


## Two-boson exchange corrections

- parameterize corrections to asymmetry as

$$
\begin{aligned}
& A_{\mathrm{PV}}=(1+\delta) A_{\mathrm{PV}}^{0} \equiv\left(\frac{1+\delta_{Z(\gamma \gamma)}+\delta_{\gamma(Z \gamma)}}{1+\delta_{\gamma(\gamma \gamma)}}\right) A_{\mathrm{PV}}^{0} \\
& \delta_{Z(\gamma \gamma)}=\frac{2 \Re e\left(\mathcal{M}_{Z}^{*} \mathcal{M}_{\gamma \gamma}\right)}{2 \Re e\left(\mathcal{M}_{Z}^{*} \mathcal{M}_{\gamma}\right)} \\
& \delta_{\gamma(Z \gamma)}=\frac{2 \Re e\left(\mathcal{M}_{\gamma}^{*} \mathcal{M}_{\gamma Z}+\mathcal{M}_{\gamma}^{*} \mathcal{M}_{Z \gamma}\right)}{2 \Re e\left(\mathcal{M}_{Z}^{*} \mathcal{M}_{\gamma}\right)} \\
& \delta_{\gamma(\gamma \gamma)}=\frac{2 \Re e\left(\mathcal{M}_{\gamma}^{*} \mathcal{M}_{\gamma \gamma}\right)}{\left|\mathcal{M}_{\gamma}\right|^{2}}
\end{aligned}
$$

$\rightarrow$ total TBE correction

$$
\delta \approx \delta_{Z(\gamma \gamma)}+\delta_{\gamma(Z \gamma)}-\delta_{\gamma(\gamma \gamma)}
$$

## Two-boson exchange corrections

- nucleon intermediate states



Tjon, WM, PRL 100, 082003 (2008)
Tjon, Blunden, WM, PRC 79, 055201 (2009)
$\rightarrow$ cancellation between $Z(\gamma \gamma)$ and $\gamma(\gamma \gamma)$ corrections, especially at low $Q^{2}$
$\rightarrow$ dominated by $\gamma(Z \gamma)$ contribution

## Two-boson exchange corrections

- $\Delta$ intermediate states



Tjon, WM, PRL 100, 082003 (2008)
Tjon, Blunden, WM, PRC 79, 055201 (2009)
$\rightarrow \Delta$ contribution small, except at very forward angles (numerators have higher powers of loop momenta)
$\rightarrow \Delta$ calculation less reliable for $\varepsilon \rightarrow 1$ (grows faster with $s$ than nucleon)

## Effects on strange form factors

- global analysis of all PVES data at $Q^{2}<0.3 \mathrm{GeV}^{2}$


$$
\begin{gathered}
G_{E}^{s}=0.0025 \pm 0.0182 \\
G_{M}^{s}=-0.011 \pm 0.254 \\
\quad \text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
\end{gathered}
$$

Young et al., PRL 97, 102002 (2006)

- including TBE corrections:

$$
\begin{aligned}
& G_{E}^{s}=0.0023 \pm 0.0182 \\
& G_{M}^{s}=-0.020 \pm 0.254
\end{aligned}
$$

$$
\text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
$$

## Effects on strange form factors

- global analysis of all PVES data at $Q^{2}<0.3 \mathrm{GeV}^{2}$


$$
\begin{array}{r}
G_{E}^{s}=0.0025 \pm 0.0182 \\
G_{M}^{s}=-0.011 \pm 0.254 \\
\quad \text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
\end{array}
$$

Young et al., PRL 97, 102002 (2006)

- including TBE corrections:

$$
\begin{array}{ll}
G_{E}^{s}=0.0023 \pm 0.0182 \\
G_{M}^{s}=-0.020 \pm 0.254
\end{array} \quad \ldots . \mathrm{TBE} \text { for }{ }^{4} \mathrm{He} \text { not yet included }
$$

fixed mainly by ${ }^{4} \mathrm{He}$ data ...
at $Q^{2}=0.1 \mathrm{GeV}^{2}$

## Correction to proton weak charge

- in forward limit $A_{\mathrm{PV}}$ measures weak charge of proton $Q_{W}^{p}$

$$
A_{\mathrm{PV}} \rightarrow \frac{G_{F} Q_{W}^{p}}{4 \sqrt{2} \pi \alpha} t
$$


forward limit

$$
\begin{aligned}
t & =\left(k-k^{\prime}\right)^{2} \rightarrow 0 \\
s & =(k+p)^{2} \\
& =M(M+2 E)
\end{aligned}
$$

- at tree level $Q_{W}^{p}$ gives weak mixing angle

$$
Q_{W}^{p}=1-4 \sin ^{2} \theta_{W}
$$

## Correction to proton weak charge

- including higher order radiative corrections

$$
Q_{W}^{p}=\left(1+\Delta \rho+\Delta_{e}\right)\left(1-4 \sin ^{2} \theta_{W}(0)+\Delta_{e}^{\prime}\right)
$$


"standard" electroweak vertex \& other corrections

## Correction to proton weak charge

- including higher order radiative corrections

$$
\begin{aligned}
& Q_{W}^{p}=\left(1+\Delta \rho+\Delta_{e}\right)\left(1-4 \sin ^{2} \theta_{W}(0)+\Delta_{e}^{\prime}\right) \\
&+\square_{W W}+\square_{z Z}+\square_{\gamma Z} \\
& \text { box diagrams }
\end{aligned}
$$

$\rightarrow W W$ and ZZ box diagrams dominated by short distances, evaluated perturbatively
$\rightarrow \gamma Z$ box diagram sensitive to long distance physics, has two contributions


## Correction to proton weak charge

- axial $h$ correction $\square_{\gamma Z}^{A}$ dominant $\gamma Z$ correction in atomic parity violation at very low energies
$\rightarrow$ computed by Marciano \& Sirlin as sum of two parts:
$\star$ low-energy part approximated by Born contribution (elastic intermediate state)
* high-energy part (above scale $\Lambda \sim 1 \mathrm{GeV}$ ) computed in terms of scattering from free quarks

$$
\begin{array}{r}
\square_{\gamma Z}^{A}=\frac{5 \alpha}{2 \pi}\left(1-4 \sin ^{2} \theta_{W}\right)\left[\ln \frac{M_{Z}^{2}}{\Lambda^{2}}+C_{\gamma Z}(\Lambda)\right] \\
\text { high-energy } \quad \text { low-energy }
\end{array}
$$

Marciano, Sirlin, PRD 29, 75 (1984)
Erler et al., PRD 68, 016006 (2003)

## Correction to proton weak charge

- vector $h$ correction $\square_{\gamma Z}^{V}$ negligible for $E \sim m_{e}$, but what about at $\mathcal{O}(1 \mathrm{GeV})$ ?
$\rightarrow$ computed in forward limit using dispersion relations


』 $\Re e \square_{\gamma Z}^{V}=\frac{2 E}{\pi} \int_{0}^{\infty} d E^{\prime} \frac{\Im m \square_{\gamma Z}^{V}\left(E^{\prime}\right)}{E^{\prime}-E}$

* integration over $E^{\prime}<0$ corresponds to crossed-box, vector $h$ contribution symmetric under $E^{\prime} \leftrightarrow-E^{\prime}$
* vanishes as $E \rightarrow 0$


## Correction to proton weak charge

$\rightarrow$ imaginary part given by $\gamma Z$ interference structure functions

$$
\begin{array}{r}
\Im m \square_{\gamma Z}^{V}(E)=\frac{\alpha}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} \frac{d Q^{2}}{1+Q^{2} / M_{Z}^{2}} \\
\times\left(F_{1}^{\gamma Z}+F_{2}^{\gamma Z} \frac{s\left(Q_{\max }^{2}-Q^{2}\right)}{Q^{2}\left(W^{2}-M^{2}+Q^{2}\right)}\right)
\end{array}
$$

$\star$ little direct data on interference structure functions (neutral currents at HERA at very small $x$ )

* in parton model $F_{2}^{\gamma Z}=2 x \sum_{q} e_{q} g_{V}^{q}(q+\bar{q})=2 x F_{1}^{\gamma Z}$
$\rightarrow F_{2}^{\gamma Z} \approx F_{2}^{\gamma}$ good approximation at low $x$
$\rightarrow$ provides upper limit at large $x\left(F_{2}^{\gamma} \lesssim F_{2}^{\gamma}\right)$


## Correction to proton weak charge

$\square \quad$ in resonance region use phenomenological input for $F_{2}$, empirical SLAC fit for $R=\sigma_{L} / \sigma_{T}=\left(1+4 M^{2} x^{2} / Q^{2}\right) F_{2} /\left(2 x F_{1}\right)-1$
$\rightarrow$ for transitions to $I=3 / 2$ states (e.g. $\Delta$ ), CVC and isospin symmetry give $F_{i}^{\gamma Z}=\left(1+Q_{W}^{p}\right) F_{i}^{\gamma}$
$\rightarrow$ for transitions to $I=1 / 2$ states, $\mathrm{SU}(6)$ wave functions predict $Z \& \gamma$ transition couplings equal to few percent
$\rightarrow$ include contributions from four prominent resonances:

$$
P_{33}(1232), D_{13}(1520), F_{15}(1680), F_{37}(1950)
$$

## Correction to proton weak charge

- in resonance region use phenomenological input for $F_{2}$, empirical SLAC fit for $R=\sigma_{L} / \sigma_{T}=\left(1+4 M^{2} x^{2} / Q^{2}\right) F_{2} /\left(2 x F_{1}\right)-1$



## Correction to proton weak charge

■ final $\square_{\gamma Z}^{V}$ correction:

$$
\Re e \square_{\gamma Z}^{V}=0.0047_{-0.0004}^{+0.0011}
$$

or $6.6_{-0.6}^{+1.5} \%$ of uncorrected $Q_{W}^{p}$


$$
Q_{W}^{p}=0.0713(8) \rightarrow 0.0760_{-0.0009}^{+0.0014}
$$

$\rightarrow$ significant shift in central value, errors within projected experimental uncertainty $\Delta Q_{W}^{p}= \pm 0.003$

## Summary

- Two-photon exchange corrections resolve most of Rosenbluth / polarization transfer $G_{E}^{p} / G_{M}^{p}$ discrepancy
- Reanalysis of global data, including TPE from the outset
$\rightarrow$ first consistent form factor fit at order $\alpha^{3}$
- $\gamma(Z \gamma)$ and $Z(\gamma \gamma)$ contributions give (hitherto unaccounted)
$\sim 2 \%$ corrections to PVES at small $Q^{2}$
$\rightarrow$ affect on extraction of strange form factors small
- More dramatic effect of $\gamma(Z \gamma)$ corrections at forward angles on proton weak charge, $\Delta Q_{W}^{p} \sim 6-7 \%$
$\rightarrow$ can be better constrained by direct measurement of $F_{1,2}^{\gamma Z}$ (e.g. in PVDIS at JLab)

The End

Gorchtein, Horowitz, PRL 102, 091806 (2009)


$$
\Re e \delta_{\gamma Z}=\Re e \square_{\gamma Z}^{V} / Q_{W}^{p} \approx 6 \%
$$ mostly from high- $W$ ("Regge") contribution

$\rightarrow$ our formula for $\Im m \square_{\gamma Z}^{V}$ factor 2 larger (incorrect definition of parton model structure functions: "nuclear physics" vs."particle physics" weak charges!)
$\rightarrow$ GH omit factor (1-x) in definition of $F_{1,2}$ (spurious ~30\% enhancement)
$\rightarrow \mathrm{GH}$ use $Q_{W}^{p} \sim 0.05$ cf. $\sim 0.07$ (spurious $\sim 40 \%$ enhancement)
$\rightarrow$ numerical agreement purely coincidental!

