

Quark-hadron duality in structure functions

recent developments -

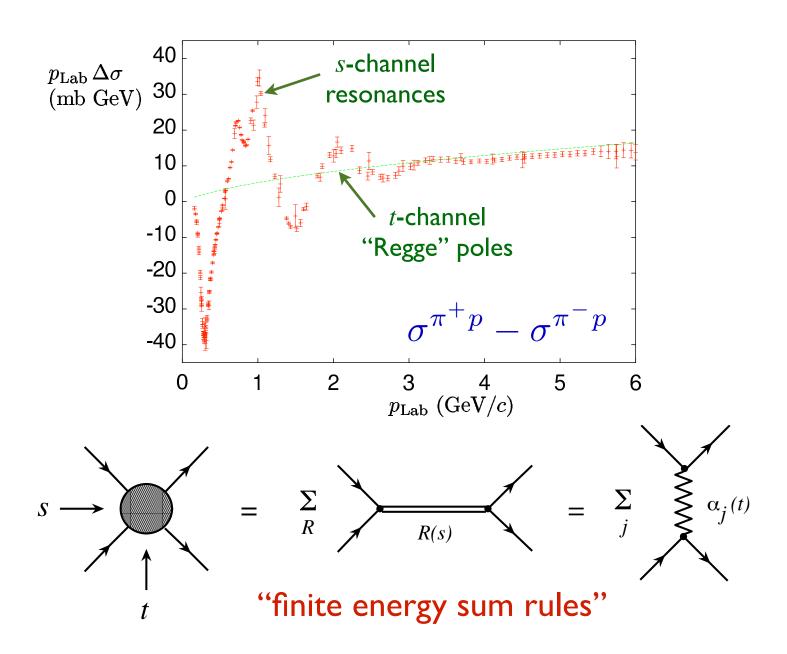
Wally Melnitchouk

Outline

- Historical perspective
- Modern perspective
 - → twists and truncated moments
 - → insights from models
- Implications for global PDF analysis
- Outlook

Historical perspective

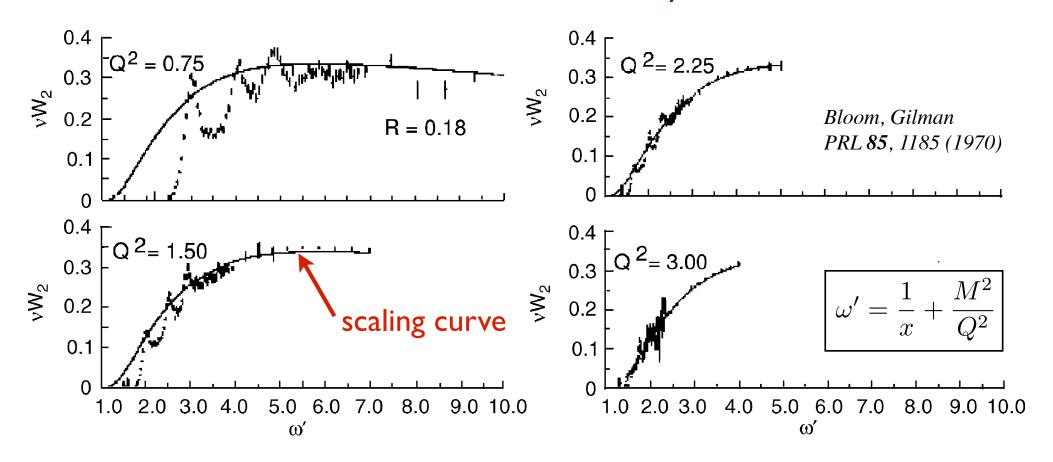
Duality in hadron-hadron scattering



Igi (1962), Dolen, Horn, Schmidt (1968)

Duality in electron-hadron scattering

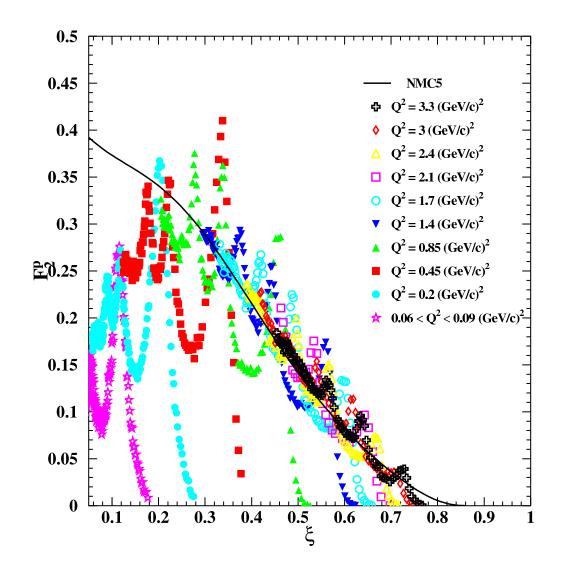
"Bloom-Gilman duality"



\rightarrow finite energy sum rule for eN scattering

$$\frac{2M}{Q^2}\int_0^{\nu_m}d\nu~\nu W_2(\nu,Q^2)=\int_1^{\omega_m'}d\omega'~\nu W_2(\omega')$$
 "hadrons" "quarks"

Duality in electron-hadron scattering



average over (strongly Q^2 dependent) resonances $\sim Q^2$ independent

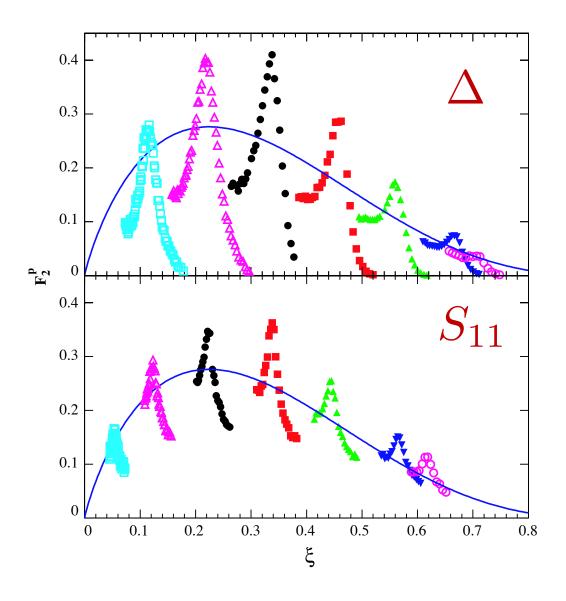
 $pprox Q^2$ independent scaling function

"Nachtmann" scaling variable

$$\xi = \frac{2x}{1 + \sqrt{1 + 4M^2x^2/Q^2}}$$

Niculescu et al., PRL 85, 1182 (2000)

Duality in electron-hadron scattering



 \rightarrow also exists locally in individual resonance regions

Duality in QCD era

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

Duality in QCD era

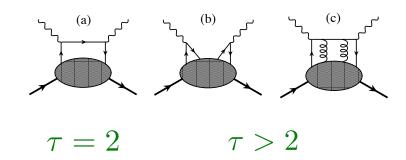
- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

de Rujula, Georgi, Politzer Ann. Phys. **103**, 315 (1975)

matrix elements of operators with specific "twist" au

$$\tau = \text{dimension} - \text{spin}$$



Duality in QCD era

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

de Rujula, Georgi, Politzer Ann. Phys. 103, 315 (1975)

- If moment \approx independent of Q^2
 - \longrightarrow higher twist terms $A_n^{(\tau>2)}$ small
- Duality → suppression of higher twists

Modern perspective: truncated moments

- Seldom have sufficient data to form complete moments
 - \longrightarrow usually require $x \to 0$ and $x \to 1$ extrapolations

- Seldom have sufficient data to form complete moments
 - \longrightarrow usually require $x \to 0$ and $x \to 1$ extrapolations
- Truncated moments allow study of restricted regions in x (or W) within pQCD in well-defined, systematic way

$$\overline{M}_n(\Delta x, Q^2) = \int_{\Delta x} dx \ x^{n-2} \ F_2(x, Q^2)$$

- Seldom have sufficient data to form complete moments
 - \longrightarrow usually require $x \to 0$ and $x \to 1$ extrapolations
- Truncated moments allow study of restricted regions in x (or W) within pQCD in well-defined, systematic way

$$\overline{M}_n(\Delta x, Q^2) = \int_{\Delta x} dx \ x^{n-2} \ F_2(x, Q^2)$$

Obey DGLAP-like evolution equations, similar to PDFs

$$\frac{d\overline{M}_n(\Delta x,Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \left(P'_{(n)} \otimes \overline{M}_n\right) (\Delta x,Q^2)$$

$$P'_{(n)}(z,\alpha_s) = z^n \ P_{NS,S}(z,\alpha_s)$$

$$\text{truncated splitting function}$$

$$Forte, Magnea, PLB 448, 295 (1999)$$

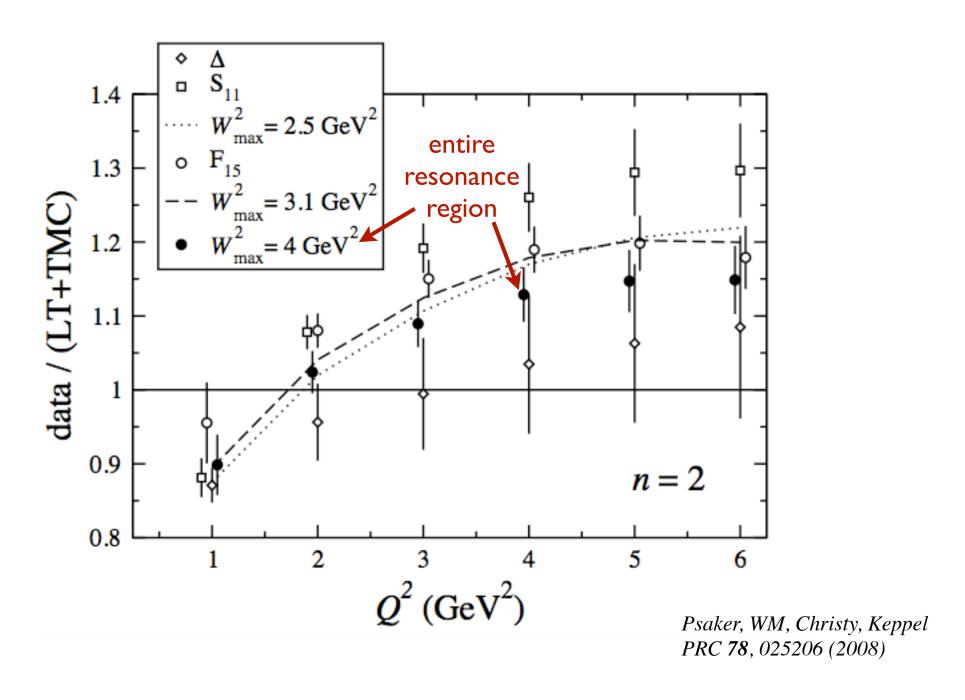
$$Kotlorz, Kotlorz, PLB 644, 284 (2007)$$

■ Follow evolution of specific resonance (region) with Q^2 in pQCD framework

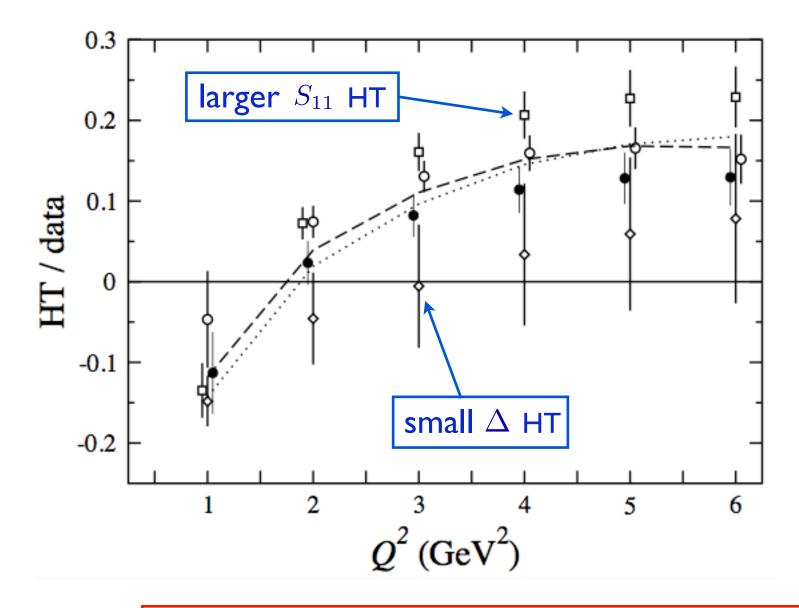


how much of this region is *leading twist*?

lacktriangle Analysis of JLab F_2^p resonance region data



lacksquare Analysis of JLab F_2^p resonance region data



 \rightarrow higher twists < 10-15% for $Q^2 > 1 \text{ GeV}^2$

Resonances & twists

- Total higher twist "small" at scales $Q^2 \sim \mathcal{O}(1~{
 m GeV}^2)$
- On average, nonperturbative interactions between quarks and gluons not dominant (at these scales)
 - → nontrivial interference between resonances

Resonances & twists

- Total higher twist "small" at scales $Q^2 \sim \mathcal{O}(1~{
 m GeV}^2)$
- On average, nonperturbative interactions between quarks and gluons not dominant (at these scales)
 - -> nontrivial interference between resonances

- Can we understand this dynamically, at quark level?
 - → is duality an accident?
- Can we use resonance region data to learn about leading twist structure functions?
 - expanded data set has potentially significant implications for global PDF studies

Insights from dynamical models

 Consider simple quark model with spin-flavor symmetric wave function

form factors

 \rightarrow coherent scattering from quarks $d\sigma \sim \left(\sum_{i} e_{i}\right)^{2}$

structure functions

 \rightarrow incoherent scattering from quarks $d\sigma \sim \sum_i e_i^2$

 Consider simple quark model with spin-flavor symmetric wave function

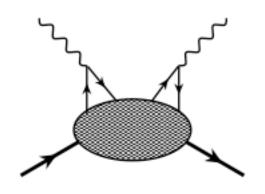
form factors

 \rightarrow coherent scattering from quarks $d\sigma \sim \left(\sum_{i} e_{i}\right)^{2}$

structure functions

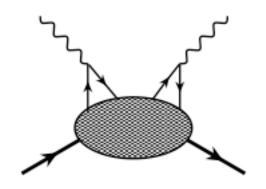
- \rightarrow incoherent scattering from quarks $d\sigma \sim \sum_i e_i^2$
- For duality to work, these must be equal
 - → how can <u>square of a sum</u> become <u>sum of squares</u>?

Accidental cancellations of charges?



cat's ears diagram (4-fermion higher twist $\sim 1/Q^2$)

Accidental cancellations of charges?



cat's ears diagram (4-fermion higher twist $\sim 1/Q^2$)

proton HT
$$\sim 1 - \left(2 \times \frac{4}{9} + \frac{1}{9}\right) = 0!$$

neutron HT
$$\sim 0 - \left(\frac{4}{9} + 2 \times \frac{1}{9}\right) \neq 0$$
 Brodsky hep-ph/0006310

- → duality in proton a coincidence!
- \rightarrow should <u>not</u> hold for neutron

- Dynamical cancellations?
 - \rightarrow e.g. for toy model of two quarks bound in a harmonic oscillator potential, structure function given by

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} |G_{0,n}(\mathbf{q}^2)|^2 \delta(E_n - E_0 - \nu)$$

ightharpoonup charge operator $\Sigma_i \ e_i \exp(i \mathbf{q} \cdot \mathbf{r}_i)$ excites even partial waves with strength $\propto (e_1 + e_2)^2$ odd partial waves with strength $\propto (e_1 - e_2)^2$

Dynamical cancellations?

 \rightarrow e.g. for toy model of two quarks bound in a harmonic oscillator potential, structure function given by

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} |G_{0,n}(\mathbf{q}^2)|^2 \delta(E_n - E_0 - \nu)$$

- ightharpoonup charge operator $\Sigma_i \ e_i \exp(i \mathbf{q} \cdot \mathbf{r}_i)$ excites even partial waves with strength $\propto (e_1 + e_2)^2$ odd partial waves with strength $\propto (e_1 - e_2)^2$
- → resulting structure function

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} \left\{ (e_1 + e_2)^2 \ G_{0,2n}^2 + (e_1 - e_2)^2 \ G_{0,2n+1}^2 \right\}$$

 \rightarrow if states degenerate, *cross terms* ($\sim e_1e_2$) *cancel* when averaged over nearby *even and odd parity* states

- Dynamical cancellations?
 - duality is realized by summing over at least one complete set of <u>even</u> and <u>odd</u> parity resonances *

Close, Isgur, PLB 509, 81 (2001)

- \rightarrow in NR Quark Model, even & odd parity states generalize to **56** (L=0) and **70** (L=1) multiplets of spin-flavor SU(6)
 - **assume magnetic coupling of photon to quarks** (better approximation at high Q^2)
 - lacktriangle in this limit Callan-Gross relation valid $F_2=2xF_1$
 - structure function given by squared sum of transition FFs

$$F_1(\nu, \vec{q}^2) \sim \sum_R |F_{N\to R}(\vec{q}^2)|^2 \delta(E_R - E_N - \nu)$$

^{*} realized in many models: 't Hooft model, large N_c , RQM, ... see WM et al., Phys. Rep. 406, 127 (2005)

Dynamical cancellations?

→ duality is realized by summing over at least one complete set of <u>even</u> and <u>odd</u> parity resonances

Close, Isgur, PLB 509, 81 (2001)

in NR Quark Model, even & odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

representation	² 8 [56 ⁺]	⁴ 10 [56 ⁺]	² 8 [70 ⁻]	⁴ 8 [70 ⁻]	² 10 [70 ⁻]	Total
$egin{array}{c} F_1^p \ F_1^n \end{array}$	$9\rho^2$ $(3\rho + \lambda)^2/4$	$8\lambda^2$ $8\lambda^2$	$9\rho^2$ $(3\rho - \lambda)^2/4$	$0 \\ 4\lambda^2$	λ^2 λ^2	$\frac{18\rho^2 + 9\lambda^2}{(9\rho^2 + 27\lambda^2)/2}$

 $\lambda \ (\rho) =$ (anti) symmetric component of ground state wfn.

Close, WM, PRC 68, 035210 (2003)

- \blacksquare SU(6) limit \longrightarrow $\lambda = \rho$
 - \longrightarrow relative strengths of $N \longrightarrow N^*$ transitions:

	$[{f 56}, {f 0}^+]^{f 28}$	$[{f 56}, {f 0}^+]^{f 4}{f 10}$	$[70, 1^-]^2 8$	$[70, 1^-]^4 8$	$[70, 1^{-}]^{2}10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18

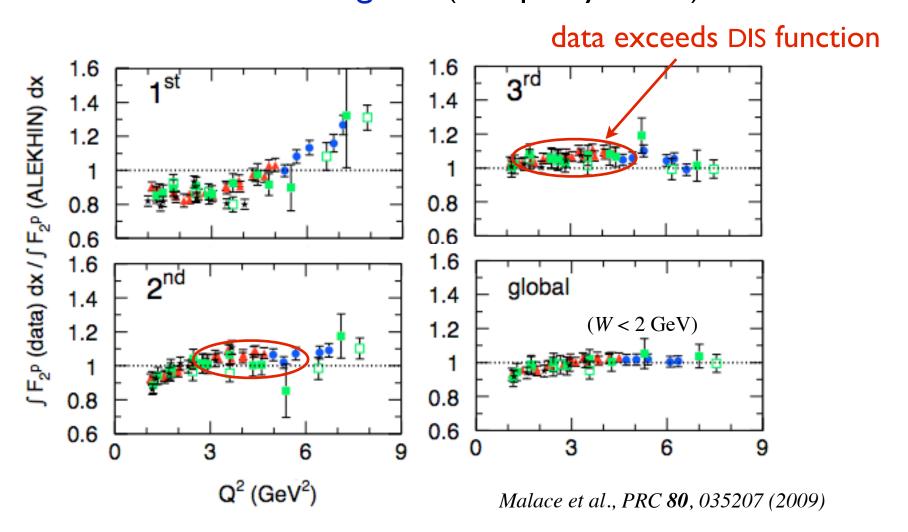
 \blacksquare summing over all resonances in 56^+ and 70^- multiplets

$$\longrightarrow \frac{F_1^n}{F_1^p} = \frac{2}{3}$$
 as in quark-parton model (for $u=2d$)!

- proton sum saturated by lower-lying resonances
 - \rightarrow expect duality to appear *earlier* for p than n

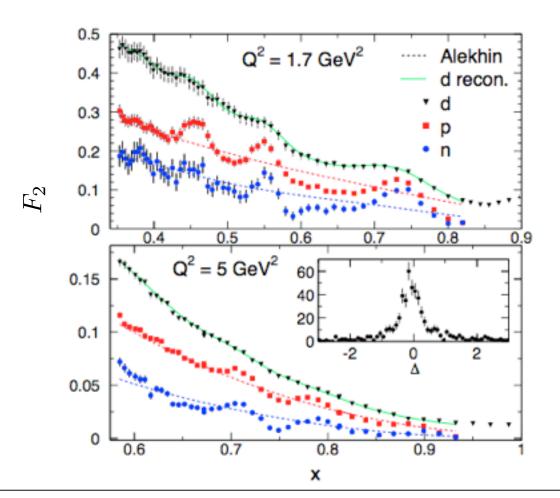
Close, WM, PRC 68, 035210 (2003)

Proton data expected to overestimate DIS function in 2nd and 3rd resonance regions (odd parity states)



 \rightarrow duality violation for proton $\lesssim 10\%$, integrated over x

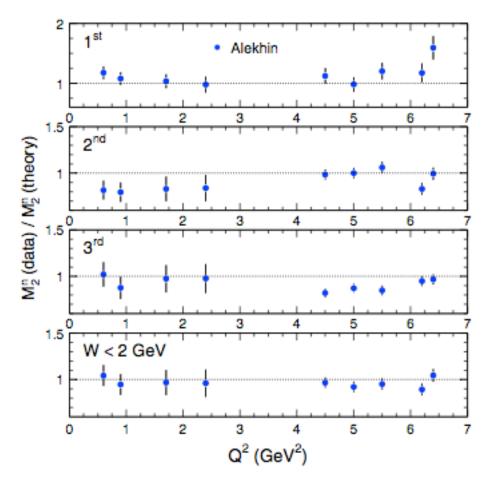
- Duality in <u>neutron</u> not tested because of absence of free neutron targets
- New extraction method (using iterative procedure for solving integral convolution equations) has allowed first determination of F_2^n in resonance region & test of neutron duality



Kahn, WM, Kulagin PRC 79, 035205 (2009)

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

■ Neutron data expected to lie *below* DIS function in 2nd region

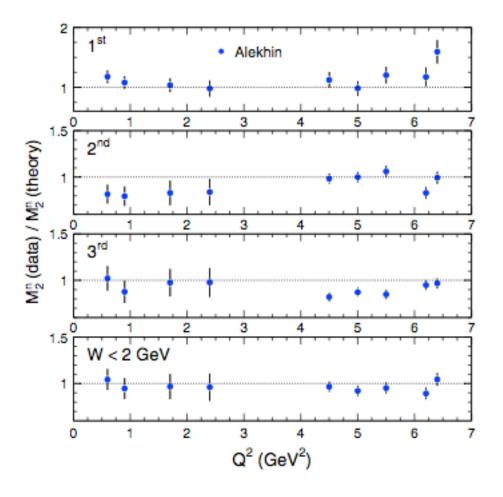


- \rightarrow "theory": fit to W > 2 GeV data

 Alekhin et al., 0908.2762 [hep-ph]
- \rightarrow locally, violations of duality in resonance regions < 15-20% (largest in Δ region)
- \rightarrow globally, violations < 10%

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

■ Neutron data expected to lie *below* DIS function in 2nd region



- \rightarrow "theory": fit to W > 2 GeV data

 Alekhin et al., 0908.2762 [hep-ph]
- → locally, violations of duality in resonance regions < 15-20% (largest in Δ region)
- \rightarrow globally, violations < 10%

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

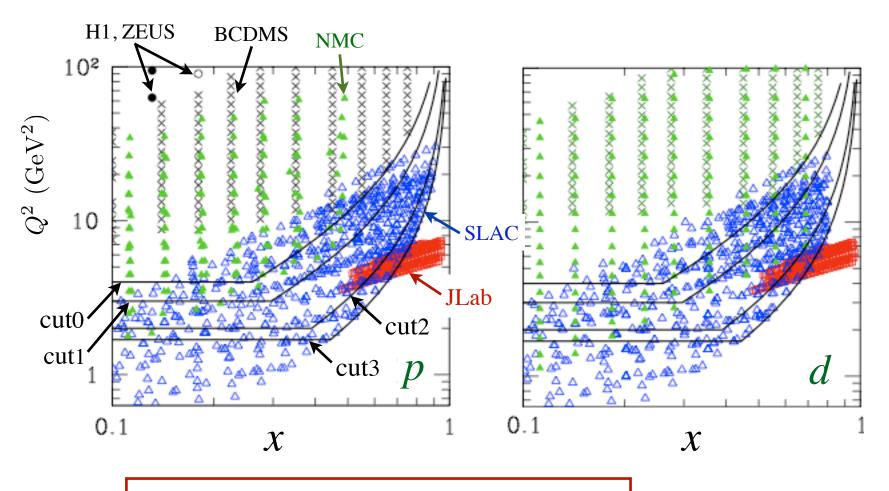
use resonance region data to learn about leading twist structure functions?

Duality in practice: global PDF analysis

CTEQ6X global PDF analysis

- New global QCD (next-to-leading order) analysis of expanded set of p and d data, including large-x, low- Q^2 region
 - → joint JLab-CTEQ theory/experiment collaboration (with Hampton, FSU, FNAL, Duke)
- Systematically study effects of $Q^2 \& W$ cuts
 - \longrightarrow as low as $Q \sim m_c$ and $W \sim 1.7 \text{ GeV}$
- Include large-*x* corrections
 - \longrightarrow TMCs & higher twists $F_2(x,Q^2) = F_2^{LT}(x,Q^2)(1+C(x)/Q^2)$
 - realistic nuclear effects in deuteron (binding + off-shell) (most analyses assume no nuclear corrections)

CTEQ6X - kinematic cuts



cut0: $Q^2 > 4 \text{ GeV}^2$, $W^2 > 12.25 \text{ GeV}^2$

cut1: $Q^2 > 3 \text{ GeV}^2$, $W^2 > 8 \text{ GeV}^2$

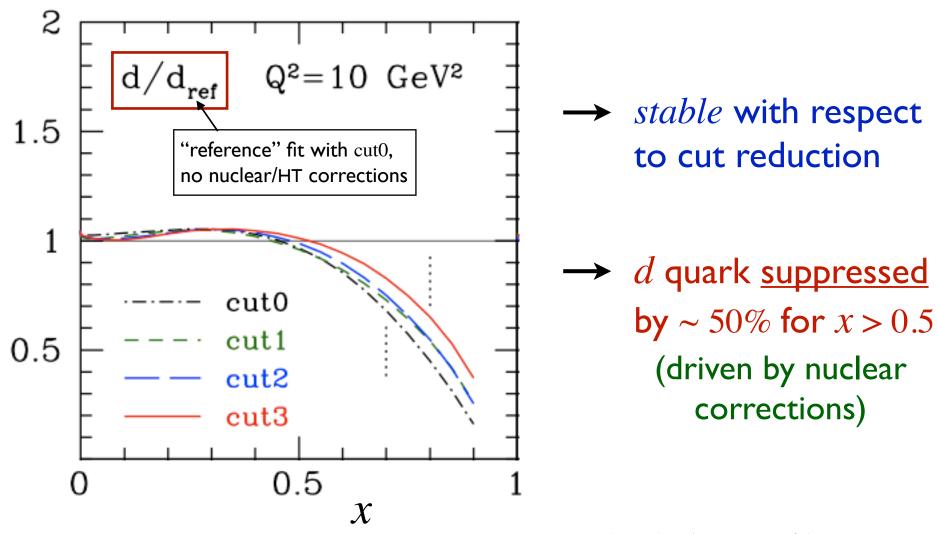
cut2: $Q^2 > 2 \text{ GeV}^2$, $W^2 > 4 \text{ GeV}^2$

cut3: $Q^2 > m_c^2$, $W^2 > 3 \text{ GeV}^2$

factor 2 increase in DIS data from $cut0 \rightarrow cut3$

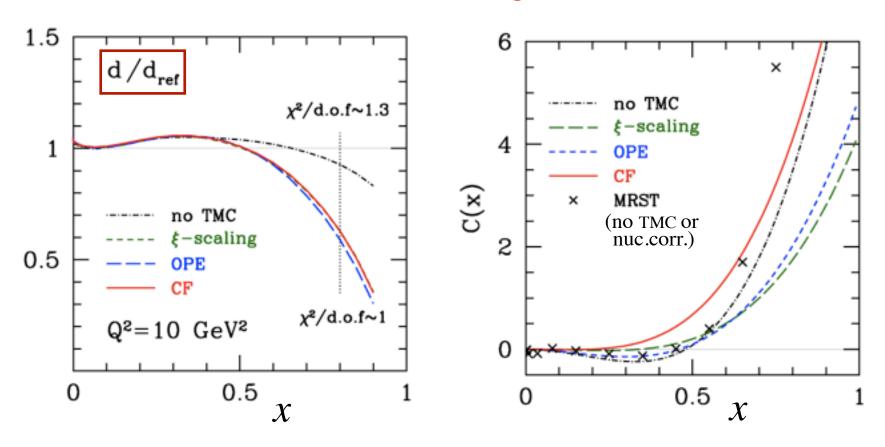
CTEQ6X - kinematic cuts

Systematically reduce Q^2 and W cuts, including TMC, HT & nuclear corrections



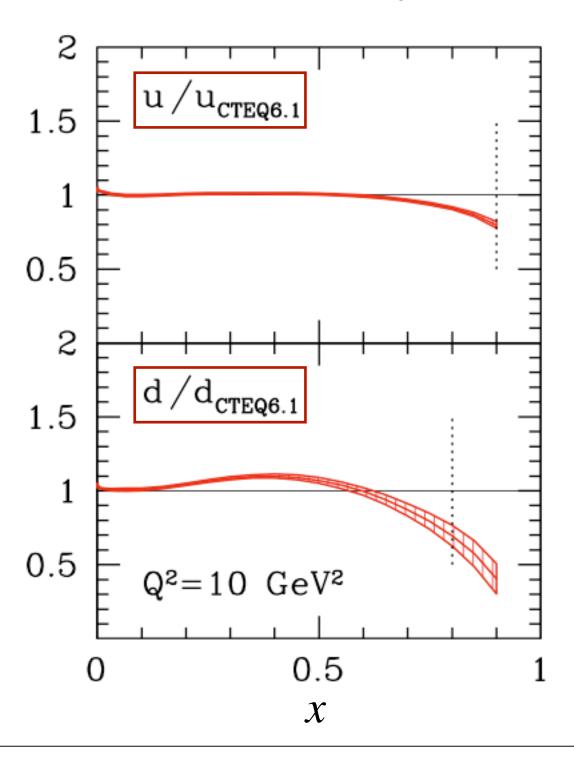
Accardi et al., Phys. Rev. D 81, 034016 (2010)

CTEQ6X – $1/Q^2$ corrections



- \rightarrow important interplay between TMCs and higher twist: HT alone *cannot* accommodate full Q^2 dependence
- \rightarrow stable leading twist when <u>both</u> TMCs and HTs included

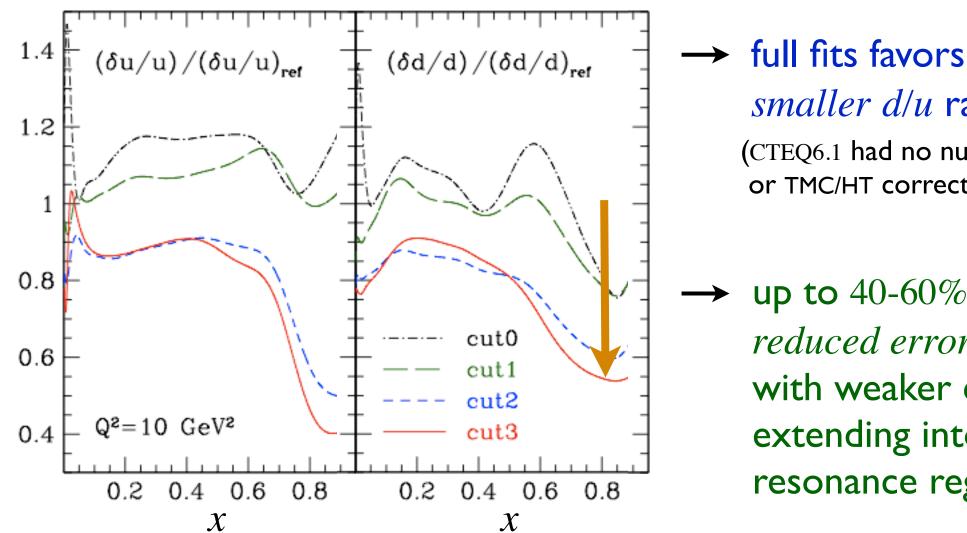
CTEQ6X – final PDF results



→ full fits favors smaller d/u ratio

(CTEQ6.1 had no nuclear or TMC/HT corrections)

CTEQ6X – final PDF results



Accardi et al., Phys. Rev. D 81, 034016 (2010)

smaller d/u ratio (CTEQ6.1 had no nuclear or TMC/HT corrections)

up to 40-60% reduced errors with weaker cuts extending into resonance region

Summary

- Remarkable confirmation of quark-hadron duality in proton and neutron structure functions
 - \rightarrow duality violating higher twists $\sim 10-15\%$ in few-GeV range
- Confirmation of duality in *neutron* suggests origin in dynamical cancellations of higher twists
 - \rightarrow duality <u>not</u> due to accidental cancellations of quark charges
- Practical application of duality
 - \rightarrow use resonance region data to constrain *leading twist* PDFs
 - \rightarrow stable fits at low Q^2 and large x with significantly reduced uncertainties

The End