

Quarks or hadrons? Duality in electron-nucleon scattering

Wally Melnitchouk

Outline

- Introduction: *Bloom-Gilman duality*
- Duality in QCD
 - → OPE and higher twists
- Local duality & truncated moments
- Duality in the neutron
 - → is duality in proton an accident?
 - extraction of neutron resonance structure from deuterium data
- Duality in pion electroproduction
- Conclusions

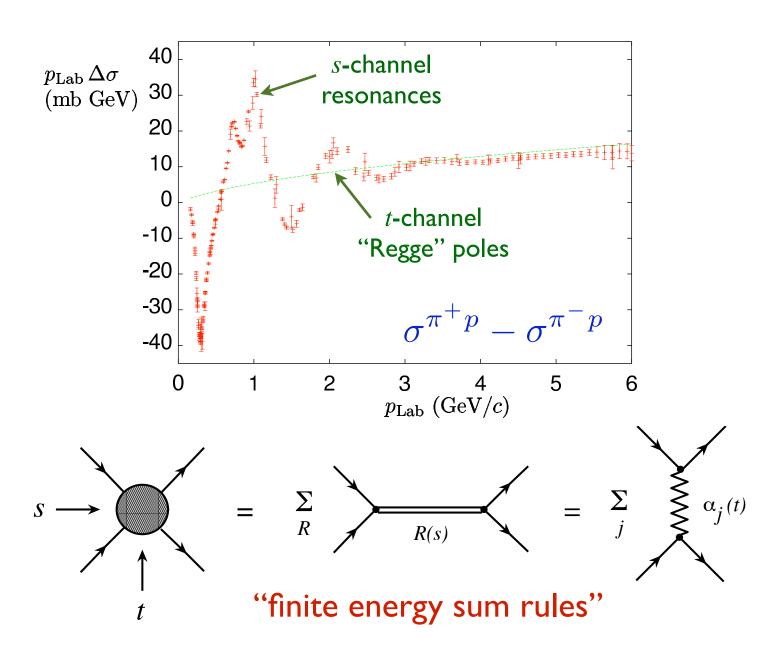
Quark-hadron duality

Complementarity between *quark* and *hadron* descriptions of observables

$$\sum_{hadrons} = \sum_{quarks}$$

Can use either set of complete basis states to describe all physical phenomena

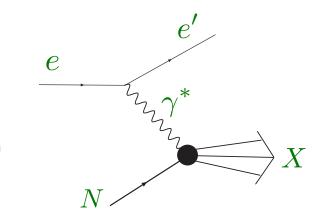
Duality in hadron-hadron scattering



Electron-nucleon scattering

Inclusive cross section for $eN \rightarrow eX$

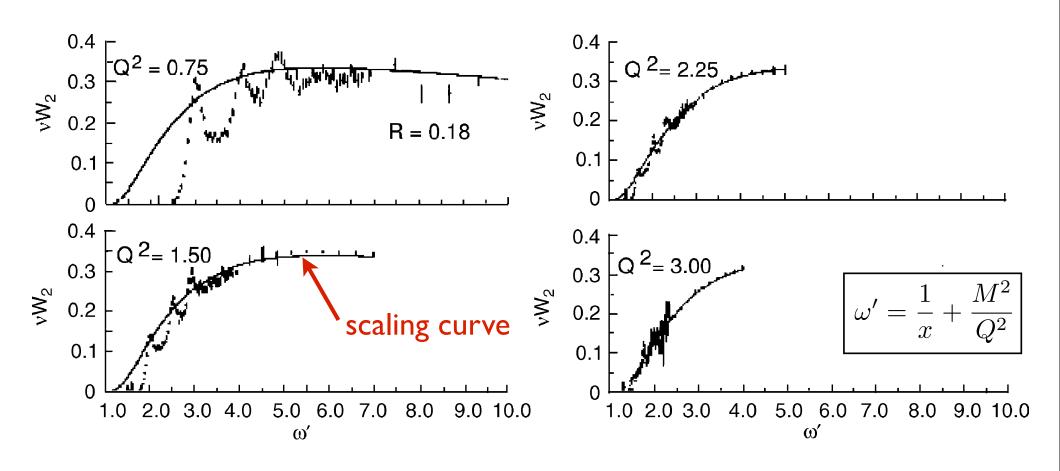
$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha^2 E'^2 \cos^2\frac{\theta}{2}}{Q^4} \left(2\tan^2\frac{\theta}{2}\frac{F_1}{M} + \frac{F_2}{\nu}\right)$$



$$\frac{\nu = E - E'}{Q^2 = \vec{q}^2 - \nu^2 = 4EE' \sin^2 \frac{\theta}{2}} \quad x = \frac{Q^2}{2M\nu} \quad "Bjorken scaling variable"$$

- \blacksquare F_1 , F_2 "structure functions"
 - --> contain all information about structure of nucleon
 - \longrightarrow functions of x, Q^2 in general

Bloom-Gilman duality



Bloom, Gilman, PRL 85, 1185 (1970)

resonance – scaling duality in proton $u W_2 = F_2$ structure function

Bloom-Gilman duality

Average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function

 \blacksquare Finite energy sum rule for eN scattering

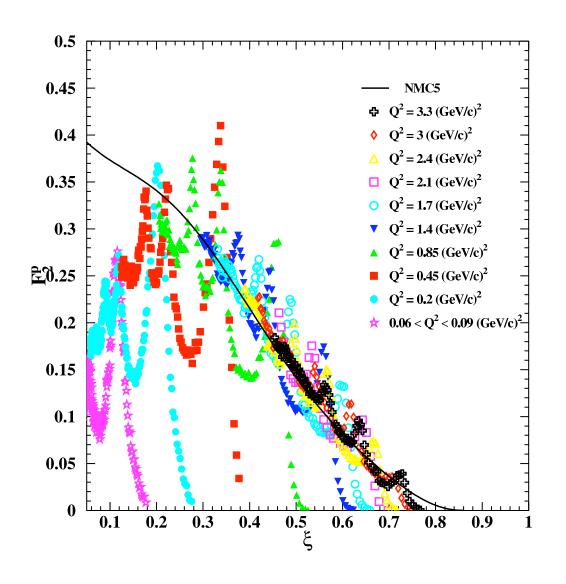
$$\frac{2M}{Q^2} \int_0^{\nu_m} d\nu \ \nu W_2(\nu, Q^2) = \int_1^{\omega_m'} d\omega' \ \nu W_2(\omega')$$

measured structure function (function of ν and Q^2)

$$\omega' = \frac{1}{x} + \frac{M^2}{Q^2}$$

scaling function (function of ω' only)

Bloom-Gilman duality



Average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent

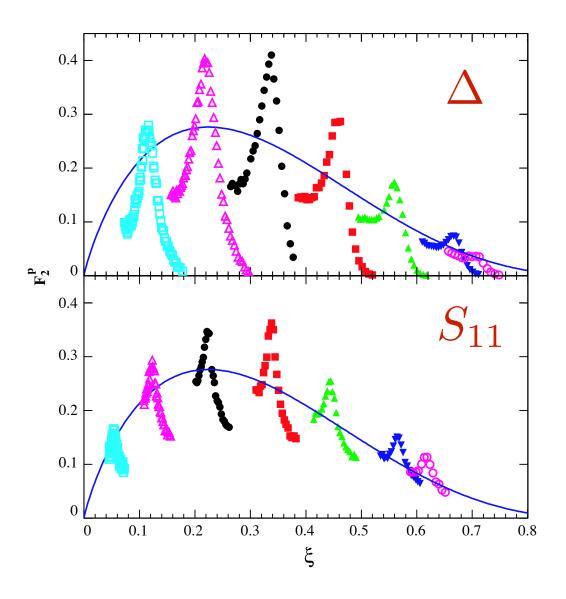
scaling function

"Nachtmann scaling variable"

$$\xi = \frac{2x}{1 + \sqrt{1 + 4M^2x^2/Q^2}}$$

Niculescu et al., PRL 85, 1182 (2000)

Duality exists also in <u>local</u> regions, around individual resonances



local Bloom-Gilman duality

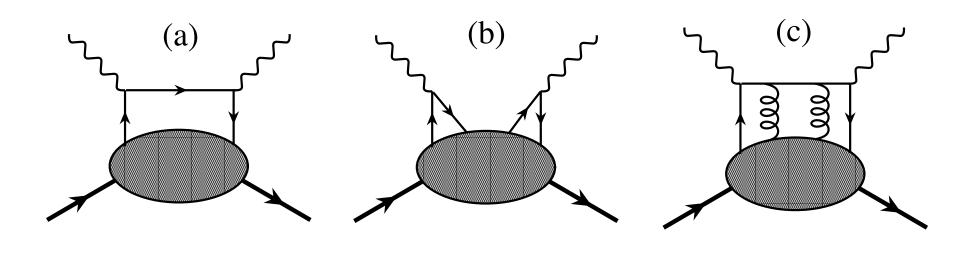
("global duality")

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific "twist" au

$$\tau = \text{dimension} - \text{spin}$$



$$\tau = 2$$

single quark scattering

$$e.g.$$
 $ar{\psi}$ γ_{μ} ψ

 $\tau > 2$

qq and qg correlations

$$e.g.$$
 $ar{\psi}$ γ_{μ} ψ $ar{\psi}$ $\gamma_{
u}$ ψ or $ar{\psi}$ $\widetilde{G}_{\mu
u}\gamma^{
u}$ ψ

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

- If moment \approx independent of Q^2
 - \longrightarrow higher twist terms $A_n^{(\tau>2)}$ small

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

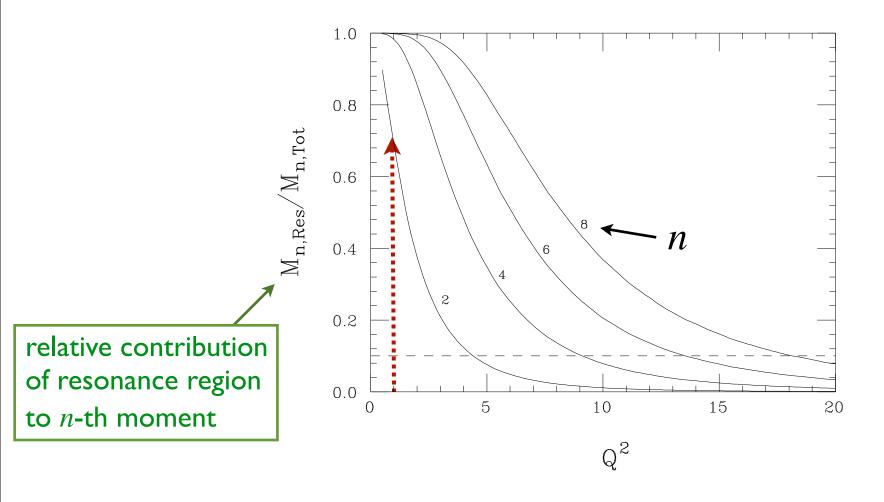
Duality suppression of higher twists

de Rujula, Georgi, Politzer, Ann. Phys. **103**, 315 (1975)

- Much of recent new data is in <u>resonance</u> region, W < 2 GeV
- → common wisdom: pQCD analysis not valid in resonance region
- → in fact: partonic interpretation of moments <u>does</u> include resonance region

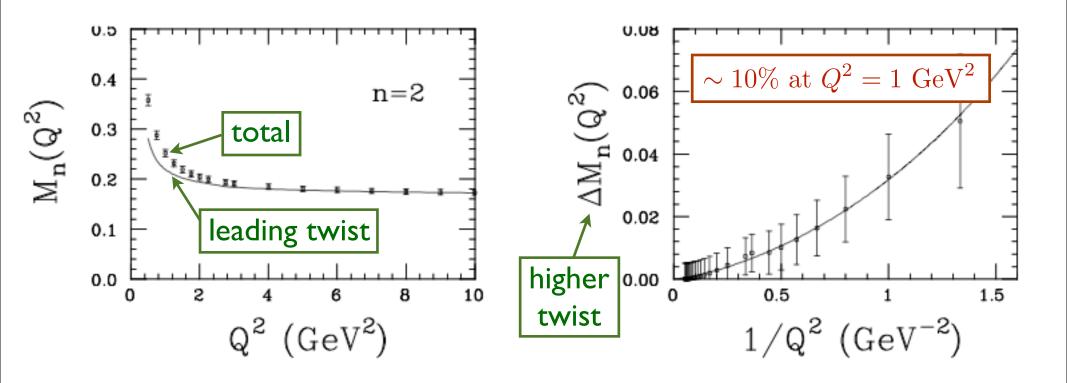
- Resonances are an <u>integral part</u> of deep inelastic structure functions!
- → implicit role of quark-hadron duality

Proton moments



At $Q^2 = 1 \text{ GeV}^2$, ~ $\frac{70\%}{}$ of lowest moment of F_2^p comes from W < 2 GeV

Proton moments



BUT resonances and DIS continuum conspire to produce only $\sim 10\%$ higher twist contribution!

total higher twist <u>small</u> at $Q^2 \sim 1 - 2 \text{ GeV}^2$

 on average, nonperturbative interactions between quarks and gluons not dominant at these scales

suggests strong cancellations between resonances, resulting in dominance of leading twist

- OPE does not tell us <u>why</u> higher twists are small
 - need more detailed information (e.g. about individual resonances) to understand behavior dynamically

Local Duality & Truncated Moments

Truncated moments

- complete moments can be studied via twist expansion
 - → Bloom-Gilman duality has a precise meaning (*i.e.*, duality violation = higher twists)
- rigorous connection between local duality & QCD difficult
 - → need prescription for how to average over resonances
- \blacksquare truncated moments allow study of restricted regions in x (or W) within pQCD in well-defined, systematic way

$$\overline{M}_n(\Delta x, Q^2) = \int_{\Delta x} dx \ x^{n-2} \ F_2(x, Q^2)$$

Truncated moments

 truncated moments obey DGLAP-like evolution equations, similar to PDFs

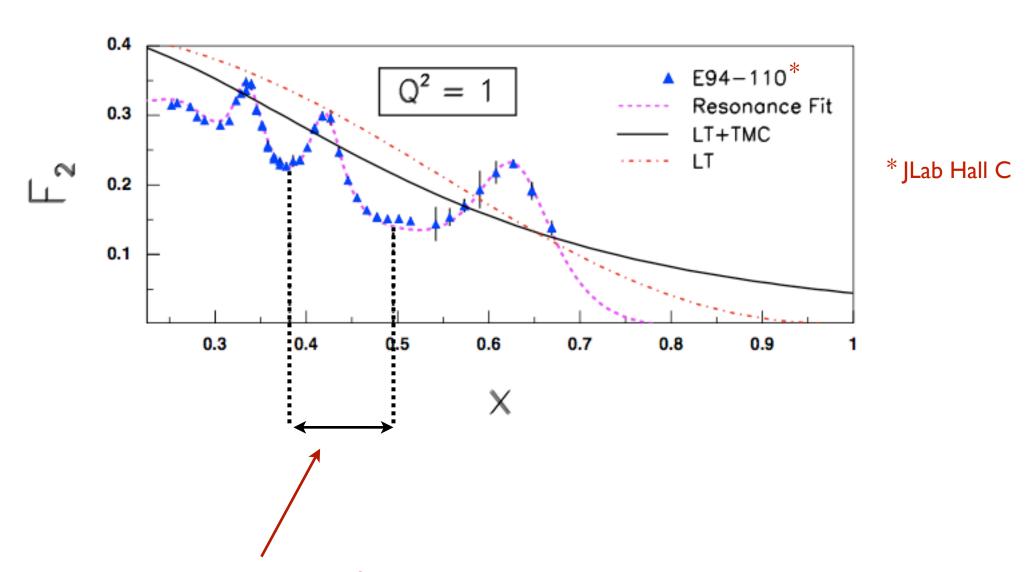
$$\frac{d\overline{M}_n(\Delta x, Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \left(P'_{(n)} \otimes \overline{M}_n \right) (\Delta x, Q^2)$$

where modified splitting function is

$$P'_{(n)}(z,\alpha_s) = z^n \ P_{NS,S}(z,\alpha_s)$$

- \rightarrow can follow evolution of <u>specific resonance (region)</u> with Q^2 in pQCD framework!
- → suitable when complete moments not available

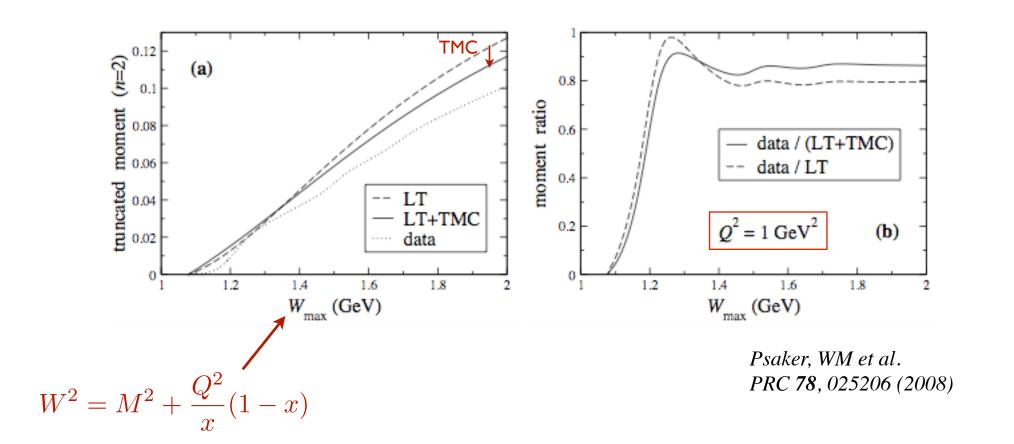
 F_2^p resonance spectrum



how much of this region is <u>leading twist</u>?

Data analysis

- lacktriangle assume data at large enough Q^2 are entirely leading twist
- lacksquare evolve fit to data at large Q^2 down to lower Q^2
- lacktriangle apply target mass corrections and compare with low- Q^2 data



Data analysis

consider individual resonance regions:

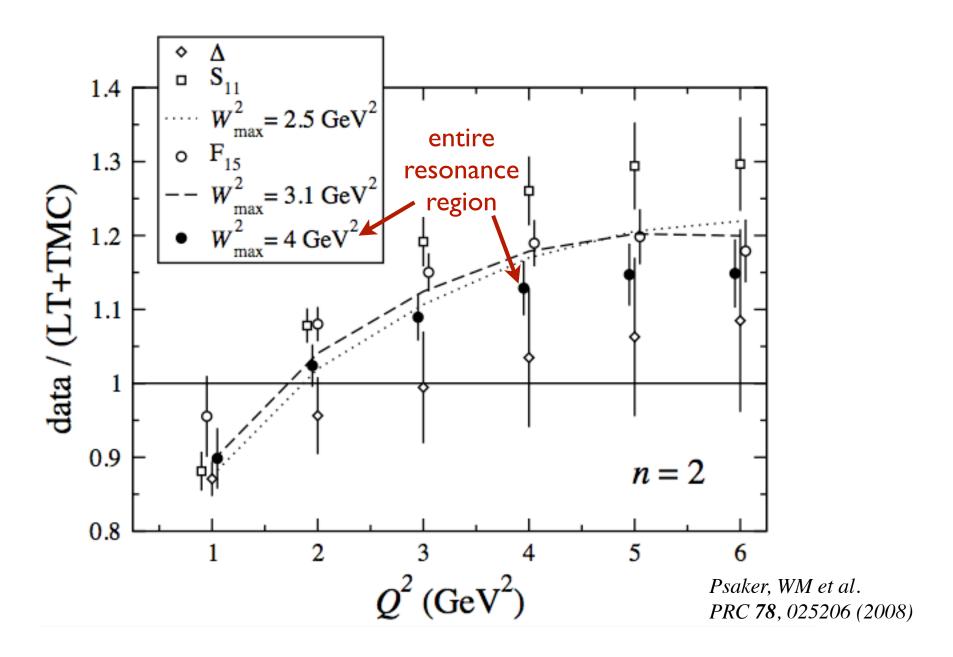
$$\rightarrow W_{\text{thr}}^2 < W^2 < 1.9 \text{ GeV}^2$$
 " $\Delta(1232)$ "

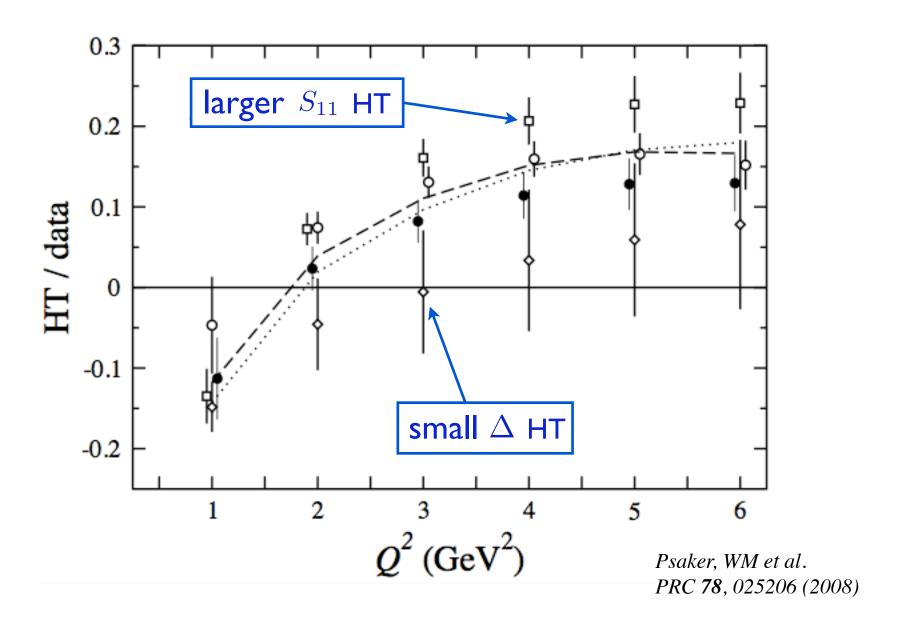
$$\rightarrow$$
 1.9 < W² < 2.5 GeV² "S₁₁(1535)"

$$\rightarrow$$
 2.5 < W² < 3.1 GeV² " $F_{15}(1680)$ "

as well as total resonance region:

$$\rightarrow$$
 $W^2 < 4 \text{ GeV}^2$

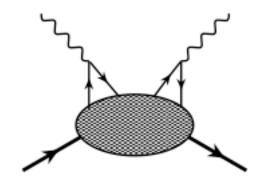




 \rightarrow higher twists < 10-15% for $Q^2 > 1 \text{ GeV}^2$

Duality in the Neutron

- Is duality in the proton a coincidence?
 - -> consider model with symmetric nucleon wave function



cat's ears diagram (4-fermion higher twist $\sim 1/Q^2$)

- proton HT $\sim 1 \left(2 \times \frac{4}{9} + \frac{1}{9}\right) = 0!$
- neutron HT $\sim 0 \left(\frac{4}{9} + 2 \times \frac{1}{9}\right) \neq 0$

Brodsky, hep-ph/0006310

need to test duality in the neutron!

- How can the <u>square of a sum</u> become the <u>sum of squares</u>?
 - in *hadronic* language, duality is realized by summing over at least one complete set of *even* and *odd* parity resonances

Close, Isgur, PLB **509**, 81 (2001)

- in NR Quark Model, even and odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)
 - **assume magnetic coupling of photon to quarks** (better approximation at high Q^2)
 - lacktriangle in this limit Callan-Gross relation valid $F_2=2xF_1$
 - structure function given by squared sum of transition FFs

$$F_1(\nu, \vec{q}^2) \sim \sum_{R} |F_{N\to R}(\vec{q}^2)|^2 \delta(E_R - E_N - \nu)$$

■ How can the <u>square of a sum</u> become the <u>sum of squares</u>?

in *hadronic* language, duality is realized by summing over at least one complete set of <u>even</u> and <u>odd</u> parity resonances

Close, Isgur, PLB **509**, 81 (2001)

in NR Quark Model, even and odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

representation	² 8 [56 ⁺]	⁴ 10 [56 ⁺]	² 8 [70 ⁻]	⁴ 8 [70 ⁻]	² 10 [70 ⁻]	Total
$F_1^p \ F_1^n$	$9\rho^2$ $(3\rho+\lambda)^2/4$	$8\lambda^2$ $8\lambda^2$	$9\rho^2$ $(3\rho-\lambda)^2/4$	$0 \\ 4\lambda^2$	λ^2 λ^2	$\frac{18\rho^2 + 9\lambda^2}{(9\rho^2 + 27\lambda^2)/2}$

 λ $(\rho) =$ (anti) symmetric component of ground state wfn.

- \blacksquare SU(6) limit \longrightarrow $\lambda = \rho$
 - \longrightarrow relative strengths of $N \longrightarrow N^*$ transitions:

SU(6):	$[{f 56}, {f 0}^+]^{f 28}$	$[{f 56}, {f 0}^+]^{f 4}{f 10}$	$[70, 1^{-}]^{2}8$	$[70, 1^-]^4 8$	$[70, 1^{-}]^{2}10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18

- \blacksquare summing over all resonances in 56^+ and 70^- multiplets
 - $\longrightarrow \frac{F_1^n}{F_1^p} = \frac{2}{3}$ as in quark-parton model (for u=2d)!
- proton sum saturated by lower-lying resonances
 - \rightarrow expect duality to appear *earlier* for p than n

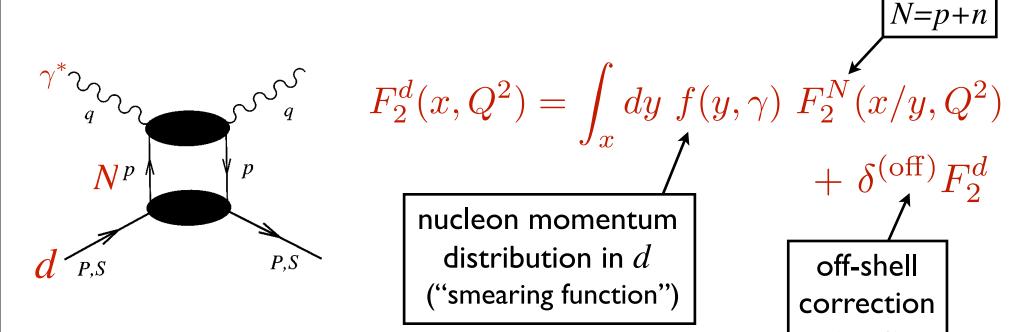
Neutron structure functions

- Problem: no free neutron targets! (neutron half-life ~ 12 mins)
 - → use deuteron as "effective neutron target"
 - \longrightarrow extract F_2^n from F_2^d and F_2^p data

- But: deuteron is a nucleus, and $F_2^d \neq F_2^p + F_2^n$
 - nuclear effects (nuclear binding, Fermi motion, shadowing)
 obscure neutron structure information
 - → need to correct for "nuclear EMC effect"

nuclear "impulse approximation"

incoherent scattering from individual nucleons in d (good approx. at x >> 0)

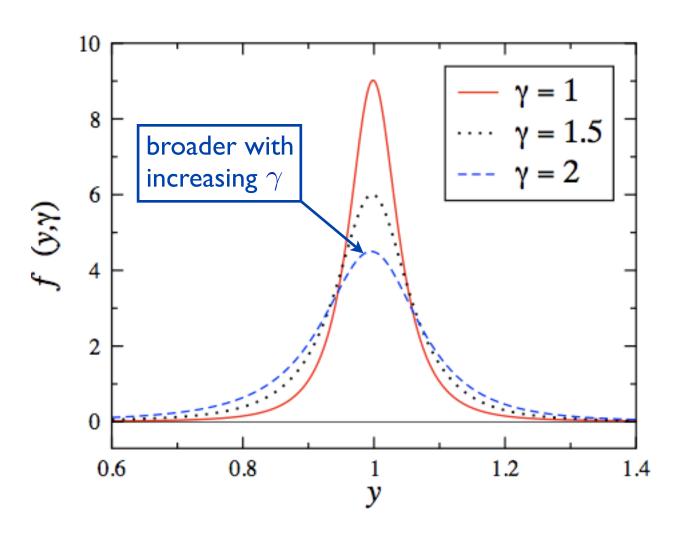


 \rightarrow at finite Q^2 , smearing function depends also on parameter

$$\gamma = |\mathbf{q}|/q_0 = \sqrt{1 + 4M^2x^2/Q^2}$$

 $(\sim 1\%)$

N momentum distributions in d



 \longrightarrow for most kinematics $\gamma \lesssim 2$

Unsmearing - additive method

- \blacksquare calculated F_2^d depends on input F_2^n
 - \rightarrow extracted *n* depends on input *n* ... cyclic argument
- solution: (additive) iteration procedure
 - 0. subtract $\delta^{(\text{off})}F_2^d$ from d data: $F_2^d \to F_2^d \delta^{(\text{off})}F_2^d$
 - 1. define difference between smeared and free SFs

$$F_2^d - \widetilde{F}_2^p = \widetilde{F}_2^n \equiv f \otimes F_2^n \equiv F_2^n + \Delta$$

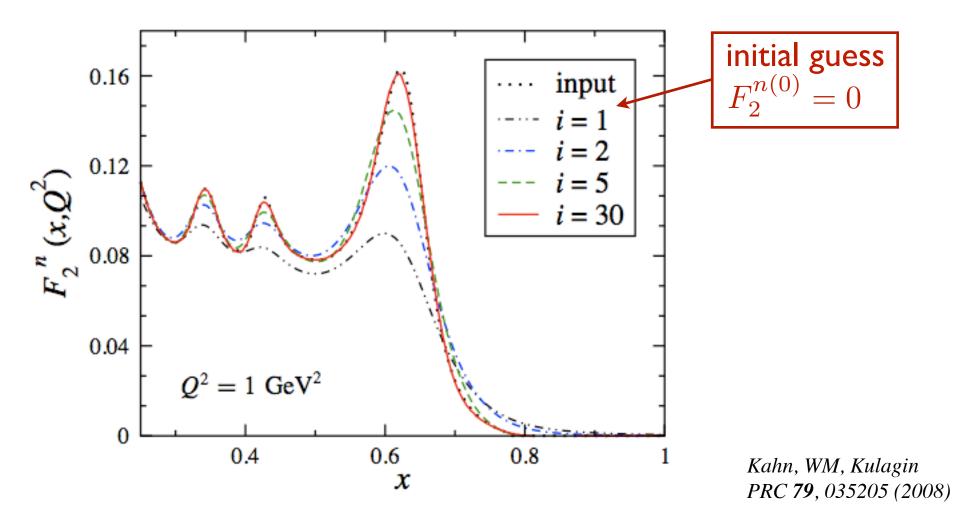
- 2. first guess for $F_2^{n(0)} \longrightarrow \Delta^{(0)} = \widetilde{F}_2^{n(0)} F_2^n$
- 3. after one iteration, gives

$$F_2^{n(1)} = F_2^{n(0)} + (\widetilde{F}_2^n - \widetilde{F}_2^{n(0)})$$

4. repeat until convergence

Unsmearing – test of convergence

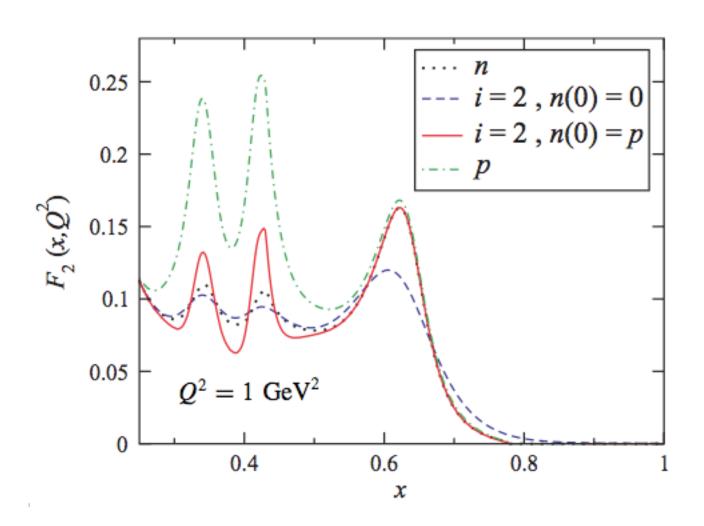
■ F_2^d constructed from known F_2^p and F_2^n inputs (using MAID resonance parameterization)



can reconstruct almost arbitrary shape

Unsmearing – test of convergence

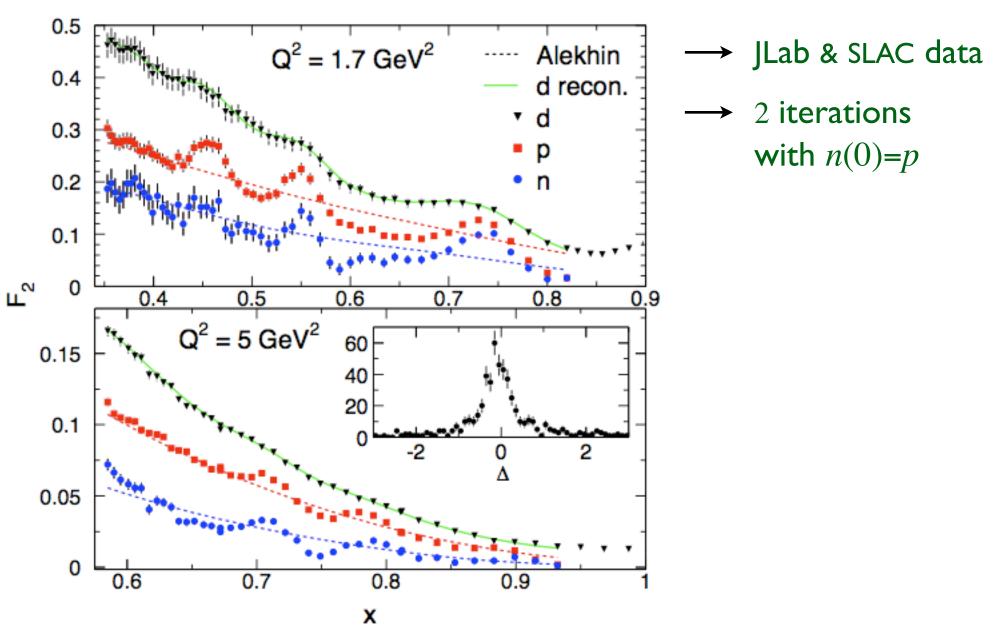
■ F_2^d constructed from known F_2^p and F_2^n inputs (using MAID resonance parameterization)



Kahn, WM, Kulagin PRC **79**, 035205 (2008)

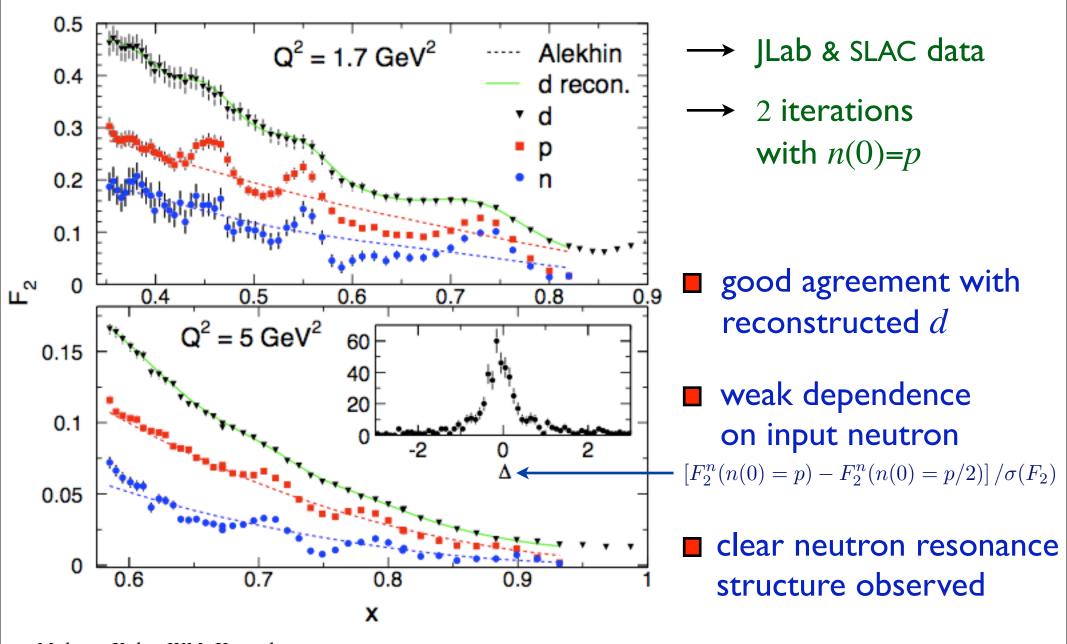
 \rightarrow fast convergence with n(0)=p initial condition

Extracted neutron data



Malace, Kahn, WM, Keppel arXiv:0910.4920 [hep-ph]

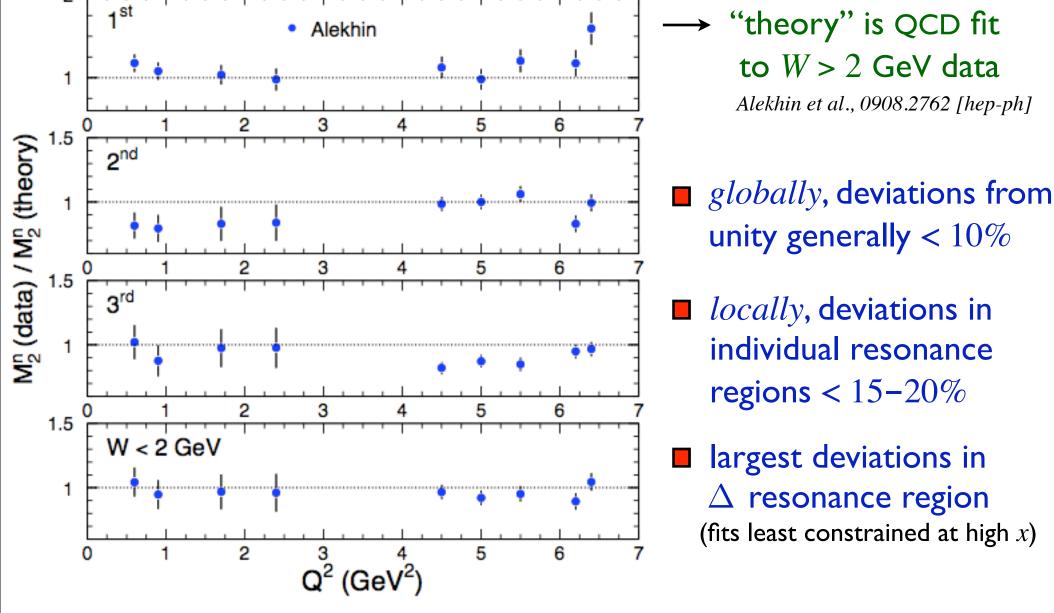
Extracted neutron data



Malace, Kahn, WM, Keppel arXiv:0910.4920 [hep-ph]

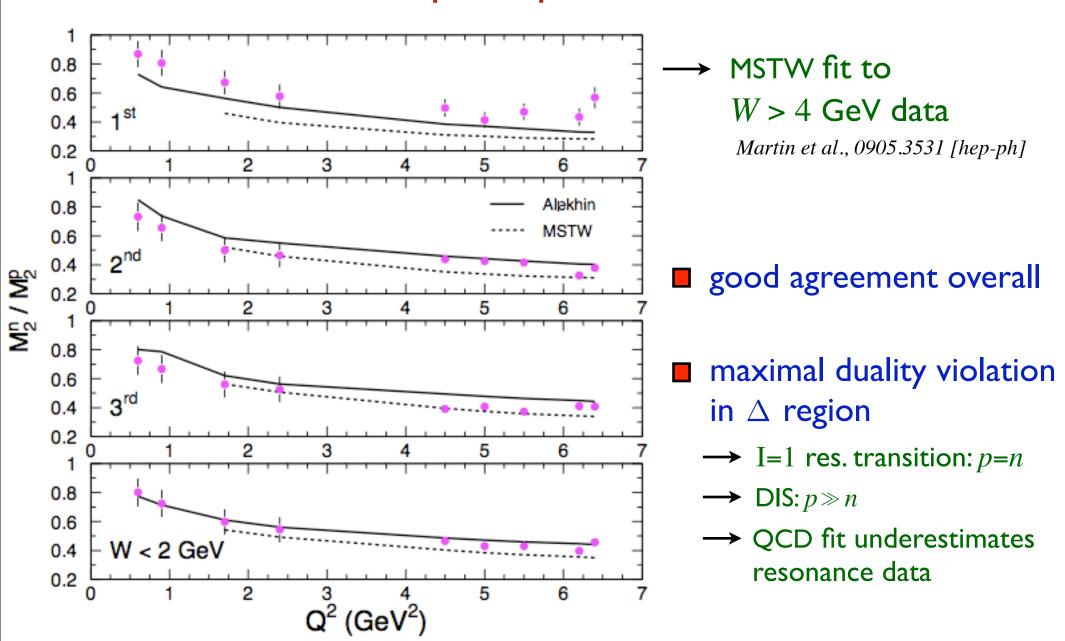
striking similarity with QCD fit to DIS data!

Truncated moment ratio



Malace, Kahn, WM, Keppel arXiv:0910.4920 [hep-ph]

Isospin dependence



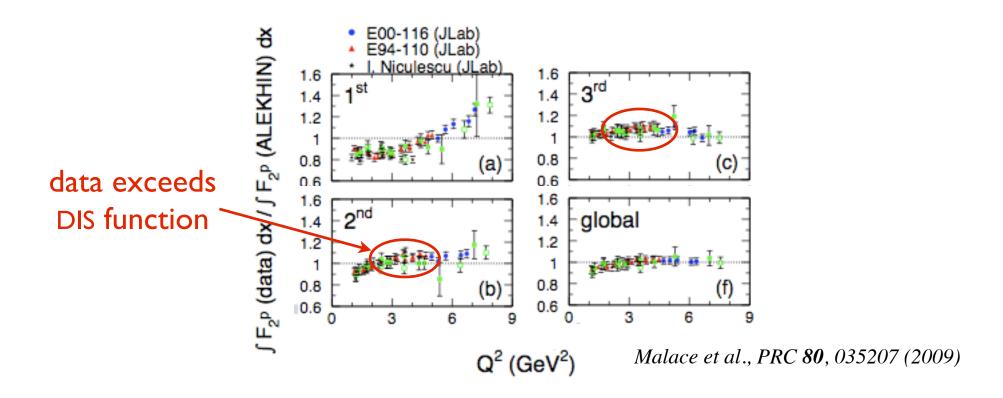
Malace, Kahn, WM, Keppel arXiv:0910.4920 [hep-ph]

Quark model comparison

18

Quark model predicts systematic deviations of resonance data from local duality $\frac{SU(6): [56,0^+]^28}{F!^2} \frac{[56,0^+]^410}{9} \frac{[70,1^-]^28}{9} \frac{[70,1^-]^48}{9} \frac{[70,1^-]^210}{1} \frac{tot}{27}$

■ Proton data expected to *overestimate* DIS function in 2nd and 3rd resonance regions (odd parity states)



Quark model comparison

18

Quark model predicts systematic deviations of resonance data from local duality
 \(\frac{SU(6): \left[56,0+]^28 \left[56,0+]^4\left[0] \reft[70,1-]^28 \left[70,1-]^48 \left[70,1-]^2\left[0] \tag{total}{total}}{\frac{F^p}{F^p}}\)

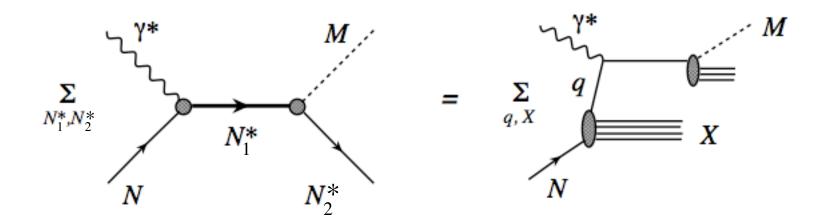
Proton data expected to overestimate DIS function in 2nd and
3rd resonance regions (odd parity states)

■ Neutron data predicted to lie below DIS function in 2nd region

- Patterns borne out by data!
- Suggests duality is not accidental, but a general feature of resonance-scaling transition

Duality in Semi-Inclusive Meson Production

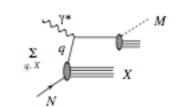
- Duality expected to work better for inclusive observables (e.g. structure functions)
 - → what about for *semi-inclusive* scattering?
- Hypothesis: equivalent descriptions afforded by scattering from partons or via N^* excitations



→ test whether hypothesis is consistent with *models* and *data*

Partonic description

$$\mathcal{N}_N^{\pi}(x,z) = e_u^2 u^N(x) D_u^{\pi}(z) + e_d^2 d^N(x) D_d^{\pi}(z)$$



 $q \rightarrow \pi$ fragmentation function

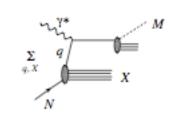
 $z=E_{\pi}/\nu$ fractional energy carried by pion

■ Hadronic description

$$\mathcal{N}_N^\pi(x,z) = \sum_{N_2^*} \left| \sum_{N_1^*} F_{\gamma N o N_1^*}(Q^2,M_1^*) \; \mathcal{D}_{N_1^* o N_2^*\pi}(M_1^*,M_2^*) \, \right|^2$$
 transition decay function form factor

Partonic description

$$\mathcal{N}_N^{\pi}(x,z) = e_u^2 u^N(x) D_u^{\pi}(z) + e_d^2 d^N(x) D_d^{\pi}(z)$$



→ ratios given by quark charges

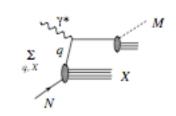
$$rac{\mathcal{N}_n^{\pi^+}}{\mathcal{N}_p^{\pi^-}} = rac{\mathcal{N}_p^{\pi^+}}{\mathcal{N}_n^{\pi^-}} = rac{e_u^2}{e_d^2} = 4$$

Hadronic description

$$\mathcal{N}_N^\pi(x,z) = \sum_{N_2^*} \left| \sum_{N_1^*} F_{\gamma N o N_1^*}(Q^2,M_1^*) \; \mathcal{D}_{N_1^* o N_2^*\pi}(M_1^*,M_2^*) \right|^2$$
 transition decay function form factor

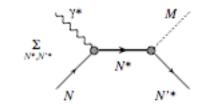
Partonic description

$$\mathcal{N}_N^{\pi}(x,z) = e_u^2 \ u^N(x) \ D_u^{\pi}(z) \ + \ e_d^2 \ d^N(x) \ D_d^{\pi}(z)$$



→ ratios given by quark charges

$$rac{\mathcal{N}_n^{\pi^+}}{\mathcal{N}_p^{\pi^-}} = rac{\mathcal{N}_p^{\pi^+}}{\mathcal{N}_n^{\pi^-}} = rac{e_u^2}{e_d^2} = 4$$



 \longrightarrow magnetic interaction operator for $\gamma N \to N_1^*$

$$\sum_{i} e_{i} \, \sigma_{i}^{+}$$

 \longrightarrow pion emission operator for $N_1^* \to N_2^* \, \pi^\pm$

$$\sum_{i} \tau_{i}^{\mp} \, \sigma_{zi}$$

Relative probabilities \mathcal{N}_N^{π} in SU(6) symmetric quark model (summed over N_1^*)

			N_2^*				
	² 8,56 ⁺	$^410,56^+$	28,70-	48,70-	² 10,70 ⁻	sum	spin-averaged
$\gamma p \to \pi^+ N_2^\star$	100 (100)	32 (-16)	64 (64)	16 (-8)	4 (4)	216 (144)	
$\gamma p \to \pi^- N_2^\star$	0 (0)	24 (-12)	0 (0)	0 (0)	3 (3)	27 (-9)	spin-dependent
$\gamma n \to \pi^+ N_2^\star$	0 (0)	96 (-48)	0 (0)	0 (0)	12 (12)	108 (-36)	
$\gamma n \to \pi^- N_2^\star$	25 (25)	8 (-4)	16 (16)	4 (-2)	1 (1)	54 (36)	

 \blacksquare π^-/π^+ ratios for p and n targets (summing over N_2^*)

$$\frac{\mathcal{N}_{p}^{\pi^{-}}}{\mathcal{N}_{p}^{\pi^{+}}} = \frac{1}{8} , \qquad \frac{\mathcal{N}_{n}^{\pi^{-}}}{\mathcal{N}_{n}^{\pi^{+}}} = \frac{1}{2}$$

$$\frac{\mathcal{N}_{n}^{\pi^{+}}}{\mathcal{N}_{p}^{\pi^{+}}} = \frac{\mathcal{N}_{p}^{\pi^{-}}}{\mathcal{N}_{n}^{\pi^{-}}} = \frac{1}{2} , \qquad \frac{\mathcal{N}_{n}^{\pi^{+}}}{\mathcal{N}_{p}^{\pi^{-}}} = \frac{\mathcal{N}_{p}^{\pi^{+}}}{\mathcal{N}_{n}^{\pi^{-}}} = 4$$

■ Consistent with parton model in SU(6) limit, d/u=1/2

 \blacksquare For *spin-dependent* ratios (e & N longitudinally polarized)

$$\frac{\Delta \mathcal{N}_{p}^{\pi^{-}}}{\Delta \mathcal{N}_{p}^{\pi^{+}}} = -\frac{1}{16} , \qquad \frac{\Delta \mathcal{N}_{n}^{\pi^{-}}}{\Delta \mathcal{N}_{n}^{\pi^{+}}} = -1$$

$$\frac{\Delta \mathcal{N}_{p}^{\pi^{+}}}{\mathcal{N}_{p}^{\pi^{+}}} = \frac{2}{3} , \qquad \frac{\Delta \mathcal{N}_{p}^{\pi^{-}}}{\mathcal{N}_{p}^{\pi^{-}}} = -\frac{1}{3}$$

$$\frac{\Delta \mathcal{N}_{n}^{\pi^{+}}}{\mathcal{N}_{n}^{\pi^{+}}} = -\frac{1}{3} , \qquad \frac{\Delta \mathcal{N}_{n}^{\pi^{-}}}{\mathcal{N}_{n}^{\pi^{-}}} = \frac{2}{3}$$

Consistent with parton model ratios

$$\Delta u/u = 2/3$$
, $\Delta d/d = -1/3$, $\Delta d/\Delta u = -1/4$

lacktriangle Inclusive results recovered by summing over $\pi^+~\&~\pi^-$

$$\frac{\mathcal{N}_n^{\pi^+ + \pi^-}}{\mathcal{N}_p^{\pi^+ + \pi^-}} = \frac{F_1^n}{F_1^p} = \boxed{\frac{2}{3}}$$

$$\frac{\Delta \mathcal{N}_p^{\pi^+ + \pi^-}}{\mathcal{N}_p^{\pi^+ + \pi^-}} = \frac{g_1^p}{F_1^p} = \boxed{\frac{5}{9}}, \quad \frac{\Delta \mathcal{N}_n^{\pi^+ + \pi^-}}{\mathcal{N}_n^{\pi^+ + \pi^-}} = \frac{g_1^n}{F_1^n} = \boxed{0}$$

- SU(6) symmetry may be valid at $x \sim 1/3$, but is (badly) broken at large x
- Color-magnetic interaction
 - \rightarrow suppression of transitions to states with S=3/2

$$\frac{\mathcal{N}_{p}^{\pi^{-}}}{\mathcal{N}_{p}^{\pi^{+}}} = \frac{1}{56} , \qquad \frac{\mathcal{N}_{n}^{\pi^{-}}}{\mathcal{N}_{n}^{\pi^{+}}} = \frac{7}{2}$$

- \rightarrow consistent with d/u=1/14 at parton level
- Scalar diquark dominance
 - \rightarrow suppression of symmetric (λ) component of wfn.

$$rac{\mathcal{N}_p^{\pi^-}}{\mathcal{N}_p^{\pi^+}} = 0 \; , \qquad rac{\mathcal{N}_n^{\pi^+}}{\mathcal{N}_n^{\pi^-}} = 0 \; , \qquad rac{\mathcal{N}_n^{\pi^-}}{\mathcal{N}_p^{\pi^+}} = rac{1}{4}$$

 \rightarrow consistent with d/u=0 at parton level

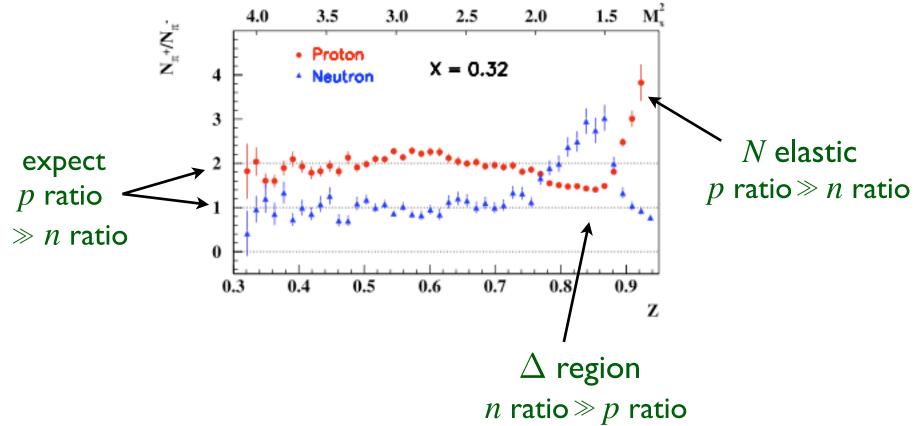
- SU(6) symmetry may be valid at $x \sim 1/3$, but is (badly) broken at large x
- Helicity conservation
 - → suppression of helicity-3/2 amplitude

$$\frac{\mathcal{N}_p^{\pi^-}}{\mathcal{N}_p^{\pi^+}} = \frac{1}{20} , \qquad \frac{\mathcal{N}_n^{\pi^-}}{\mathcal{N}_n^{\pi^+}} = \frac{5}{4} , \qquad \frac{\mathcal{N}_n^{\pi^+}}{\mathcal{N}_p^{\pi^+}} = \frac{\mathcal{N}_p^{\pi^-}}{\mathcal{N}_n^{\pi^-}} = \frac{1}{5}$$

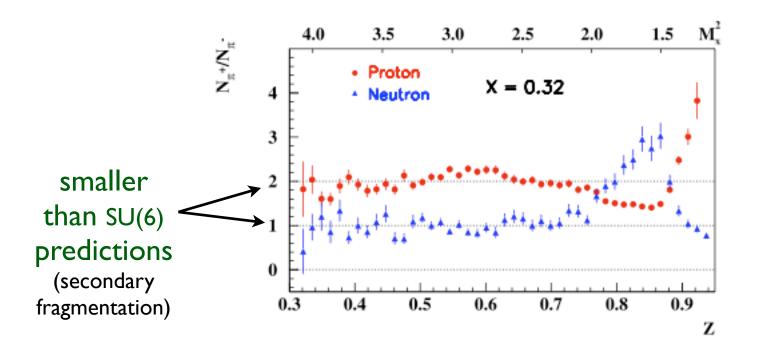
 \rightarrow consistent with d/u=1/5 at parton level

All three scenarios consistent with duality!

Comparison with data (JLab Hall C)



■ Comparison with data (JLab Hall C)



More quantitative comparison requires secondary fragmentation

$$\frac{\mathcal{N}_d^{\pi^+}}{\mathcal{N}_d^{\pi^-}} = \frac{4+R}{4R+1} \qquad \begin{array}{c} R \equiv \overline{D}/D \\ \\ \mathcal{N}_d^{\pi^-} \end{array} \qquad \begin{array}{c} R \equiv \overline{D}/D \\ \\ \mathcal{N}_d^{\pi^+} = D_u^{\pi^-} \\ \\ \mathcal{N}_d^{\pi^+} = D_u^{\pi^-} \\ \\ \mathcal{N}_d^{\pi^+} = D_u^{\pi^+} \end{array} \qquad \begin{array}{c} D_u^{\pi^+} = D_d^{\pi^-} \\ \\ \text{``unfavored''} \\ \\ z \rightarrow 1 \end{array}$$

Summary

- Remarkable confirmation of quark-hadron duality in proton structure functions
 - \rightarrow duality violating higher twists $\sim 10\%$ in few-GeV range
- Truncated moments
 - \rightarrow firm foundation for study of local duality in QCD
- Extraction of *neutron* structure function
 - \rightarrow confirmation of local duality at 15-20% level
 - → evidence that duality is *not* due to accidental cancellations
- Duality predicted in semi-inclusive pion production
 - quantitative comparison with data requires modeling secondary fragmentation

The End