

Nuclear Corrections to Neutron Structure Functions

Wally Melnitchouk

Outline

- Why is neutron structure at large x important? → d/u ratio
 - → isospin dependence of duality (& higher twists)
- Nuclear corrections at finite Q^2
 - \rightarrow generalized nuclear smearing formula
- New method for extracting neutron from *inclusive* data
 - \rightarrow applicable in DIS and *resonance* regions
 - \rightarrow future comparison with BONUS data

d/u ratio as $x \rightarrow 1$

 $\tau \stackrel{(0)}{=} \frac{d}{d} \operatorname{Ratio}_{P} of d$ to u quark distributions particularly sensitive to quark dynamics in nucleon $dere \mathcal{H} \stackrel{itwo}{\cong} \frac{d}{d-n}$ d <u>SU(6) spin-flavor symmetry</u> s"twist" proton wave function $p^{\uparrow} = -\frac{1}{3}d^{\uparrow}(uu)_1 - \frac{\sqrt{2}}{3}d^{\downarrow}(uu)_1$ $\begin{array}{c} p^{*} - 3 \\ -+ \cdots \\ + \frac{\sqrt{2}}{6} u^{\uparrow} (ud)_{1} - \frac{1}{3} u^{\downarrow} (ud)_{1} + \frac{1}{\sqrt{2}} u^{\uparrow} (ud)_{0} \\ \end{array}$ diquark spin interacting quark spectator diquark

Ratio of d to u quark distributions particularly sensitive to quark dynamics in nucleon

SU(6) spin-flavor symmetry

proton wave function

$$p^{\uparrow} = -\frac{1}{3}d^{\uparrow}(uu)_{1} - \frac{\sqrt{2}}{3}d^{\downarrow}(uu)_{1} + \frac{\sqrt{2}}{6}u^{\uparrow}(ud)_{1} - \frac{1}{3}u^{\downarrow}(ud)_{1} + \frac{1}{\sqrt{2}}u^{\uparrow}(ud)_{0}$$

$$\longrightarrow \ u(x) = 2 \ d(x) \text{ for all } x \\ \longrightarrow \ \frac{F_2^n}{F_2^p} = \frac{2}{3}$$

scalar diquark dominance

 $M_{\Delta} > M_N \implies (qq)_1$ has larger energy than $(qq)_0$

 \implies scalar diquark dominant in $x \rightarrow 1$ limit

since only u quarks couple to scalar diquarks

$$\longrightarrow \quad \frac{d}{u} \rightarrow 0$$

$$\longrightarrow \quad \frac{F_2^n}{F_2^p} \rightarrow \frac{1}{4}$$

Feynman 1972, Close 1973, Close/Thomas 1988

hard gluon exchange

at large x, helicity of struck quark = helicity of hadron

 \implies helicity-zero diquark dominant in $x \rightarrow 1$ limit

$$\xrightarrow{d} \frac{d}{u} \xrightarrow{f_2} \frac{1}{5}$$

$$\xrightarrow{F_2^n} \frac{F_2^n}{F_2^p} \xrightarrow{f_2} \frac{3}{7}$$

Farrar, Jackson 1975

Duality in the Neutron?

Bloom-Gilman duality well established for the proton

Niculescu et al., PRL 85 (2000) 1182, 1185

Christy et al. (2005)

F_2^p resonance spectrum

<u>truncated moments</u> allow study of restricted regions in x within pQCD in well-defined, systematic way

$$\overline{M}_n(\Delta x, Q^2) = \int_{\Delta x} dx \ x^{n-2} \ F_2(x, Q^2)$$

obey DGLAP-like evolution equations, similar to PDFs

$$\frac{dM_n(\Delta x, Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \left(P'_{(n)} \otimes \overline{M}_n \right) (\Delta x, Q^2)$$

where modified splitting function is

$$P'_{(n)}(z,\alpha_s) = z^n P_{NS,S}(z,\alpha_s)$$

 \rightarrow can follow evolution of <u>specific resonance (region)</u> with Q^2 in pQCD framework!

analysis in terms of "truncated moments"

higher twists < 10-15% for $Q^2 > 1 \text{ GeV}^2$

- Minimum condition for duality
 - \rightarrow at least one complete set of <u>even</u> and <u>odd</u> parity resonances must be summed over

In NR Quark Model, even and odd parity states correspond to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

SU(6):	$[56, 0^+]^2 8$	$[{f 56}, 0^+]^{f 4} {f 10}$	$[70, 1^-]^2 8$	$[70, 1^-]^4 8$	$[70, 1^-]^2 10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18

- Proton sum saturated by lower-lying resonances
 - \rightarrow expect duality to appear <u>earlier</u> for p than n

Close, WM, PRC 68 (2003) 035210

Close, Isgur, PLB 509 (2001) 81

Is duality in the proton a coincidence?

consider symmetric nucleon wave function

$$Proton \quad \Pi r \sim 1 - \left(\frac{2}{9} + \frac{1}{9}\right) = 0$$

$$neutron \quad \Pi r \sim 0 - \left(\frac{4}{9} + 2 \times \frac{1}{9}\right) \neq 0$$

need to test duality in the neutron!

No <u>FREE</u> neutron targets (neutron half-life ~ 12 mins)

→ use deuteron as "effective" neutron target

<u>BUT</u> deuteron is a nucleus, and $F_2^d \neq F_2^p + F_2^n$

nuclear effects (nuclear binding, Fermi motion, shadowing)
<u>obscure neutron structure</u> information

need to correct for "nuclear EMC effect"

Nuclear Effects in the Deuteron

nuclear "impulse approximation"

 \rightarrow incoherent scattering from individual nucleons in d (good approx. at x >> 0)

→ at finite Q^2 , smearing function depends also on parameter $\gamma = |\mathbf{q}|/q_0 = \sqrt{1 + 4M^2 x^2/Q^2}$

Kulagin, WM, PRC 77 (2008) 015210

N momentum distributions in d

I weak binding approximation (WBA): expand amplitudes to order \vec{p}^2/M^2

$$\begin{split} f(y,\gamma) &= \int \frac{d^3p}{(2\pi)^3} |\psi_d(p)|^2 \,\delta\Big(y-1-\frac{\varepsilon+\gamma p_z}{M}\Big) \\ &\times \frac{1}{\gamma^2} \Big[1+\frac{\gamma^2-1}{y^2}\Big(1+\frac{2\varepsilon}{M}+\frac{\vec{p}^2}{2M^2}(1-3\hat{p}_z^2)\Big)\Big] \end{split}$$

- \rightarrow deuteron wave function $\psi_d(p)$
 - \rightarrow deuteron separation energy $\varepsilon = \varepsilon_d \frac{\vec{p}^2}{2M}$
- -> approaches usual nonrelativistic momentum distribution in $\gamma \to 1$ limit

N momentum distributions in d

 \rightarrow for most kinematics $\gamma \lesssim 2$

Off-shell correction

EMC effect in deuteron

- → larger EMC effect (smaller d/N ratio) at $x \sim 0.5-0.6$ with binding + off-shell corrections
- \rightarrow can significantly affect neutron extraction

EMC effect in deuteron deuteron wave function dependence

 \rightarrow mild dependence for x < 0.8 - 0.85

large uncertainty from nuclear effects in deuteron (range of nuclear models*) beyond $x \sim 0.5$

> symmetry breaking mechanism remains unknown!

* most PDFs assume <u>no</u> nuclear corrections

Extraction of Neutron Structure Function

Fermi smearing in the deuteron

- → can one reconstruct ("unsmear") neutron resonance structure from deuteron data?
- → usual "multiplicative" unsmearing method does not work for "bumpy" data or which change sign (spin-dep. SFs)

Unsmearing – additive method

- **c**alculated F_2^d depends on input F_2^n
 - \rightarrow extracted *n* depends on input *n* ... cyclic argument
- Solution: iteration procedure
 - 0. subtract $\delta^{(\text{off})}F_2^d$ from d data: $F_2^d \to F_2^d \delta^{(\text{off})}F_2^d$
 - 1. define difference Δ between smeared and free SFs

$$F_2^d - \widetilde{F}_2^p = \widetilde{F}_2^n \equiv f \otimes F_2^n \equiv F_2^n + \Delta$$

- 2. first guess for $F_2^{n(0)} \longrightarrow \Delta^{(0)} = \widetilde{F}_2^{n(0)} F_2^n$
- 3. after one iteration, gives

$$F_2^{n(1)} = F_2^{n(0)} + (\widetilde{F}_2^n - \widetilde{F}_2^{n(0)})$$

4. repeat until convergence obtained

Unsmearing – test of convergence

 F_2^d constructed from known F_2^p and F_2^n inputs (using leading twist MRST parameterization)

Unsmearing – test of convergence

 F_2^d constructed from known F_2^p and F_2^n inputs

(using MAID resonance parameterization)

Unsmearing – Q^2 dependence

important to use correct γ dependence in extraction

important also in DIS region (do not have resonance "benchmarks")

Unsmearing spin-dependent structure functions

neutron errors \rightarrow vary d data points by Gaussians (proton data smeared, so errors very small)

 \rightarrow run 50 sample extractions, calculate RMS error

- \rightarrow relatively stable results after only 2 iterations!
- \rightarrow excellent agreement of reconstructed d with data

 \rightarrow clear neutron resonance structure visible

dependence on initial guess for n

 results converge eventually, but errors increase for more iterations

Duality test

comparison with leading twist (MRST)
 parameterization + target mass corrections

Duality test

neutron HT indeed larger than proton!

consistent with quark model expectations

Limitations of method

- Need data up to x = 1
 - \rightarrow usually not a problem unless cut d quasi-elastic tail
- Difficult to use on sparse data sets
 - \rightarrow discontinuities in d data sharply magnified in n
- Some dependence on starting point for iteration \rightarrow convergence faster with judicious first guess for *n*
- Method limited to convolution representation

 → corrections beyond convolution to be evaluated

Summary

- Nuclear corrections in deuteron computed at finite Q^2 through generalized convolution
- New unsmearing method for extracting neutron SFs
 - \rightarrow first(?) extraction in resonance and DIS regions
- Test of duality in the neutron
 - → violations *larger* in neutron than in proton (as expected from quark models)
 - → need to estimate systematic errors from nuclear corrections
- Comparison with BONUS data will test methodology

The End