

New global analysis of PDFs

- exploring the large-x domain

Wally Melnitchouk

"CTEQX"

A. Accardi, E. Christy, C. Keppel, P. Monaghan, J. Morfin, J. Owens

Outline

- \blacksquare Why is nucleon structure at large x important?
- Navigating the large-x landscape
 - → nuclear corrections
 - → target mass corrections & higher twists
- New global analysis (CTEQX)
 - \rightarrow first foray into high-x, low- Q^2 region
 - \rightarrow surprising new results for d/u
- Future experimental constraints

Why are PDFs at large x interesting?

- Most direct connection between quark distributions and nonperturbative structure of nucleon is via *valence* quarks
 - \rightarrow most cleanly revealed at x > 0.4

Why are PDFs at large x interesting?

- Most direct connection between quark distributions and nonperturbative structure of nucleon is via *valence* quarks
- Predictions for $x \rightarrow 1$ behavior of e.g. d/u ratio
 - \rightarrow scalar diquark dominance: d/u = 0 Feynman (1972)
 - \rightarrow hard gluon exchange: d/u = 1/5 Farrar, Jackson (1975)
 - \rightarrow SU(6) symmetry: d/u = 1/2

Why are PDFs at large x interesting?

- Most direct connection between quark distributions and nonperturbative structure of nucleon is via *valence* quarks
- Predictions for $x \to 1$ behavior of e.g. d/u ratio
 - \rightarrow scalar diquark dominance: d/u = 0 Feynman (1972)
 - \rightarrow hard gluon exchange: d/u = 1/5 Farrar, Jackson (1975)
 - \rightarrow SU(6) symmetry: d/u = 1/2
- Needed to understand backgrounds in searches for new physics beyond the Standard Model at LHC, ν oscillation experiments, astrophysics applications
 - \rightarrow DGLAP evolution feeds low x, high Q^2 from high x, low Q^2

■ At large x, valence u and d distributions extracted from p and n structure functions, e.g. at LO

$$\frac{1}{x}F_2^p \approx \frac{4}{9}u_v + \frac{1}{9}d_v$$

$$\frac{1}{x}F_2^n \approx \frac{4}{9}d_v + \frac{1}{9}u_v$$

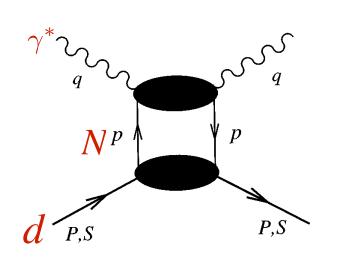
- \blacksquare u quark distribution well determined from proton
- \blacksquare d quark distribution requires neutron structure function

$$\frac{d}{u} \approx \frac{4 - F_2^n / F_2^p}{4F_2^n / F_2^p - 1}$$

- No <u>FREE</u> neutron targets (neutron half-life ~ 12 mins)
 - use deuteron as "effective" neutron target

large uncertainty beyond $x \sim 0.5$

■ **BUT** deuteron is a nucleus


$$F_2^d \neq F_2^p + F_2^n$$

- nuclear effects (nuclear binding, Fermi motion, shadowing)
 obscure neutron structure information
- need to correct for "nuclear EMC effect"

Large-x landscape: nuclear effects in the deuteron

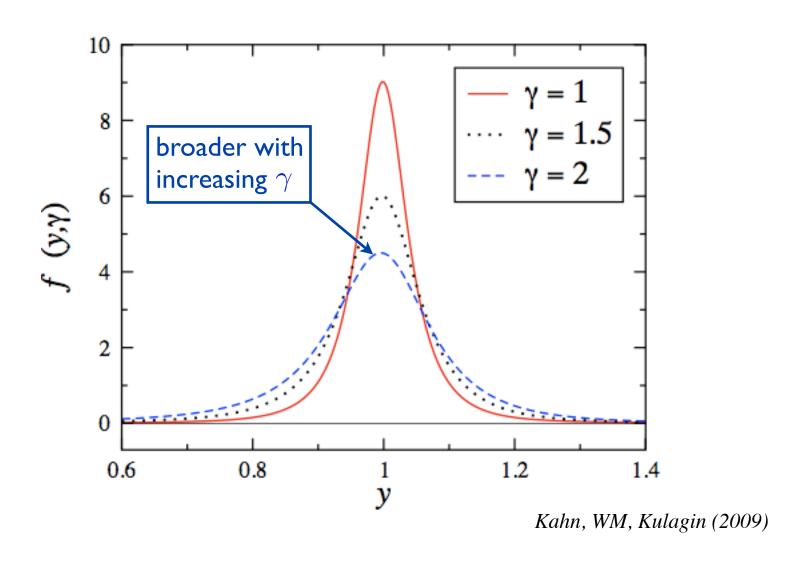
nuclear "impulse approximation"

incoherent scattering from individual nucleons in d (good approx. at x >> 0)

$$F_2^d(x,Q^2) = \int_x dy \ f(y,\gamma) \ F_2^N(x/y,Q^2) \\ + \delta^{(\mathrm{off})} F_2^d \\ \text{nucleon momentum distribution in } d \\ \text{("smearing function")} \\ \text{off-shell correction} \\ \text{(\sim1\%)}$$

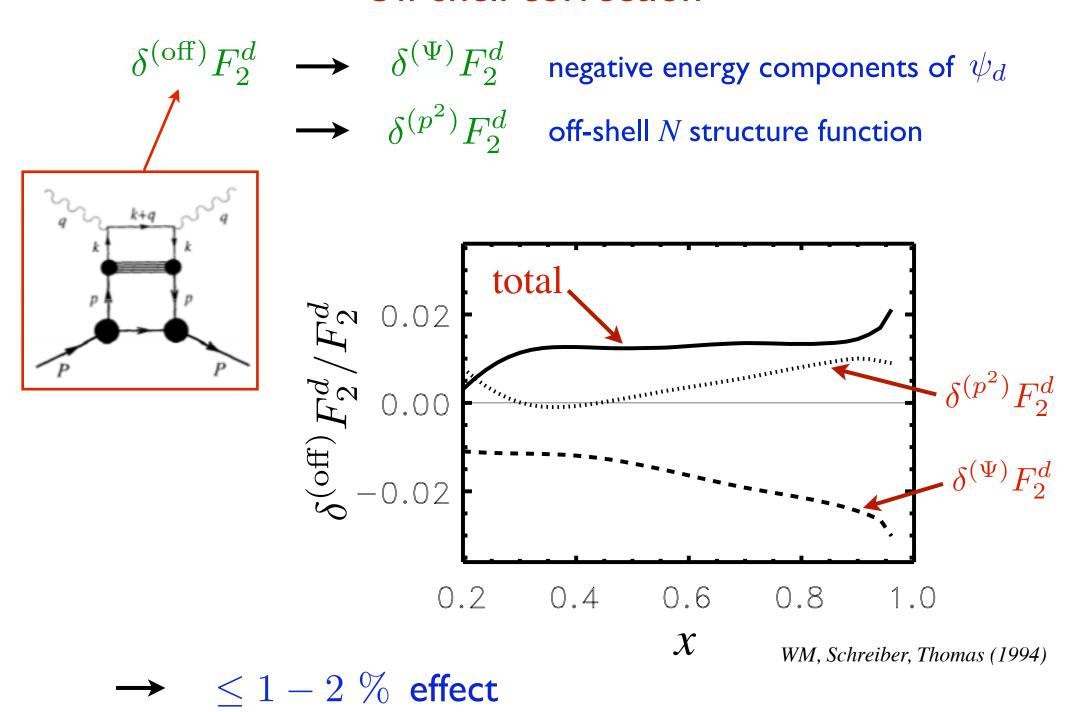
- \longrightarrow $y = p \cdot q/P \cdot q$ light-cone momentum fraction of d carried by N
- \rightarrow at finite Q^2 , smearing function depends also on parameter

$$\gamma = |\mathbf{q}|/q_0 = \sqrt{1 + 4M^2 x^2/Q^2}$$

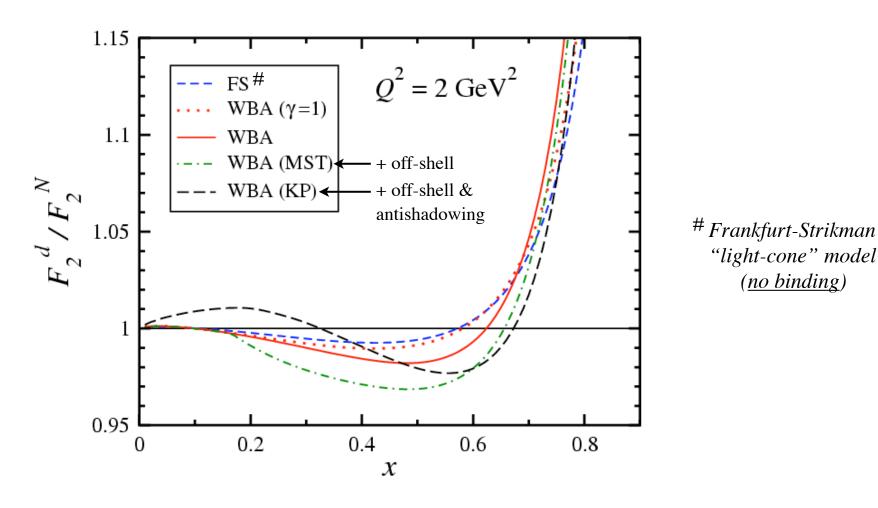

N momentum distributions in d

weak binding approximation (WBA): expand amplitudes to order \vec{p}^2/M^2

$$f(y,\gamma) = \int \frac{d^3p}{(2\pi)^3} |\psi_d(p)|^2 \delta\left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \times \frac{1}{\gamma^2} \left[1 + \frac{\gamma^2 - 1}{y^2} \left(1 + \frac{2\varepsilon}{M} + \frac{\vec{p}^2}{2M^2} (1 - 3\hat{p}_z^2)\right)\right]$$


- \rightarrow deuteron wave function $\psi_d(p)$
- \longrightarrow deuteron separation energy $\varepsilon = \varepsilon_d \frac{p^2}{2M}$
- \longrightarrow approaches usual nonrelativistic momentum distribution in $\gamma \to 1$ limit

N momentum distributions in d



 \longrightarrow for most kinematics $\gamma \lesssim 2$

Off-shell correction

EMC effect in deuteron

- \sim 2-3% reduction of d/N ratio at $x \sim 0.5-0.6$ with steep rise for x > 0.6
- -> can significantly affect neutron extraction

Large-x landscape: target mass & higher twist corrections

Target mass corrections

- Additional corrections from kinematical Q^2/ν^2 effects
 - \rightarrow "target mass corrections" (TMC), since $x=Q^2/2M\nu$
- Important at large x and low Q^2
 - → new "Nachtmann" scaling variable

$$\xi = \frac{2x}{1 + \sqrt{1 + 4M^2x^2/Q^2}}$$

Baumik, Greenberg (1971) Nachtmann (1973)

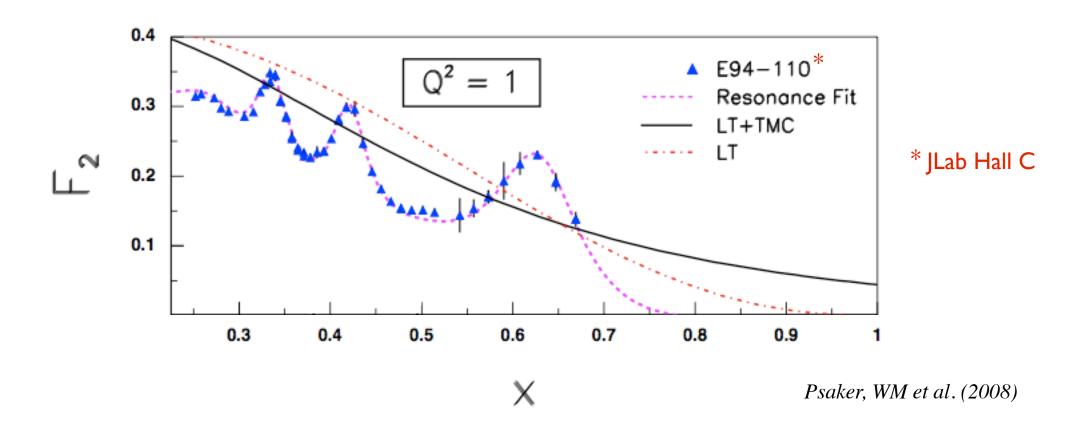
→ but <u>not unique</u> – depends on formalism (e.g. OPE, collinear factorization)

Operator product expansion

 \rightarrow *n*-th Cornwall-Norton moment of F_2 structure function

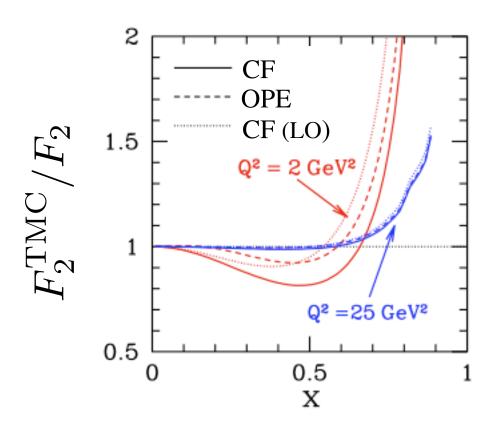
$$M_2^n(Q^2) = \int dx \ x^{n-2} \ F_2(x, Q^2)$$

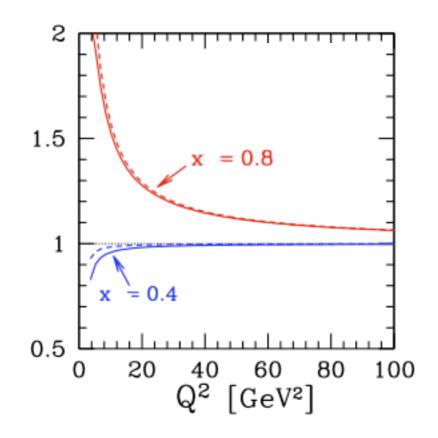
$$= \sum_{j=0}^{\infty} \left(\frac{M^2}{Q^2}\right)^j \frac{(n+j)!}{j!(n-2)!} \frac{A_{n+2j}}{(n+2j)(n+2j-1)}$$


→ take inverse Mellin transform

$$F_2^{\text{OPE}}(x, Q^2) = \frac{x^2}{\xi^2 \gamma^3} F_2^{(0)}(\xi, Q^2) + \frac{6M^2 x^3}{Q^2 \gamma^4} \int_{\xi}^{1} du \frac{F_2^{(0)}(u, Q^2)}{u^2} + \frac{12M^4 x^4}{Q^4 \gamma^5} \int_{\xi}^{1} dv (v - \xi) \frac{F_2^{(0)}(v, Q^2)}{v^2}$$

Georgi, Politzer (1976)


where $F_2^{(0)}$ is structure function in massless (Bjorken) limit


Target mass corrections

→ TMC important for verification of quark-hadron duality

Target mass corrections

Accardi, Qiu (2008)

 \longrightarrow TMC important at large x even for large Q^2

Collinear factorization

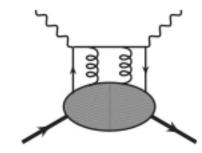
- → work directly in momentum space at partonic level (avoids need for Mellin transform)
- \rightarrow expand parton momentum k around its on-shell and collinear component $(k_{\perp}^2 \rightarrow 0)$

$$F_{T,L}(x,Q^2) = \sum_{q} \int_{\xi}^{\xi/x} \frac{dy}{y} \ C_{T,L}^q \left(\frac{\xi}{y},Q^2\right) q(y,Q^2)$$

$$\text{avoids unphysical } x > 1 \text{ region}$$

→ at leading order

$$F_2^{ ext{CF}}(x,Q^2) = rac{x}{\xi \gamma^2} \; F_2^{(0)}(\xi,Q^2)$$
 $pprox rac{\xi \gamma}{x} \, F_2^{ ext{OPE}}(x,Q^2)$ Kretzer, Reno (2004)


Higher twists

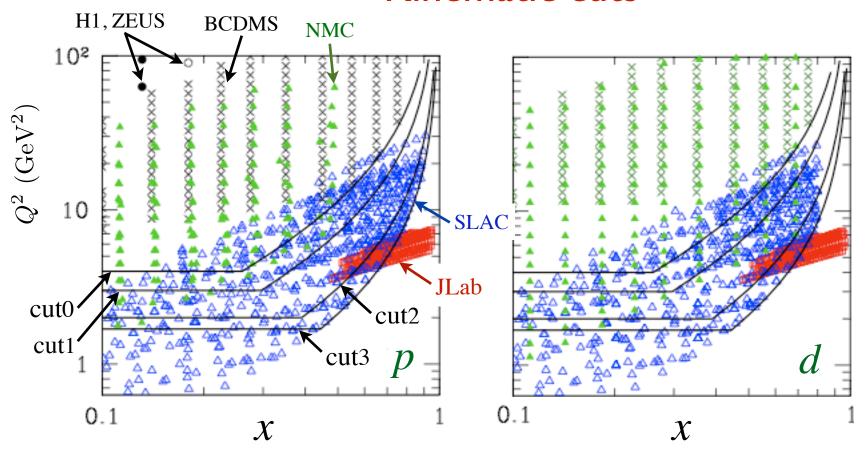
 \blacksquare 1/Q² expansion of structure function moments

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2) = A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific "twist" (= dimension - spin)

→ twist > 2 reveals long-range mulit-parton correlations

- phenomenologically important wherever TMCs important
 - \rightarrow parametrize x dependence by


$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

New global analysis ("CTEQX")

■ Next-to-leading order analysis of expanded set of proton and deuterium data, including large-x, low- Q^2 region

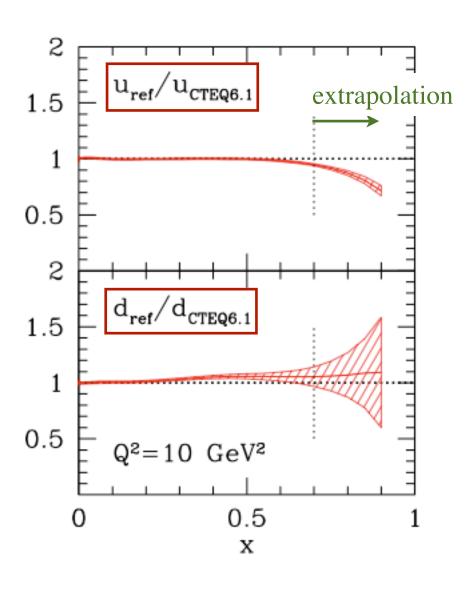
- Systematically study effects of $Q^2 \& W cuts$
 - \longrightarrow as low as $Q \sim m_c$ and $W \sim 1.7 \text{ GeV}$
- Include subleading $1/Q^2$ corrections
 - → target mass corrections
 - dynamical higher twists
- Correct for nuclear effects in the deuteron

Kinematic cuts

cut0: $Q^2 > 4 \text{ GeV}^2$, $W^2 > 12.25 \text{ GeV}^2$

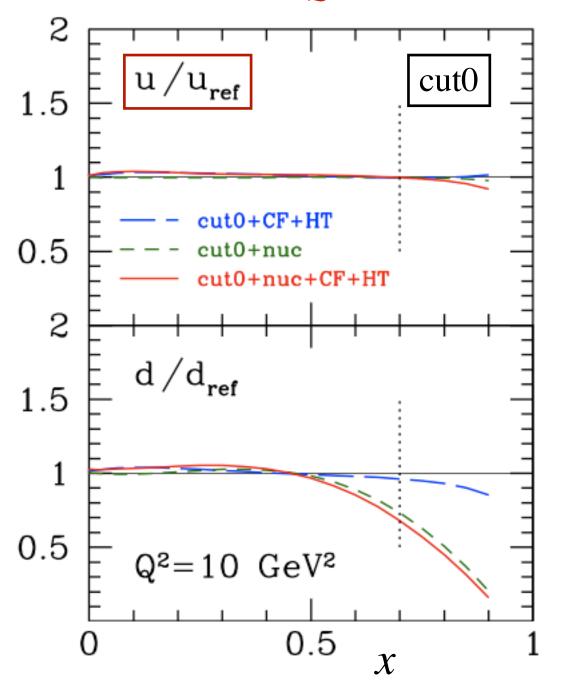
cut1: $Q^2 > 3 \text{ GeV}^2$, $W^2 > 8 \text{ GeV}^2$

cut2: $Q^2 > 2 \text{ GeV}^2$, $W^2 > 4 \text{ GeV}^2$


cut3: $Q^2 > m_c^2$, $W^2 > 3 \text{ GeV}^2$

Data points

					Total		erium	
				cut0	cut3	cut0	cut3	CTEQ6.1
	DIS	$*_{ m JLab}$	[39]	_	272	_	136	
		$\#_{\mathrm{SLAC}}$	[40]	206	1147	104	582	
2:		NMC	[41]	324	464	123	189	√
actor 2 increase		BCDMS	[42]	590	605	251	254	√
$rom cut0 \rightarrow cut3$		H1	[43]	230	251	-	-	√
om cato - cats		ZEUS	[44]	229	240	-	-	√
	νA DIS	CCFR	[45],[46]	_	-	-	_	√
	DY			9	-		√	
		$\#_{\text{E866}}$	[48]	37	5	19)1	
	W asymmetry CDF '98 (ℓ) $\#_{\text{CDF '05 }(\ell)}$		[49]	11		-		√
			[50]	11		-		
		# _{D0} '08 (ℓ)	[51]	10)		-	
		# _{D0} '08 (e)	[52]	12		-		
		# _{CDF} '09 (W)	[53]	13	3		-	
	jet	CDF	[54]	33	3		-	√
		D0	[55]	90)	-	-	√
	$\gamma+\mathrm{jet}$	$\#_{\mathrm{D}0}$	[56]	56	3		-	
		TOTAL		2408	3709	569	1161	

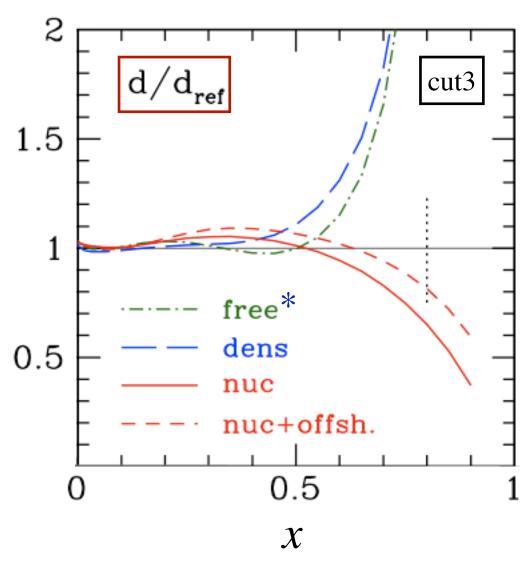

* only L-T separated data used at low Q^2
new data sets in CTEQX fit

Effect of new data on "standard" fits

- \rightarrow "cut0" (as in CTEQ6.1)
- \rightarrow no nuclear or $1/Q^2$ corrections
- no significant effect in measured region
- \rightarrow *u* suppression at large *x* due to E866 DY data

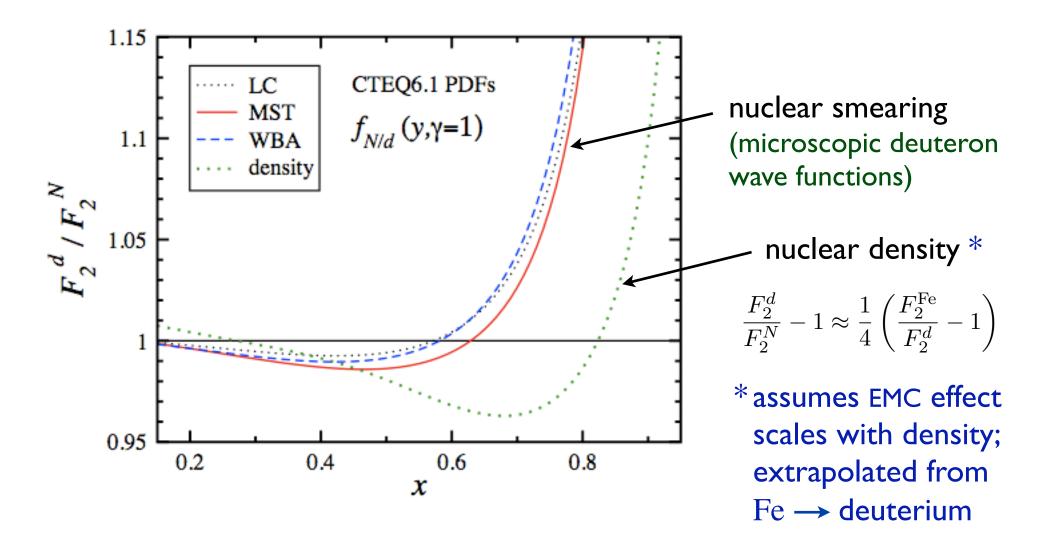
Effect on "reference" fit from $1/Q^2$ and nuclear corrections

cut0 limits significant change to u quark

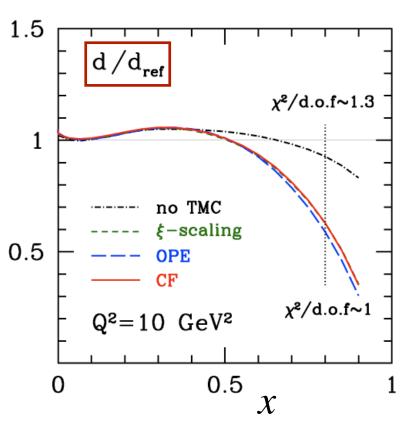

- profound effect on
 d quark from nuclear
 corrections in deuteron
- \rightarrow must include deuteron corrections for x > 0.5 even for standard cuts

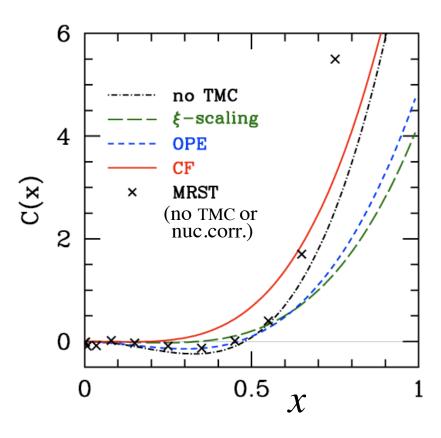
Effect of $Q^2 \& W$ cuts

- Systematically reduce Q^2 and W cuts
- Fit includes TMCs (CF), HT term, nuclear corrections (WBA)


Nuclear corrections

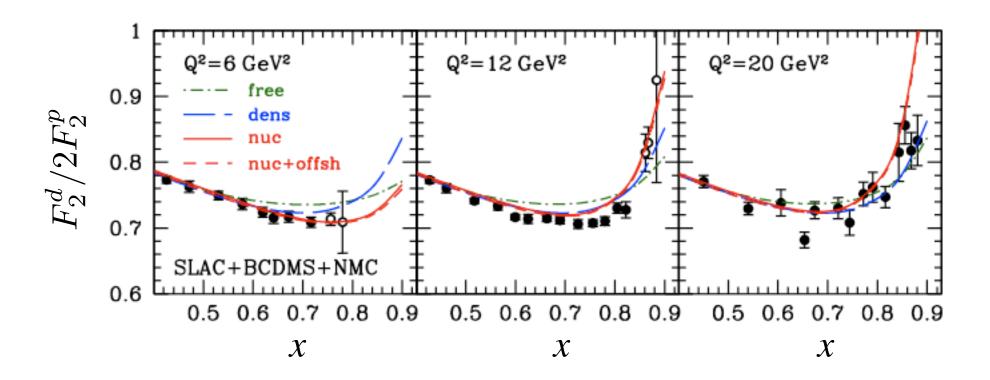
- increased d quark for no nuclear effects (or nuclear density model)
- → decreased d quark for nuclear smearing models
- modest increase with off-shell correction (larger EMC effect)


* assumes $F_2^d = F_2^p + F_2^n$ as in CTEQ6.1 and most other global fits

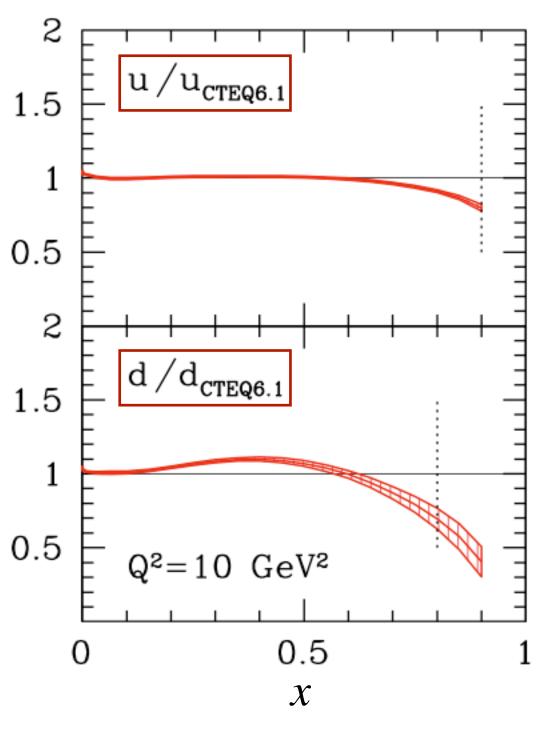

Nuclear corrections

- \rightarrow large differences with "free" for x > 0.6
- definition of density for deuteron is problematic

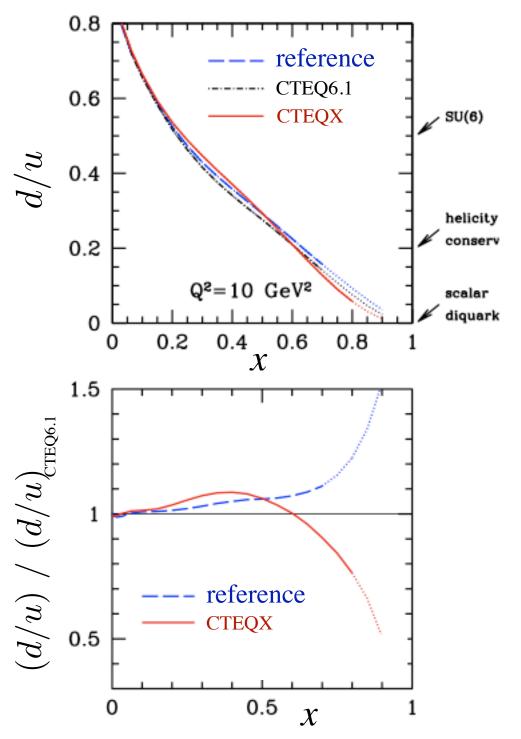
Effect of $1/Q^2$ corrections



- \rightarrow 1/Q² HT coefficient parametrized as $C(x) = c_1 x^{c_2} (1 + c_3 x)$
- \rightarrow important interplay between TMCs and higher twist: HT alone cannot accommodate full Q^2 dependence
- > stable leading twist when <u>both</u> TMCs and HTs included


Deuteron / proton ratio

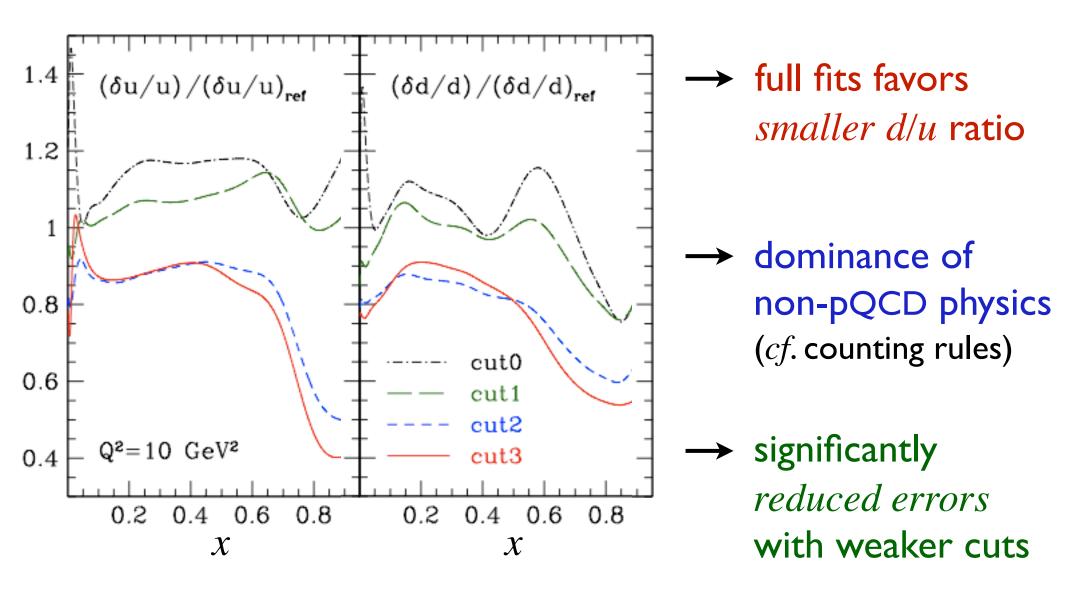
lacktriangle Consistency check of fit with F_2^d/F_2^p ratio (not used in fit)


fits without nuclear smearing in deuteron overestimate data at intermediate x, do not reproduce rise at large x

Final PDF results

 \rightarrow full fits favors smaller d/u ratio

Final PDF results



→ full fits favors

smaller d/u ratio

dominance of non-pQCD physics (cf. hard g exchange)

Final PDF results

"Cleaner" methods of determining d/u

 \bullet $e \ d \rightarrow e \ p_{\rm spec} \ X^*$

semi-inclusive DIS from d

→ tag "spectator" protons

• $e^{3}\mathrm{He}(^{3}\mathrm{H}) \rightarrow e^{X}$

³He-tritium mirror nuclei

 \bullet $e p \rightarrow e \pi^{\pm} X^{*}$

semi-inclusive DIS as flavor tag

• $e^{\mp} p \rightarrow \nu(\bar{\nu}) X$ $\nu(\bar{\nu}) p \rightarrow l^{\mp} X$ $p p(\bar{p}) \rightarrow W^{\pm} X$ $\vec{e}_L(\vec{e}_R) p \rightarrow e X^*$

weak current as flavor probe

*planned for JLab at 12 GeV

Summary & Outlook

- New global PDF analysis (CTEQX) including high-x, low- Q^2 data
- Stable leading twist PDFs obtained with TMC, higher twist and nuclear corrections (valid to $x \sim 0.8$)
 - opens door to study of nucleon structure over large kinematic domain
- Results suggest smaller d/u ratio for x > 0.6
- Future: explore effects of
 - \rightarrow jet mass corrections, W^2 evolution, quark-hadron duality
- Extend analysis to *spin-dependent* PDFs ("SpinTEQ")

The End