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FIG. 4. Comparison between data for GE/GM obtained from polarization measurements with
fits made to the entire data sets employed for nucleon electromagnetic form factors. Results for the
LGE parametrization λE = λM = 2 are shown as bands. Also shown are the linear parametrization

proposed by [14] for the proton and a fit based upon the Galster parametrization for the neutron.

FIG. 5. Comparison between charge (ρch) and magnetization (ρm) densities for the proton
fitted using the LGE parametrization with λE = λM = 2. Both densities are normalized to
∫

dr r2ρ(r) = 1.
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Kelly, PRC 66 (2002) 065203FIG. 6. Charge (ρch) and magnetization (ρm) densities for the neutron fitted using the LGE
parametrization with λE = λM = 2.

FIG. 7. Comparison between proton charge and magnetization densities using a factor of r2 to

emphasize the surface and tail regions. The fits used the LGE parametrization with λE = λM = 2.
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FIG. 3: Contributions to the wave function and vertex renormalization of the nucleon matrix

elements of the operators Oµ1...µn

i , i = q,∆q, δq, in Eq. (3). Solid, double and dashed lines denote

nucleon, ∆ and pion propagators and the crossed circle and box indicate the insertion of the relevant

operators. Diagrams ZN
2 and Z∆

2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).
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Kelly, PRC 66 (2002) 065203FIG. 6. Charge (ρch) and magnetization (ρm) densities for the neutron fitted using the LGE
parametrization with λE = λM = 2.

FIG. 7. Comparison between proton charge and magnetization densities using a factor of r2 to

emphasize the surface and tail regions. The fits used the LGE parametrization with λE = λM = 2.
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II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.

A. Rosenbluth technique

The unpolarized differential cross section for elastic scat-

tering can be written in terms of the cross section for scat-

tering from a point charge and the electric and magnetic form

factors:

d!

d"
!!Mott!GEp

2 "#GMp

2

1"#
"2#GMp

2 tan2$%/2&" , $1&

where #!Q2/4Mp
2 , % is the electron scattering angle, Q2

!4EeEe!sin
2(%/2), and Ee and Ee! are the incoming and scat-

tered electron energies. One can then define a reduced cross

section,

!R'
d!

d"

($1"#&

!Mott
!#GMp

2 $Q2&"(GEp

2 $Q2&, $2&

where ( is the longitudinal polarization of the virtual photon
)(#1!1"2(1"#)tan2(%/2)* . At fixed Q2, i.e., fixed # , the
form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:

GEp

GMp

!#
Pt

Pl

$Ee"Ee!&tan$%/2&
2Mp

, $3&

where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.
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bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:

GEp

GMp

!#
Pt

Pl

$Ee"Ee!&tan$%/2&
2Mp

, $3&

where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.
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Two-photon exchange

interference between Born and two-photon exchange amplitudes

X

contribution to cross section:

δ(2γ) =
2Re

{
M†

0 Mγγ

}

|M0|2

standard “soft photon approximation” (used in most data analyses)

Mo, Tsai (1969)

MγγM0

neglect nucleon structure (no form factors)

approximate integrand in          by values at      polesMγγ γ∗
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FIG. 2: Difference between the full two-photon exchange correction to the elastic cross section

(using the realistic form factors in Eq. (26)) and the commonly used expression (23) from Mo &

Tsai [13] for Q2 = 1–6 GeV2. The numbers labeling the curves denote the respective Q2 values in

GeV2.
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Two-photon exchange

Blunden, WM, Tjon
PRL 91 (2003) 142304;
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“exact” calculation of loop diagram (including           form factors)γ∗NN

results essentially independent
of form factor input
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FIG. 3: Model dependence of the difference between the full two-photon exchange correction and

the Mo & Tsai approximation: (a) at Q2 = 1, 6 and 12 GeV2, using realistic (solid) [16] and

dipole (dashed) form factors; (b) at Q2 = 6 GeV2 using the form factor parameterizations from

Refs. [16] (solid), [26] (dashed), and [25] with Gp
E constrained by the LT-separated (dot-dashed)

and polarization transfer (long-dashed) data.
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Effect on cross section

Born cross section with PT form factors

including TPE effects 
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FIG. 4: Reduced cross section σR (scaled by the dipole form factor G2
D) versus ε for several values

of Q2: (a) SLAC data [27] at Q2 = 3.25 (open squares), 4 (filled circles), 5 (open circles) and

6 GeV2 (filled squares); (b) JLab data [4] at Q2 = 2.64 (filled squares), 3.2 (open squares) and

4.1 GeV2 (filled circles). The dotted curves are Born cross sections evaluated using a form factor

parameterization [26] with Gp
E fitted to the polarization transfer data [5], while the solid curves

include 2γ contributions. The curves in the bottom panel have been shifted by (+1.0%, +2.1%,

+3.0%) for Q2 = (2.64, 3.2, 4.1) GeV2.
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4.1 GeV2 (filled circles). The dotted curves are Born cross sections evaluated using a form factor

parameterization [26] with Gp
E fitted to the polarization transfer data [5], while the solid curves

include 2γ contributions. The curves in the bottom panel have been shifted by (+1.0%, +2.1%,

+3.0%) for Q2 = (2.64, 3.2, 4.1) GeV2.
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estimate effect of  TPE on    dependence  ε

approximate correction by linear function of ε

1+Δ ≈ a+bε

reduced cross section is then

σR ≈ a G2M

[
1+

ε
µ2 τ

(
R2(1+ ε b/a)+µ2 τ b/a

)]

where “true” ratio is

R2 =
R̃2−µ2 τ b/a
1+ ε̄ b/a

average value of 
over range fitted

ε“effective” ratio
contaminated by TPE
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Two-photon exchange in elastic scattering
TABLE I: Parameters for the proton and neutron form factor fits in Eq. (26) used in this work,

with ni and di in units of GeV2.

F p
1 F p

2 Fn
1 Fn

2

N 3 3 3 2

n1 0.38676 1.01650 24.8109 5.37640

n2 0.53222 –19.0246 –99.8420

d1 3.29899 0.40886 1.98524 0.76533

d2 0.45614 2.94311 1.72105 0.59289

d3 3.32682 3.12550 1.64902 —
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FIG. 1: Two-photon exchange box and crossed box diagrams for elastic electron–proton scattering.
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how does TPE affect polarization transfer ratio?

R̃= R
(
1+ΔT
1+ΔL

)

where                                   is finite part of       
contribution relative to IR part of Mo-Tsai

∆L,T = δ
full
L,T − δ

Mo−Tsai

IR 2γ

experimentally measure ratio of polarized to
unpolarized cross sections

P1γ+2γL,T

P1γL,T
=
1+ΔL,T
1+Δ

Electric / magnetic ratio
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FIG. 8: Ratio of the finite part (with respect to the IR contribution in Eq. (22)) of the Born+2γ

correction relative to the Born term, for (a) longitudinal and (b) transverse recoil proton polariza-

tion, at Q2 = 1 (dotted), 3 (dashed) and 6 GeV2 (solid). Note the different scales on the vertical

axes.

32

*

*

* Note scales!

small effect
on PL

PT
large effect
on 

Electric / magnetic ratio



0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

M

Q
2 2

(GeV  )

G
  

/ 
G

E
µ

p

PT

LT

PT corrected

p
p

FIG. 9: Proton electric to magnetic form factor ratio obtained from the polarization transfer

measurements [5], with (solid circles) and without (open circles) the 2γ exchange corrections. The

corrected values have been offset for clarity. The LT-separated ratio (open diamonds) from Fig. 5

is shown for comparison.

33

Rosenbluth
separation

polarization
transfer

polarization

corrected for
2   exchangeγ

transfer

Does 2   exchange affect polarization transfer data ?γ

negligible effect

< 3% suppression at large Q2

large       data typically at large    Q2
ε

Electric / magnetic ratio



Excited intermediate states



Box diagram

3
p 

2
p  

4
p 

1
 p

 k  q!k

Mγγ e
∫ d k

π

N k

D k

N k u p γµ !p − !k me γν u p

× u p µ q − k !p !k M ν k u p

D k k − λ k − q − λ

× p − k − m p k − M

λ

µ q γµ F q
iσµνqν

M
F q

3
p 

2
p  

4
p 

1
 p

 k  q!k

Mγγ e
∫ d k

π

N k

D k

N k u p γµ !p − !k me γν u p

× u p µ q − k !p !k M ν k u p

D k k − λ k − q − λ

× p − k − m p k − M

λ

µ q γµ F q
iσµνqν

M
F q

elastic contribution

Lowest mass excitation is          (1232) resonance P33 Δ

to divide dσ by the well-known factor describing the scattering from a structureless “proton”
(see, e. g., [11]) and thus use the reduced cross section

dσR =
[

G2
M(Q2) +

ε

τ
G2

E(Q2)
]

(1 + δN + δ∆) . (1)

Here the Born contribution is written in terms of the electric and magnetic form factors of
the proton, GE(Q2) and GM(Q2), which are functions of the momentum transfer squared
Q2 ≡ −q2 ≡ 4τM2

N = −(p1 − p3)2. The kinematic variable ε is related to the scattering
angle θ through ε = [1 + 2(1 + τ) tan2(θ/2)]−1, which is equal to the photon polarisation in
the Born approximation.

We denote the Born scattering amplitude as MB and the two-photon exchange ampli-
tudes with the nucleon and ∆ intermediate states as Mγγ

N and Mγγ
∆ , respectively. From the

equation dσ = dσB(1 + δN + δ∆) = |MB + Mγγ
N + Mγγ

∆ |2, where dσB = |MB|
2, we derive

to first order in the electromagnetic coupling e2/(4π) ≈ 1/137:

δN,∆ = 2
Re

(

M†
B Mγγ

N,∆

)

|MB|
2 . (2)

The nucleon part δN of the two-photon exchange was analysed in Ref. [6]. Below we will
evaluate the ∆ two-photon exchange contribution δ∆. The scattering amplitude Mγγ

∆ is
given by the sum of the box and crossed-box loop diagrams depicted in Fig. 1.
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FIG. 1: Two-photon exchange box and crossed-box graphs for electron-proton scattering with a ∆

intermediate state, calculated in the present letter.

We use the γN∆ vertex of the following form [12]:

Γνα
γ∆→N(p, q) ≡ iV να

∆in(p, q) = i
eF∆(q2)

2M2
∆

{

g1 [ gναp/q/ − pνγαq/ − γνγαp · q + γνp/qα ]

+g2 [ pνqα − gναp · q ] + (g3/M∆) [ q2(pνγα − gναp/) + qν(qαp/ − γαp · q) ]
}

γ5 T3 , (3)

where M∆ ≈ 1.232 GeV is the ∆ mass, pα and qν are the four-momenta of the incoming ∆
and photon, respectively, and g1, g2 and g3 are the coupling constants.1 An analysis of Eq. (3)
in the ∆ rest frame suggests that g1, g2 − g1 and g3 may be interpreted as magnetic, electric
and Coulomb components, respectively, of the γN∆ vertex. The form factor in Eq. (3)
is necessary for ultraviolet regularisation of the loop integrals evaluated below; we use the
simple dipole form

F∆(q2) =
Λ4

∆

(Λ2
∆ − q2)2 , (4)

1 We use the notation and conventions of Ref. [11] throughout.
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where Λ∆ is the cutoff. The form factor entails some model-dependence of our results, which
is unavoidable in any dynamical hadronic calculation. The isospin transition operator T3 is
defined by the relations

∑3
α=1 T †

αTα = 1 and TαT †
β = δαβ − τατβ/3, where τ1,2,3 are the usual

Pauli matrices. The vertex with an outgoing ∆ is given by the Dirac conjugate of Eq. (3),

Γαν
γN→∆(p, q) ≡ iV αν

∆out(p, q) = γ0

[

Γνα
γ∆→N(p, q)

]†
γ0, with pα and qν the four-momenta of

the outgoing ∆ and incoming photon, respectively. The γN∆ vertex is orthogonal to the
four-momenta of both the photon and the ∆:

qνΓ
να
γ∆→N(p, q) = 0, pαΓνα

γ∆→N(p, q) = 0 . (5)

The first of these equations ensures the usual electromagnetic gauge invariance of the cal-
culation while the second allows us to use only the physical spin 3/2 component,

S∆
αβ(p) =

−i

p/ − M∆ + i0
P3/2

αβ (p) , P3/2

αβ (p) = gαβ −
1

3
γαγβ −

1

3p2
(p/γαpβ + pαγβp/) , (6)

of the Rarita-Schwinger propagator [13], the background spin 1/2 component vanishing when
contracted with the adjacent γN∆ vertices [14]. At present we do not include a width in
the ∆ propagator as its influence on the unpolarised cross section should be small.

The loop integrals corresponding to the box and crossed-box diagrams in Fig. 1 can be
written as

Mγγ
∆ = −e4

∫ d4k

(2π)4

N∆
box(k)

D∆
box(k)

− e4

∫ d4k

(2π)4

N∆
x−box(k)

D∆
x−box(k)

, (7)

with the numerators and denominators given by

N∆
box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γµ [p/1 − k/ + me] γνu(p1) , (8)

N∆
x−box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γν [p/3 + k/ + me] γµu(p1) , (9)

D∆
box(k) =

[

k2 + i0
] [

(k − q)2 + i0
] [

(p1 − k)2 − m2
e + i0

] [

(p2 + k)2 − M2
∆ + i0

]

, (10)

D∆
x−box(k) = D∆

box(k)
∣

∣

∣

p1−k→p3+k
, (11)

where U and u denote the proton and electron four-spinor wave functions, respectively.
Compared to the case of the nucleon [6], the presence of a ∆ in the intermediate state entails
a more complicated structure of the numerator. Also the loop integrals with a ∆ are not
infrared divergent, in contrast with the nucleon contribution where the infrared part is very
important [10, 15]. The evaluation of Eq. (7) involves preliminary algebraic manipulations
to effect cancellations between terms in the numerators and denominators and subsequent
integration of the thus simplified expressions. The result is obtained analytically in terms of
the standard Passarino-Veltman dilogarithm functions [16]. In the calculation we used the
computer package “FeynCalc” [17].

The first and second loop integrals in Eq. (7) must be mutually related by crossing sym-
metry, which can be formulated in terms of the numerator of Eq. (2) using the Mandelstam
variables s = (p1 + p2)2, t = (p1 − p3)2 and u = (p2 − p3)2 = 2M2

N + 2m2
e − t − s. Denoting
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a more complicated structure of the numerator. Also the loop integrals with a ∆ are not
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Two-photon exchange amplitude with     intermediate state          Δ

numerators

spin-3/2 projection operator

to divide dσ by the well-known factor describing the scattering from a structureless “proton”
(see, e. g., [11]) and thus use the reduced cross section

dσR =
[

G2
M(Q2) +

ε

τ
G2

E(Q2)
]

(1 + δN + δ∆) . (1)

Here the Born contribution is written in terms of the electric and magnetic form factors of
the proton, GE(Q2) and GM(Q2), which are functions of the momentum transfer squared
Q2 ≡ −q2 ≡ 4τM2

N = −(p1 − p3)2. The kinematic variable ε is related to the scattering
angle θ through ε = [1 + 2(1 + τ) tan2(θ/2)]−1, which is equal to the photon polarisation in
the Born approximation.

We denote the Born scattering amplitude as MB and the two-photon exchange ampli-
tudes with the nucleon and ∆ intermediate states as Mγγ

N and Mγγ
∆ , respectively. From the

equation dσ = dσB(1 + δN + δ∆) = |MB + Mγγ
N + Mγγ

∆ |2, where dσB = |MB|
2, we derive

to first order in the electromagnetic coupling e2/(4π) ≈ 1/137:

δN,∆ = 2
Re

(

M†
B Mγγ

N,∆

)

|MB|
2 . (2)

The nucleon part δN of the two-photon exchange was analysed in Ref. [6]. Below we will
evaluate the ∆ two-photon exchange contribution δ∆. The scattering amplitude Mγγ

∆ is
given by the sum of the box and crossed-box loop diagrams depicted in Fig. 1.

1
p p

3

p
4

p
2

k q!k
!

FIG. 1: Two-photon exchange box and crossed-box graphs for electron-proton scattering with a ∆

intermediate state, calculated in the present letter.

We use the γN∆ vertex of the following form [12]:

Γνα
γ∆→N(p, q) ≡ iV να

∆in(p, q) = i
eF∆(q2)

2M2
∆

{

g1 [ gναp/q/ − pνγαq/ − γνγαp · q + γνp/qα ]

+g2 [ pνqα − gναp · q ] + (g3/M∆) [ q2(pνγα − gναp/) + qν(qαp/ − γαp · q) ]
}

γ5 T3 , (3)

where M∆ ≈ 1.232 GeV is the ∆ mass, pα and qν are the four-momenta of the incoming ∆
and photon, respectively, and g1, g2 and g3 are the coupling constants.1 An analysis of Eq. (3)
in the ∆ rest frame suggests that g1, g2 − g1 and g3 may be interpreted as magnetic, electric
and Coulomb components, respectively, of the γN∆ vertex. The form factor in Eq. (3)
is necessary for ultraviolet regularisation of the loop integrals evaluated below; we use the
simple dipole form

F∆(q2) =
Λ4

∆

(Λ2
∆ − q2)2 , (4)

1 We use the notation and conventions of Ref. [11] throughout.
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coupling dominates the ∆ two-photon exchange correction whereas the electric coupling
has a much smaller effect. Since the contribution of the Coulomb component is strongly
suppressed (not exceeding 0.2%) we will omit it from further discussion, setting gC = 0 in
the rest of the paper.

The ε dependence of the sum of the ∆ and nucleon two-photon exchange corrections is
shown in Fig. 2, for two fixed values of Q2. The dependence on the γN∆ form factor can
be seen by comparing the results obtained with the cutoffs Λ∆ = 0.84 GeV and Λ∆ = 0.68
GeV (the latter choice corresponds to a ∆ which is spatially “bigger” than the nucleon).
The purely nucleon contribution, shown for comparison, was calculated as in Ref. [6] using

-0.02

-0.01

0.0

Q
2
=1 GeV

2

0.0 0.2 0.4 0.6 0.8 1.0

-0.04

-0.02

0.0

Q
2
=3 GeV

2

2 [N + ] =0.84 GeV

2 [N + ] =0.68 GeV

2 [N]

FIG. 2: Sum of the nucleon (N) and ∆ contributions to the two-photon exchange correction to the
electron-proton scattering cross section, using two values of the cutoff Λ∆.

the γNN form factors extracted from the PT experiments [3, 4]. The ∆ correction is more
prominent at higher momentum transfers. The ∆ tends to reduce the effect of the nucleon
two-photon exchange, making the modulus of the negative nucleon correction somewhat
smaller at backward angles (i. e. at low ε). The combined effect of the nucleon and ∆ two-
photon exchanges produces a negative correction to the cross section at small ε, decreasing
in magnitude as ε increases.2 The main features of the ∆ contribution – its smallness and its
tendency to attenuate the nucleon contribution at backward angles – are insensitive to the
γN∆ form factor, being to that extent model-independent. The detailed interplay between

2 The diminishing of the two-photon exchange correction at forward angles is consistent with the analysis

of electron-proton and positron-proton scattering data [19].
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has opposite slope to NΔ

cancels some of  TPE correction from N

Kondratyuk, Blunden, WM, Tjon
PRL 95 (2005) 172503
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Higher-mass intermediate states have also been calculated

more model dependent, since couplings & form factors 
not well known (especially at high     )Q2

partially cancels N contribution∆

dominant contribution from N 

Kondratyuk, Blunden, WM, Tjon
PRL 95 (2005) 172503



higher mass resonance contributions small

much better fit to data including TPE
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Born

FIG. 1: Effect of adding the two-photon exchange correction to the Born cross section, the
latter evaluated with the nucleon form factors from the polarization transfer experiment [1]. The

intermediate state includes a nucleon and indicated hadron resonances. We show the reduced cross
section divided by the square of the standard dipole form factor G2

D(Q2) = 1/(1+Q2/(0.84GeV)2)4.
The data points at three fixed momentum transfers are taken from Refs. [2, 3].
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Global analysis



reanalyze all elastic ep data (Rosenbluth, PT), including TPE 
corrections consistently from the beginning

use explicit calculation of N elastic contribution

Global analysis

approximate higher mass contributions by 
phenomenological form, based on N* calculations:

for                     , with             uncertainty Q2 > 1 GeV2 ±100%

decreases    = 0  cross section by 1% (2%)
 at  

ε
Q2 = 2.2 (4.8) GeV2

δ(2γ)
high mass = −0.01 (1− ε) log Q2/ log 2.2



LT separation

polarization
transfer

with TPE correction

resolves discrepancy
(within errors)

Arrington, WM, Tjon
PRC 76 (2007) 035205



σR = P0

[
1 + P1 (ε− 1

2
) + P2 (ε− 1

2
)2

]

unique feature of TPE correction to cross section

observation of non-linearity in    would provide direct
evidence of TPE in elastic scattering

ε

fit reduced cross section as:

current data give average non-linearity parameter:

〈P2〉 = 4.3± 2.8%

Hall C experiment E-05-017 will provide accurate
measurement of    dependenceε

Non-linearity in ε



1γ (   ) exchange changes sign (invariant) under e+↔ e−2γ

ratio of                 elastic cross sections sensitive to             :         e+p / e−p Δ(ε,Q2)
σe+p/σe−p ≈ 1− 2∆

TPE calculation

data at various    ε

 comparisone+/e−



1γ (   ) exchange changes sign (invariant) under e+↔ e−2γ

ratio of                 elastic cross sections sensitive to             :         e+p / e−p Δ(ε,Q2)
σe+p/σe−p ≈ 1− 2∆

e−p/e+psimultaneous                measurement using tertiary             
beam to Q   ~ 1-2 GeV    (Hall B  expt. E-04-116)2 2

e+/e−

TPE calculation

data at various    ε

 comparisone+/e−
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we fit the reduced cross section to a quadratic in ε, as in
Ref. [47]:

σR = P0[1 + P1(ε − 0.5) + P2(ε − 0.5)2] , (12)

where P2 represents the fractional ε-curvature parame-
ter, relative to the average (ε = 0.5) reduced cross sec-
tion. With the inclusion of TPE corrections, the average
nonlinearity parameter, 〈P2〉, is found to increase from
1.9 ± 2.7% to 4.3 ± 2.8%. While the extracted nonlin-
earity increases with the TPE corrections, it is not large
enough to be considered inconsistent with P2 = 0. In
addition, the results from Ref. [47] are dominated by
higher Q2 points, where we do not include nonlinearities
in the TPE contributions from higher mass intermediate
states. Including the single-experiment LT separations
from the new low Q2 data sets used in this analysis, we
find 〈P2〉 = 2.8 ± 2.4% (after TPE), still generally con-
sistent with no nonlinearities.

C. Extraction of GE and GM from global analysis

In this section we extract individual GE and GM points
and uncertainties over the full Q2 range where the form
factors can be separated. The analysis follows that of
the corrected cross section data in the previous section,
but now we include the PT measurements in each Q2 bin
as part of the fit. The results for Q2 < 6 GeV2, where
GE and GM can be separated, are given in Table II, and
shown in Fig. 3.

For the combined fit, we fit GE and GM to the com-
bination of cross section and polarization transfer data
in each small Q2 bin. For the cross sections, we use the
TPE-corrected cross section measurements, and normal-
ize each data set using the scale factors found in the
global fit (Sec. III A). After making the initial fit for GE

and GM , we scale each data set by the estimated nor-
malization uncertainty (as in Sec. III B) to find its con-
tribution to the systematic uncertainty, and add these
in quadrature to determine the total uncertainty in GE ,
GM and the ratio due to the normalization uncertainties.

In addition to improving the overall precision, combin-
ing the cross section and PT results has the added benefit
of decreasing the correlation in the uncertainties in GE

and GM . The Rosenbluth separation tends to yield a
large anti-correlation between the uncertainties for GE

and GM , and thus an enhanced uncertainty on the ratio.
The PT data measure the ratio directly, thus dramati-
cally reducing this correlation. Therefore, in Tab. II, we
provide values and uncertainties for both the individual
form factors and the form factor ratio.

D. Extraction of GM at high Q2

In the extraction of GM for Q2 > 6 GeV2, the value
of GE is not known, so that an additional assumption

FIG. 3: (Color Online) Extracted values of GE and GM from
the global analyses. The open circles are the results of the
combined analysis of the cross section data and polarization
measurements (Sec. IIIC, Tab. II). The magenta crosses are
the extracted values of GM (Tab. III) for the high Q2 re-
gion, where GE cannot be extracted. The solid lines are
the fits to TPE-corrected cross section and polarization data
(Sec. III A). The dotted curves show the results of taking
GE and GM to be

√
σL and

√
σT , respectively, from a fit to

the TPE-uncorrected reduced cross section (Appendix A), i.e.
the value one would obtain using only cross section data and
ignoring TPE.

is required in order to extract GM . We extract GM

under two different assumptions for the ratio GE/GM .
First, we assume that the GE term is negligible above
6 GeV2, which would be the case if GE approached zero
and then stayed small. Second, we assume a linear fall-
off, µpGE/GM = 1−0.135 (Q2−0.24), from Ref. [8]. Up
to Q2 ≈ 14 GeV2 this yields a smaller contribution from
GE than in previous analyses, where it was assumed that
µpGE/GM = 1.

At higher Q2, the linear fit yields |µpGE/GM | > 1, and
thus a larger GE contribution, almost 10 times what was
assumed in the inital analysis of the Sill, et al. data [70]
at Q2 = 30 GeV2. This yields a significant change in the
Q2 dependence of the reduced cross section. Instead of

final form factor results
from global analysis
including TPE corrections

Arrington, WM, Tjon
PRC 76 (2007) 035205

{
GE ,

GM

µp

}
=

1 +
∑n

i=1 aiτ i

1 +
∑n+2

i=1 biτ i

LT data



Charge density

25% less charge in the
center of the proton



Strange quarks
in the nucleon



How strange is the proton?

Proton and neutron electromagnetic form factors give two 
combinations of 3 unknowns:

need third observable to extract G
s
E,M

parity-violating e scattering (interference of     and      exchange)γ Z
0

G
n
E,M =

2

3
G

d
E,M −

1

3
G

u
E,M −

1

3
G

s
E,M

G
p
E,M =

2

3
G

u
E,M −

1

3
G

d
E,M −

1

3
G

s
E,M

Suggestions for major role of strange quarks in the nucleon
nucleon “sigma”-term (~100 MeV contribution to N mass?)
proton “spin crisis” (s quarks carry large fraction of p spin) 

how large is contribution to N magnetic moment?



Parity-violating e scattering

measure interference between e.m. and weak currents

Left-right polarization asymmetry in                  scattering!e p → e p

X

Born (tree) level

APV =
σL − σR

σL + σR
= −

(
GF Q2

4
√

2πα

)
(AV + AA + As)



Parity-violating e scattering

measure interference between e.m. and weak currents

Left-right polarization asymmetry in                  scattering!e p → e p

using relations between weak and e.m. form factors

GZp
E,M = (1− 4 sin2 θW )Gγp

E,M −Gγn
E,M −Gs

E,M

AV = ge
Aρ

[
(1− 4κ sin2 θW )− (εGγp

E Gγn
E + τGγp

M Gγn
M )/σγp

]

APV =
σL − σR

σL + σR
= −

(
GF Q2

4
√

2πα

)
(AV + AA + As)



Parity-violating e scattering

measure interference between e.m. and weak currents

Left-right polarization asymmetry in                  scattering!e p → e p

using relations between weak and e.m. form factors

GZp
E,M = (1− 4 sin2 θW )Gγp

E,M −Gγn
E,M −Gs

E,M

AV = ge
Aρ

[
(1− 4κ sin2 θW )− (εGγp

E Gγn
E + τGγp

M Gγn
M )/σγp

]

radiative corrections,
including TBE

+1
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σL − σR

σL + σR
= −

(
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4
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2πα
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(AV + AA + As)



Parity-violating e scattering

measure interference between e.m. and weak currents

Left-right polarization asymmetry in                  scattering!e p → e p

AA = ge
V

√
τ(1 + τ)(1− ε2) G̃Zp

A Gγp
M /σγp

As = −ge
Aρ (εGγp

E Gs
E + τGγp

M Gs
M ) /σγp

strange electric &
magnetic form factors

includes axial RCs−1 + 4 sin2 θW

APV =
σL − σR

σL + σR
= −

(
GF Q2

4
√

2πα

)
(AV + AA + As)
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Extracted strange form factors

dependence of 
“zero-point” on
e.m. form factors

Armstrong et al., 
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timated from the range of elastic asymmetries generated
from a variety of different background yield and asymme-
try models. These models are bounded by the measured
slopes of background yields and asymmetries on either
side of the elastic peak and varied continuously between
these limits. The uncertainty in the background asym-
metry for detector 15 is conservatively taken to be the
difference between interpolated background asymmetries
in successive detectors as described above. We have also
estimated the global and point-to-point contributions to
these uncertainties from the extent to which a change in,
e.g., the background asymmetry functional form, consis-
tently changes the asymmetries in all the affected detec-
tors.

The results of the experiment are shown as a function
of momentum transfer in Fig. 2. The quantity

Gs
E + ηGs

M =
4
√

2πα

GF Q2

D
εGγ

E

(Aphys − ANV S) , (5)

(where η
(

Q2
)

= τGp
M/εGp

E) is determined from the dif-
ference between the experimental asymmetry and the
“no-vector-strange” asymmetry, ANV S . ANV S is calcu-
lated from Eqn. 3 with Gs

E = Gs
M = 0 for all values of Q2,

and using the electromagnetic form factors of Kelly [15].
Also shown is the excellent agreement with the HAPPEX
measurements [16, 17] made at nearly the same kinematic
points (with small corrections to the asymmetries, < 0.2
ppm, to adjust them to the G0 beam energy). The error
bars include the statistical uncertainty (inner) and statis-
tical plus point-to-point systematic uncertainties added
in quadrature (outer). The error bands represent, for the
G0 experiment, the global systematic uncertainties: from
the measurement (upper) and from the uncertainties in
the quantities entering ANV S (lower). These quantities
are: the calculated value of the axial-vector form factor
normalization [18] (differing from gA/gV by electroweak
radiative corrections), the same dipole momentum trans-
fer dependence for Ge

A(Q2) as is deduced for GA(Q2) [19],
the axial vector strangeness contribution ∆s [20], and
the electroweak radiative corrections [21]. The sensitiv-
ity of the result to electromagnetic form factors is shown
separately by the lines on the plot. For the alternative
form factor parameterizations of Friedrich and Walcher
(FW) [22] (dashed) and the combination (dotted): Ar-
rington “Rosenbluth” [23] - proton, and Kelly [15] - neu-
tron, the effective ANV S is shown (e.g., for the FW pa-
rameterization, the value of Gs

E + ηGs
M at Q2 = 0.63

GeV2 increases from 0.059 to 0.072). Alternately, the
uncertainties in the Kelly form factor fits would increase
the width of the uncertainty band (lower) for ANV S at
each Q2 by about 25% if included there.

The Gs
E + ηGs

M data shown in Fig. 2 have a system-
atic and intriguing Q2 dependence. For reference we note
that Gs

E + ηGs
M = 0 at Q2 = 0 and that η ∼ 0.94Q2

(Kelly form factors) for our kinematics. First, to charac-

FIG. 2: The combination Gs
E + ηGs

M for the present mea-
surement. The gray bands indicate systematic uncertainties
(to be added in quadrature); the lines correspond to different
electromagnetic nucleon form factor models (see text).

terize our result with a single number, we tested the hy-
pothesis Gs

E + ηGs
M = 0 by generating randomized data

sets with this constraint, distributed according to our
statistical and systematic uncertainties (including corre-
lated uncertainties). The fraction of these with χ2 larger
than that of our data set was 11%, so we conclude that
the non-strange hypothesis is disfavored with 89% con-
fidence. More important is the Q2 dependence of the
data. The initial rise from zero to about 0.05 is consis-
tent with the finding that Gs

M (Q2 = 0.1 GeV2) ∼ +0.5
from the SAMPLE [24], PVA4 [25] and HAPPEX [17]
measurements. Because η increases linearly throughout,
the apparent decline of the data in the intermediate re-
gion up to Q2 ∼ 0.3 indicates that Gs

E may be negative

in this range. There is also some support for this conclu-
sion from the combination of G0 and PVA4 [26] results
at Q2 = 0.23 GeV2. There is a significant trend, consis-
tent with HAPPEX [16], to positive values of Gs

E + ηGs
M

at higher Q2. Experiments planned for Jefferson Lab,
including G0 measurements at backward angles, and
MAMI (Mainz) will provide precise separations of Gs

E

and Gs
M over a range of Q2 to address this situation.

In summary, we have measured forward angle parity-
violating asymmetries in elastic electron-proton scatter-
ing over a range of momentum transfers from 0.12 to 1.0
GeV2. These asymmetries determine the neutral weak
interaction analogs of the ordinary charge and magneti-
zation form factors of the proton. From the asymmetries
we have determined combinations of the strange quark
contributions to these form factors, Gs

E + ηGs
M , which,

together with other experiments, indicate that both Gs
M

and Gs
E are non-zero.

We gratefully acknowledge the strong technical contri-
butions to this experiment from many groups: Caltech,
Illinois, LPSC-Grenoble, IPN-Orsay, TRIUMF and par-
ticularly the Accelerator and Hall C groups at Jefferson
Lab. This work is supported in part by CNRS (France),

η = τGM/εGE

∼ 0.94 Q2
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terize our result with a single number, we tested the hy-
pothesis Gs

E + ηGs
M = 0 by generating randomized data

sets with this constraint, distributed according to our
statistical and systematic uncertainties (including corre-
lated uncertainties). The fraction of these with χ2 larger
than that of our data set was 11%, so we conclude that
the non-strange hypothesis is disfavored with 89% con-
fidence. More important is the Q2 dependence of the
data. The initial rise from zero to about 0.05 is consis-
tent with the finding that Gs

M (Q2 = 0.1 GeV2) ∼ +0.5
from the SAMPLE [24], PVA4 [25] and HAPPEX [17]
measurements. Because η increases linearly throughout,
the apparent decline of the data in the intermediate re-
gion up to Q2 ∼ 0.3 indicates that Gs

E may be negative

in this range. There is also some support for this conclu-
sion from the combination of G0 and PVA4 [26] results
at Q2 = 0.23 GeV2. There is a significant trend, consis-
tent with HAPPEX [16], to positive values of Gs
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at higher Q2. Experiments planned for Jefferson Lab,
including G0 measurements at backward angles, and
MAMI (Mainz) will provide precise separations of Gs

E

and Gs
M over a range of Q2 to address this situation.

In summary, we have measured forward angle parity-
violating asymmetries in elastic electron-proton scatter-
ing over a range of momentum transfers from 0.12 to 1.0
GeV2. These asymmetries determine the neutral weak
interaction analogs of the ordinary charge and magneti-
zation form factors of the proton. From the asymmetries
we have determined combinations of the strange quark
contributions to these form factors, Gs

E + ηGs
M , which,

together with other experiments, indicate that both Gs
M

and Gs
E are non-zero.

We gratefully acknowledge the strong technical contri-
butions to this experiment from many groups: Caltech,
Illinois, LPSC-Grenoble, IPN-Orsay, TRIUMF and par-
ticularly the Accelerator and Hall C groups at Jefferson
Lab. This work is supported in part by CNRS (France),
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trend to positive values at larger Q2
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global analysis of all PVES data at Q2 < 0.3 GeV2

Young et al., PRL 97 (2006) 102002

Gs
M = −0.011± 0.254

Gs
E = 0.0025± 0.0182

at Q2 = 0.1 GeV2

Parity-violating e scattering

lattice QCD +
phenomenology

Leinweber et al.,
PRL 94 (2005) 212001

very small!



Two-boson exchange
corrections



do not include hadron structure effects
(parameterized via ZNN form factors)  

Two-boson exchange corrections

current PDG estimates computed at           Q2 = 0
Marciano, Sirlin (1980)

X

X

Erler, Ramsey-Musolf (2003)



some cancellation between           and          corrections in γ(γγ)Z(γγ) ∆ρ

Z(γγ)

γ(γγ)

γ(Zγ)

total

Tjon, WM, PRL 100 (2008) 082003

Including TBE corrections,

ρ = ρ0 + ∆ρ , κ = κ0 + ∆κ

standard RCs Born-TBE interference

effect driven by γ(Zγ)



Tjon, WM, PRL 100 (2008) 082003

strong      dependence at low Q2 Q2

2-3% correction at      < 0.1 GeVQ2 2

Two-boson exchange corrections



Effects on strange form factors
global analysis of PVES data for Q2 < 0.3 GeV2

Young et al., PRL 97 (2006) 102002 

including TBE corrections:

Gs
E = 0.0023± 0.0182

Gs
M = −0.020± 0.254

at Q2 = 0.1 GeV2

Gs
M = −0.011± 0.254

Gs
E = 0.0025± 0.0182

at Q2 = 0.1 GeV2

qualitative result
does not change



Effects on strange form factors
even more recent data, from HAPPEX experiment at JLab
(H and  He targets) 

Acha et al., PRL 98 (2007) 032301

4

Gs
E = −0.005± 0.019

Gs
M = −0.18± 0.27 from HAPPEX experiment

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000098000003032301000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000098000003032301000001&idtype=cvips&gifs=yes


Effects on strange form factors

combining new HAPPEX results with global data

Young et al., PRL 99 (2008) 122003

constrained
by data only

Gs
E = 0.002± 0.018

Gs
M = −0.01± 0.25



Effects on strange form factors

combining new HAPPEX results with global data

Young et al., PRL 99 (2008) 122003

A

includes theoretical
prediction for G

Gs
E = −0.011± 0.016

Gs
M = 0.22± 0.20

constrained
by data only

Gs
E = 0.002± 0.018

Gs
M = −0.01± 0.25



Effects on strange form factors

combining new HAPPEX results with global data

Young et al., PRL 99 (2008) 122003

A

includes theoretical
prediction for G

Gs
E = −0.011± 0.016

Gs
M = 0.22± 0.20

constrained
by data only

Gs
E = 0.002± 0.018

Gs
M = −0.01± 0.25

strangeness content of nucleon very small

electromagnetic structure is valence quark dominated
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Constraints on “new physics”

expand asymmetry in powers of Q  at low Q22

Ap
PV = A0

(
Qp

wQ2 + B4Q
4 + · · ·

)

hadron structure
dependent

−GF /4
√

2πα A
p P
V
/(

A
0
Q

2
)

proton weak charge

= 1− 4 sin2 θW

= −2 (2C1u + C1d)

Qp
W = GZp

E (0)

C1u = ge
A gu

V = −1
2

+
4
3

sin2 θW

C1d = ge
A gd

V = +
1
2
− 2

3
sin2 θW

Leq
PV = −GF√

2
ēγµγ5e

∑

q

C1q q̄γµq

PV eq effective interaction



Constraints on “new physics”

without PVES
(mostly Atomic
Parity Violation)
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(mostly Atomic
Parity Violation)

including PVES -
factor 5 reduction



Constraints on “new physics”

without PVES
(mostly Atomic
Parity Violation)

including PVES -
factor 5 reduction

“Q-weak” experiment
at 12 GeV JLab



Constraints on “new physics”

previous limit
> 0.4 TeV

new physics (e.g. heavy Z’ boson) expressed through
effective contact interaction

including PVES

 > 0.9 TeV

Leq
new =

g2

Λ2
ēγµγ5e

∑

q

hq
V q̄γµq

tan−1(hd
V /hu
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Constraints on “new physics”

previous limit
> 0.4 TeV

new physics (e.g. heavy Z’ boson) expressed through
effective contact interaction

including PVES

 > 0.9 TeV

Leq
new =

g2

Λ2
ēγµγ5e

∑

q

hq
V q̄γµq

tan−1(hd
V /hu

V )

future JLab
 > 2 TeV 

(assuming agree
with SM)

constraints complementary to LHC potential



Summary
TPE corrections resolve most of Rosenbluth / PT     
             discrepancyGp

E/Gp
M

Reanalysis of global data, including TPE from the outset

Precise measurement of strange form factor

first consistent form factor fit at order α
3

excited state contributions                                  
small relative to nucleon

(∆, P11(1440), S11(1535), ...)

“25% less charge” in the center of the proton

photon-Z exchange gives ~2% corrections

very small (consistent with zero!)

constrains “new physics” to above ~ 1 TeV



The End



Research opportunities at JLab

Contact  wmelnitc@jlab.org  for more information

Ph. D. studies 

through nearby universities (William & Mary, Old Dominion, etc.)

“sandwich” doctorate from Brazil (~ 1 year at JLab)

annual 3 week school at JLab for graduate students

HUGS (Hampton University Graduate Studies) summer* school

Undergraduate summer* internships

~ 3 months research experience at JLab (June-August)

* northern summer

www.jlab.org

mailto:wmelnitc@jlab.org
mailto:wmelnitc@jlab.org
http://www.jlab.org
http://www.jlab.org
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