Outline

Lecture 3

- Elastic ep scattering
- Two-photon exchange
\rightarrow Rosenbluth separation vs. polarization transfer
- Global analysis of form factors
- Parity-violating electron scattering
\rightarrow strangeness in the proton
\rightarrow constraints on "new" physics

Elastic scattering

Elastic $e N$ scattering

Elastic cross section

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\sigma_{\mathrm{Mott}} \frac{\tau}{\varepsilon(1+\tau)} \sigma_{R} \\
\tau & =Q^{2} / 4 M^{2} \\
\varepsilon & =\left(1+2(1+\tau) \tan ^{2}(\theta / 2)\right)^{-1}
\end{aligned}
$$

$$
\sigma_{\mathrm{Mott}}=\frac{\alpha^{2} E^{\prime} \cos ^{2} \frac{\theta}{2}}{4 E^{3} \sin ^{4} \frac{\theta}{2}} \longleftarrow \begin{aligned}
& \text { cross section for scattering } \\
& \text { from point particle }
\end{aligned}
$$

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right) \longleftarrow \text { reduced cross section }
$$

$$
G_{E}, G_{M} \longleftarrow \text { Sachs electric and magnetic form factors }
$$

Elastic $e N$ scattering

In Breit frame

$$
\nu=0, \quad Q^{2}=\vec{q}^{2}
$$

electromagnetic current is

$$
\bar{u}\left(p^{\prime}, s^{\prime}\right) \Gamma^{\mu} u(p, s)=\chi_{s^{\prime}}^{\dagger}\left(G_{E}+\frac{i \vec{\sigma} \times \vec{q}}{2 M} G_{M}\right) \chi_{s}
$$

$c f$.classical (Non-Relativistic) current density

$$
J^{\mathrm{NR}}=\left(e \rho_{E}^{\mathrm{NR}}, \mu \vec{\sigma} \times \vec{\nabla} \rho_{M}^{\mathrm{NR}}\right)
$$

$\Rightarrow \quad \rho_{E}^{\mathrm{NR}}(r)=\frac{2}{\pi} \int_{0}^{\infty} d q \vec{q}^{2} j_{0}(q r) G_{E}\left(\vec{q}^{2}\right) \longleftarrow$ charge density

$$
\mu \rho_{M}^{\mathrm{NR}}(r)=\frac{2}{\pi} \int_{0}^{\infty} d q \vec{q}^{2} j_{0}(q r) G_{M}\left(\vec{q}^{2}\right) \longleftarrow \text { magnetization density }
$$

proton
neutron

Proton densities

Kelly, PRC 66 (2002) 065203

Neutron densities

Kelly, PRC 66 (2002) 065203

Neutron densities

Proton G_{E} / G_{M} Ratio

LT method

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)
$$

$\rightarrow G_{E}$ from slope in ε plot
\rightarrow suppressed at large Q^{2}

Proton G_{E} / G_{M} Ratio

Proton G_{E} / G_{M} Ratio

LT method

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)
$$

$\rightarrow G_{E}$ from slope in ε plot
\rightarrow suppressed at large Q^{2}

PT method

$$
\frac{G_{E}}{G_{M}}=-\sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon}} \frac{P_{T}}{P_{L}}
$$

$\rightarrow P_{T, L}$ recoil proton polarization in $\vec{e} p \rightarrow e \vec{p}$

Proton G_{E} / G_{M} Ratio

LT method

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)
$$

PT method

$$
\frac{G_{E}}{G_{M}}=-\sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon}} \frac{P_{T}}{P_{L}}
$$

Are the G_{E}^{p} / G_{M}^{p} data consistent?

Two-photon exchange

QED Radiative Corrections

\square cross section modified by 1γ loop effects

QED Radiative Corrections

- cross section modified by 1γ loop effects

QED Radiative Corrections

- cross section modified by 1γ loop effects

Two-photon exchange

■ interference between Born and two-photon exchange amplitudes

\mathcal{M}_{0}

- contribution to cross section:

$$
\delta^{(2 \gamma)}=\frac{2 \mathcal{R} e\left\{\mathcal{M}_{0}^{\dagger} \mathcal{M}_{\gamma \gamma}\right\}}{\left|\mathcal{M}_{0}\right|^{2}}
$$

- standard "soft photon approximation" (used in most data analyses)
\longrightarrow approximate integrand in $\mathcal{M}_{\gamma \gamma}$ by values at γ^{*} poles
\longrightarrow neglect nucleon structure (no form factors)

Two-photon exchange

where

$$
\begin{aligned}
& N(k)=\bar{u}\left(p_{3}\right) \gamma_{\mu}\left(\not p_{1}-\not ૂ+m_{e}\right) \gamma_{\nu} u\left(p_{1}\right) \\
& \quad \times \bar{u}\left(p_{4}\right) \Gamma^{\mu}(q-k)\left(\not p_{2}+\not k+M\right) \Gamma^{\nu}(k) u\left(p_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
D(k) & =\left(k^{2}-\lambda^{2}\right)\left((k-q)^{2}-\lambda^{2}\right) \\
& \times\left(\left(p_{1}-k\right)^{2}-m^{2}\right)\left(\left(p_{2}+k\right)^{2}-M^{2}\right)
\end{aligned}
$$

with λ an IR regulator, and e.m. current is

$$
\Gamma^{\mu}(q)=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}\left(q^{2}\right)
$$

- Mo-Tsai: soft γ approximation
\longrightarrow integrand most singular when $k=0$ and $k=q$
\longrightarrow replace γ propagator which is not at pole by $1 / q^{2}$
\longrightarrow approximate numerator $N(k) \approx N(0)$
\longrightarrow neglect all structure effects
- Maximon-Tjon: improved loop calculation
\longrightarrow exact treatment of propagators
\longrightarrow still evaluate $N(k)$ at $k=0$
\longrightarrow first study of form factor effects
\longrightarrow additional ε dependence
- Blunden-WM-Tjon: exact Ioop calculation
\longrightarrow no approximation in $N(k)$ or $D(k)$
\longrightarrow include form factors

Two-photon exchange

- "exact" calculation of loop diagram (including $\gamma^{*} N N$ form factors)

\Rightarrow few \% magnitude
\Rightarrow positive slope
\Rightarrow non-linearity in ε

Two-photon exchange

- "exact" calculation of loop diagram (including $\gamma^{*} N N$ form factors)

\Rightarrow results essentially independent of form factor input

Effect on cross section

............ Born cross section with PT form factors
—— including TPE effects

* Super-Rosenbluth

Qattan et al.,
PRL 94 (2005) 142301

Electric / magnetic ratio

- estimate effect of TPE on ε dependence
- approximate correction by linear function of ε

$$
1+\Delta \approx a+b \varepsilon
$$

Electric / magnetic ratio

- estimate effect of TPE on ε dependence
- approximate correction by linear function of ε

$$
1+\Delta \approx a+b \varepsilon
$$

\Rightarrow reduced cross section is then

$$
\sigma_{R} \approx a G_{M}^{2}\left[1+\frac{\varepsilon}{\mu^{2} \tau}\left(R^{2}(1+\varepsilon b / a)+\mu^{2} \tau b / a\right)\right]
$$

where "true" ratio is

Electric / magnetic ratio

Electric / magnetic ratio

\Rightarrow resolves much of the form factor discrepancy

Electric / magnetic ratio

- how does TPE affect polarization transfer ratio?
$\Rightarrow \widetilde{R}=R\left(\frac{1+\Delta_{T}}{1+\Delta_{L}}\right)$
where $\Delta_{L, T}=\delta_{L, T}^{\text {full }}-\delta_{\mathrm{IR}}^{\mathrm{Mo}-\mathrm{Tsai}}$ is finite part of 2γ contribution relative to IR part of Mo-Tsai
- experimentally measure ratio of polarized to unpolarized cross sections

$$
\Longrightarrow \frac{P_{L, T}^{1 \gamma+2 \gamma}}{P_{L, T}^{1 \gamma}}=\frac{1+\Delta_{L, T}}{1+\Delta}
$$

Electric / magnetic ratio

* Note scales!

Electric / magnetic ratio

\Rightarrow large Q^{2} data typically at large ε
$\Rightarrow \quad<3 \%$ suppression at large Q^{2}

Excited intermediate states

What about higher-mass intermediate states?

- Lowest mass excitation is $P_{33} \Delta(1232)$ resonance
\Rightarrow relativistic $\gamma^{*} N \Delta$ vertex form factor $\frac{\Lambda_{\Delta}^{4}}{\left(\Lambda_{\Delta}^{2}-q^{2}\right)^{2}}$

$$
\begin{aligned}
& \Gamma_{\gamma \Delta \rightarrow N}^{\nu \alpha}(p, q) \equiv i V_{\Delta i n}^{\nu \alpha}(p, q)=i \frac{e F_{\Delta}\left(q^{2}\right)}{2 M_{\Delta}^{2}}\left\{g_{1}\left[g^{\nu \alpha} \not p q-p^{\nu} \gamma^{\alpha} \phi q-\gamma^{\nu} \gamma^{\alpha} p \cdot q+\gamma^{\nu} \not p q^{\alpha}\right]\right. \\
& \left.\quad+g_{2}\left[p^{\nu} q^{\alpha}-g^{\nu \alpha} p \cdot q\right]+\left(g_{3} / M_{\Delta}\right)\left[q^{2}\left(p^{\nu} \gamma^{\alpha}-g^{\nu \alpha} \not p\right)+q^{\nu}\left(q^{\alpha} \not p-\gamma^{\alpha} p \cdot q\right)\right]\right\} \gamma_{5} T_{3}
\end{aligned}
$$

\Rightarrow coupling constants

$$
\begin{aligned}
g_{1} \text { magnetic } & \Rightarrow 7 \\
g_{2}-g_{1} \text { electric } & \Rightarrow 9 \\
g_{3} & \text { Coulomb }
\end{aligned} \Rightarrow-2 \ldots 0^{\Rightarrow} \ldots
$$

- Two-photon exchange amplitude with Δ intermediate state

numerators

$$
\begin{aligned}
N_{b o x}^{\Delta}(k) & =\bar{U}\left(p_{4}\right) V_{\Delta i n}^{\mu \alpha}\left(p_{2}+k, q-k\right)\left[\not p p_{2}+\not \nmid+M_{\Delta}\right] \mathcal{P}_{\alpha \beta}^{3 / 2}\left(p_{2}+k\right) V_{\Delta o u t}^{\beta \nu}\left(p_{2}+k, k\right) U\left(p_{2}\right) \\
& \times \bar{u}\left(p_{3}\right) \gamma_{\mu}\left[\not p p_{1}-\not \nmid+m_{e}\right] \gamma_{\nu} u\left(p_{1}\right) \\
N_{x-b o x}^{\Delta}(k) & =\bar{U}\left(p_{4}\right) V_{\Delta i n}^{\mu \alpha}\left(p_{2}+k, q-k\right)\left[\not p_{2}+\not \nmid+M_{\Delta}\right] \mathcal{P}_{\alpha \beta}^{3 / 2}\left(p_{2}+k\right) V_{\Delta o u t}^{\beta \nu}\left(p_{2}+k, k\right) U\left(p_{2}\right) \\
& \times \bar{u}\left(p_{3}\right) \gamma_{\nu}\left[\not p p_{3}+\not \nmid+m_{e}\right] \gamma_{\mu} u\left(p_{1}\right)
\end{aligned}
$$

spin-3/2 projection operator

$$
\mathcal{P}_{\alpha \beta}^{3 / 2}(p)=g_{\alpha \beta}-\frac{1}{3} \gamma_{\alpha} \gamma_{\beta}-\frac{1}{3 p^{2}}\left(\not p \gamma_{\alpha} p_{\beta}+p_{\alpha} \gamma_{\beta} \not p\right)
$$

Kondratyuk, Blunden, WM, Tjon
PRL 95 (2005) 172503
$\Rightarrow \Delta$ has opposite slope to N
\Rightarrow cancels some of TPE correction from N

- Higher-mass intermediate states have also been calculated
\longrightarrow more model dependent, since couplings \& form factors not well known (especially at high Q^{2})

Kondratyuk, Blunden, WM, Tjon PRL 95 (2005) 172503

Kondratyuk, Blunden PRC 75 (2007) 038201
\longrightarrow dominant contribution from N
$\Rightarrow \Delta$ partially cancels N contribution

- Higher-mass intermediate states have also been calculated

Kondratyuk, Blunden
PRC 75 (2007) 038201
\Rightarrow higher mass resonance contributions small
\Rightarrow much better fit to data including TPE

Global analysis

Global analysis

- reanalyze all elastic $e p$ data (Rosenbluth, PT), including TPE corrections consistently from the beginning
\square use explicit calculation of N elastic contribution
■ approximate higher mass contributions by phenomenological form, based on N^{*} calculations:

$$
\delta_{\text {high mass }}^{(2 \gamma)}=-0.01(1-\varepsilon) \log Q^{2} / \log 2.2
$$

for $Q^{2}>1 \mathrm{GeV}^{2}$, with $\pm 100 \%$ uncertainty
\Rightarrow decreases $\varepsilon=0$ cross section by $1 \%(2 \%)$

$$
\text { at } Q^{2}=2.2(4.8) \mathrm{GeV}^{2}
$$

Non-linearity in ε

- unique feature of TPE correction to cross section
- observation of non-linearity in ε would provide direct evidence of TPE in elastic scattering
- fit reduced cross section as:

$$
\sigma_{R}=P_{0}\left[1+P_{1}\left(\varepsilon-\frac{1}{2}\right)+P_{2}\left(\varepsilon-\frac{1}{2}\right)^{2}\right]
$$

- current data give average non-linearity parameter:

$$
\left\langle P_{2}\right\rangle=4.3 \pm 2.8 \%
$$

- Hall C experiment E-05-017 will provide accurate measurement of ε dependence
- $1 \gamma(2 \gamma)$ exchange changes sign (invariant) under $e^{+} \leftrightarrow e^{-}$
- ratio of $e^{+} p / e^{-} p$ elastic cross sections sensitive to $\Delta\left(\varepsilon, Q^{2}\right)$:

$$
\sigma_{e^{+} p} / \sigma_{e^{-} p} \approx 1-2 \Delta
$$

- $1 \gamma(2 \gamma)$ exchange changes sign (invariant) under $e^{+} \leftrightarrow e^{-}$
- ratio of $e^{+} p / e^{-} p$ elastic cross sections sensitive to $\Delta\left(\varepsilon, Q^{2}\right)$:

$$
\sigma_{e^{+} p} / \sigma_{e^{-} p} \approx 1-2 \Delta
$$

\Longrightarrow simultaneous $e^{-} p / e^{+} p$ measurement using tertiary e^{+} / e^{-} beam to $Q^{2} \sim 1-2 \mathrm{GeV}^{2}$ (Hall B expt. E-04-116)

final form factor results from global analysis

 including TPE corrections$$
\left\{G_{E}, \frac{G_{M}}{\mu_{p}}\right\}=\frac{1+\sum_{i=1}^{n} a_{i} \tau^{i}}{1+\sum_{i=1}^{n+2} b_{i} \tau^{i}}
$$

Parameter	G_{M} / μ_{p}	G_{E}
a_{1}	-1.465	3.439
a_{2}	1.260	-1.602
a_{3}	0.262	0.068
b_{1}	9.627	15.055
b_{2}	0.000	48.061
b_{3}	0.000	99.304
b_{4}	11.179	0.012
b_{5}	13.245	8.650

Arrington, WM, Tjon
PRC 76 (2007) 035205

Charge density

Strange quarks
 in the nucleon

How strange is the proton?

- Suggestions for major role of strange quarks in the nucleon
\rightarrow nucleon "sigma"-term ($\sim 100 \mathrm{MeV}$ contribution to N mass?)
\rightarrow proton "spin crisis" (s quarks carry large fraction of p spin)
\rightarrow how large is contribution to N magnetic moment?
- Proton and neutron electromagnetic form factors give two combinations of 3 unknowns:

$$
\begin{aligned}
& G_{E, M}^{p}=\frac{2}{3} G_{E, M}^{u}-\frac{1}{3} G_{E, M}^{d}-\frac{1}{3} G_{E, M}^{s} \\
& G_{E, M}^{n}=\frac{2}{3} G_{E, M}^{d}-\frac{1}{3} G_{E, M}^{u}-\frac{1}{3} G_{E, M}^{s}
\end{aligned}
$$

\rightarrow need third observable to extract $G_{E, M}^{s}$
\rightarrow parity-violating e scattering (interference of γ and Z^{0} exchange)

Parity-violating e scattering

\square Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents

Born (tree) level

Parity-violating e scattering

\square Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents

$$
A_{V}=g_{A}^{e} \rho\left[\left(1-4 \kappa \sin ^{2} \theta_{W}\right)-\left(\varepsilon G_{E}^{\gamma p} G_{E}^{\gamma n}+\tau G_{M}^{\gamma p} G_{M}^{\gamma n}\right) / \sigma^{\gamma p}\right]
$$

using relations between weak and e.m. form factors

$$
G_{E, M}^{Z p}=\left(1-4 \sin ^{2} \theta_{W}\right) G_{E, M}^{\gamma p}-G_{E, M}^{\gamma n}-G_{E, M}^{s}
$$

Parity-violating e scattering

\square Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents

$$
A_{V}=g_{A}^{e} \rho[\underbrace{\left.\left(1-4 \kappa \sin ^{2} \theta_{W}\right)-\left(\varepsilon G_{E}^{\gamma p} G_{E}^{\gamma n}+\tau G_{M}^{\gamma p} G_{M}^{\gamma n}\right) / \sigma^{\gamma p}\right]}_{\substack{\text { radiative corrections, } \\ \text { including TBE }}}
$$

using relations between weak and e.m. form factors

$$
G_{E, M}^{Z p}=\left(1-4 \sin ^{2} \theta_{W}\right) G_{E, M}^{\gamma p}-G_{E, M}^{\gamma n}-G_{E, M}^{s}
$$

Parity-violating e scattering

\square Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents

$$
\begin{gathered}
A_{A}=g_{V}^{e} \sqrt{\tau(1+\tau)\left(1-\varepsilon^{2}\right)} \widetilde{G}_{A}^{Z p} G_{M}^{\gamma p} / \sigma^{\gamma p} \\
-1+4 \sin ^{2} \theta_{W} \quad \text { includes axial RCs } \\
A_{s}=-g_{A}^{e} \rho\left(\varepsilon G_{E}^{\gamma p} G_{E}^{s}+\tau G_{M}^{\gamma p} G_{M}^{s}\right) / \sigma^{\gamma p} \\
\begin{array}{c}
\text { strange electric \& } \\
\text { magnetic form factors }
\end{array}
\end{gathered}
$$

Parity-violating e scattering

G0 Experiment at Jefferson Lab

Parity-violating e scattering

Extracted strange form factors

Parity-violating e scattering

Extracted strange form factors

\Longrightarrow intriguing Q^{2} dependence!
\Longrightarrow trend to positive values at larger Q^{2}

Parity-violating e scattering

- global analysis of all PVES data at $Q^{2}<0.3 \mathrm{GeV}^{2}$

$$
\begin{aligned}
& G_{E}^{s}=0.0025 \pm 0.0182 \\
& G_{M}^{s}=-0.011 \pm 0.254
\end{aligned}
$$

$$
\text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
$$

Two-boson exchange corrections

Two-boson exchange corrections

- current PDG estimates computed at $Q^{2}=0$

Marciano, Sirlin (1980)
Erler, Ramsey-Musolf (2003)

- do not include hadron structure effects (parameterized via $Z N N$ form factors)
- Including TBE corrections,

$$
\rho=\rho_{0}+\Delta \rho, \quad \kappa=\kappa_{0}+\Delta \kappa
$$

Tjon, WM, PRL 100 (2008) 082003
\longrightarrow some cancellation between $Z(\gamma \gamma)$ and $\gamma(\gamma \gamma)$ corrections in $\Delta \rho$
\longrightarrow effect driven by $\gamma(Z \gamma)$

Two-boson exchange corrections

Tjon, WM, PRL 100 (2008) 082003

- $2-3 \%$ correction at $Q^{2}<0.1 \mathrm{GeV}^{2}$
\square strong Q^{2} dependence at low Q^{2}

Effects on strange form factors

ㅁ global analysis of PVES data for $Q^{2}<0.3 \mathrm{GeV}^{2}$

$$
\begin{array}{r}
G_{E}^{s}=0.0025 \pm 0.0182 \\
G_{M}^{s}=-0.011 \pm 0.254 \\
\quad \text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
\end{array}
$$

Young et al., PRL 97 (2006) 102002

- including TBE corrections:

$$
\begin{aligned}
& G_{E}^{s}=0.0023 \pm 0.0182 \\
& G_{M}^{s}=-0.020 \pm 0.254
\end{aligned}
$$

\Rightarrow qualitative result does not change

$$
\text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
$$

Effects on strange form factors

■ even more recent data, from HAPPEX experiment at JLab (H and ${ }^{4} \mathrm{He}$ targets)

Acha et al., PRL 98 (2007) 032301

$$
\leadsto \quad \begin{aligned}
& G_{E}^{s}=-0.005 \pm 0.019 \\
& G_{M}^{s}=-0.18 \pm 0.27
\end{aligned}
$$

Effects on strange form factors

- combining new HAPPEX results with global data

Effects on strange form factors

- combining new HAPPEX results with global data

Effects on strange form factors

- combining new HAPPEX results with global data

\Longrightarrow strangeness content of nucleon very small
\Rightarrow electromagnetic structure is valence quark dominated

Constraints on "new physics"

Constraints on "new physics"

- expand asymmetry in powers of Q^{2} at low Q^{2}

$$
A_{\mathrm{PV}}^{p}=A_{0}\left(Q_{\mathrm{w}}^{p} Q^{2}+B_{4} Q^{4}+\cdots\right)
$$

Constraints on "new physics"

- expand asymmetry in powers of Q^{2} at low Q^{2}

Constraints on "new physics"

- expand asymmetry in powers of Q^{2} at low Q^{2}

\rightarrow proton weak charge

$$
\begin{aligned}
Q_{\mathrm{W}}^{p} & =G_{E}^{Z p}(0) \\
& =-2\left(2 C_{1 u}+C_{1 d}\right) \\
& =1-4 \sin ^{2} \theta_{W}
\end{aligned}
$$

Constraints on "new physics"

\square expand asymmetry in powers of Q^{2} at low Q^{2}

\rightarrow proton weak charge

$$
\begin{aligned}
Q_{\mathrm{W}}^{p} & =G_{E}^{Z p}(0) \\
& =-2\left(2 C_{1 u}+C_{1 d}\right) \\
& =1-4 \sin ^{2} \theta_{W}
\end{aligned}
$$

PV eq effective interaction

$$
\begin{gathered}
\mathcal{L}_{\mathrm{PV}}^{e q}=-\frac{G_{F}}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_{5} e \sum_{q} C_{1 q} \bar{q} \gamma^{\mu} q \\
C_{1 u}=g_{A}^{e} g_{V}^{u}=-\frac{1}{2}+\frac{4}{3} \sin ^{2} \theta_{W} \\
C_{1 d}=g_{A}^{e} g_{V}^{d}=+\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{W}
\end{gathered}
$$

Constraints on "new physics"

Constraints on "new physics"

Constraints on "new physics"

Constraints on "new physics"

■ new physics (e.g. heavy Z' boson) expressed through effective contact interaction

$$
\mathcal{L}_{\text {new }}^{e q}=\frac{g^{2}}{\Lambda^{2}} \bar{e} \gamma_{\mu} \gamma_{5} e \sum_{q} h_{V}^{q} \bar{q} \gamma^{\mu} q
$$

 including PVES $>0.9 \mathrm{TeV}$

Constraints on "new physics"

\square new physics (e.g. heavy Z' boson) expressed through effective contact interaction

$$
\mathcal{L}_{\text {new }}^{e q}=\frac{g^{2}}{\Lambda^{2}} \bar{e} \gamma_{\mu} \gamma_{5} e \sum_{q} h_{V}^{q} \bar{q} \gamma^{\mu} q
$$

\rightarrow constraints complementary to LHC potential

Summary

■ TPE corrections resolve most of Rosenbluth / PT G_{E}^{p} / G_{M}^{p} discrepancy
\rightarrow excited state contributions ($\left.\Delta, P_{11}(1440), S_{11}(1535), \ldots\right)$ small relative to nucleon

- Reanalysis of global data, including TPE from the outset
\rightarrow first consistent form factor fit at order α^{3}
\rightarrow " 25% less charge" in the center of the proton
- Precise measurement of strange form factor
\rightarrow very small (consistent with zero!)
\rightarrow photon-Z exchange gives $\sim 2 \%$ corrections
\rightarrow constrains "new physics" to above $\sim 1 \mathrm{TeV}$

The End

Research opportunities at JLab

- Ph.D. studies
\rightarrow through nearby universities (William \& Mary, Old Dominion, etc.)
\rightarrow "sandwich" doctorate from Brazil (~ 1 year at JLab)
- Undergraduate summer* internships
$\rightarrow \sim 3$ months research experience at JLab (June-August)
- HUGS (Hampton University Graduate Studies) summer* school \rightarrow annual 3 week school at JLab for graduate students
- Contact wmelnitc@jlab.org for more information
* northern summer

Obrigado!

Obrigado!

Boa sorte!

