Outline

Lecture 2

- Quark-hadron duality
- "Bloom-Gilman" duality in structure functions
- Duality in QCD
- Resonances & local quark-hadron duality
 - → "truncated" moments in QCD
- Duality in the neutron
 - -> extraction of neutron resonance structure from nuclear data

Complementarity between *quark* and *hadron* descriptions of observables

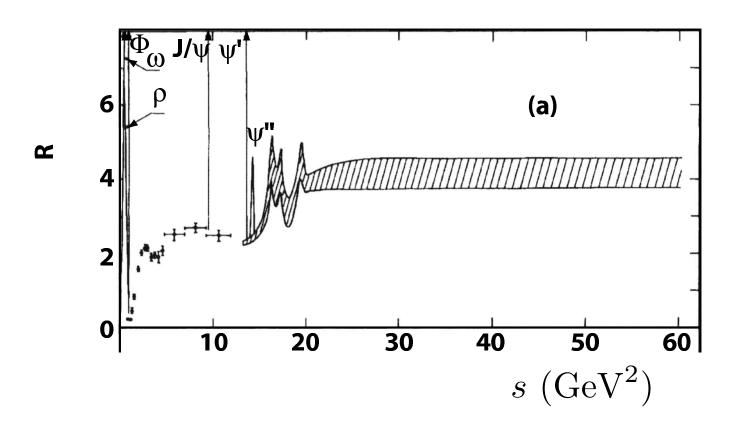
$$\sum_{hadrons} = \sum_{quarks}$$

Can use either set of complete basis states to describe all physical phenomena

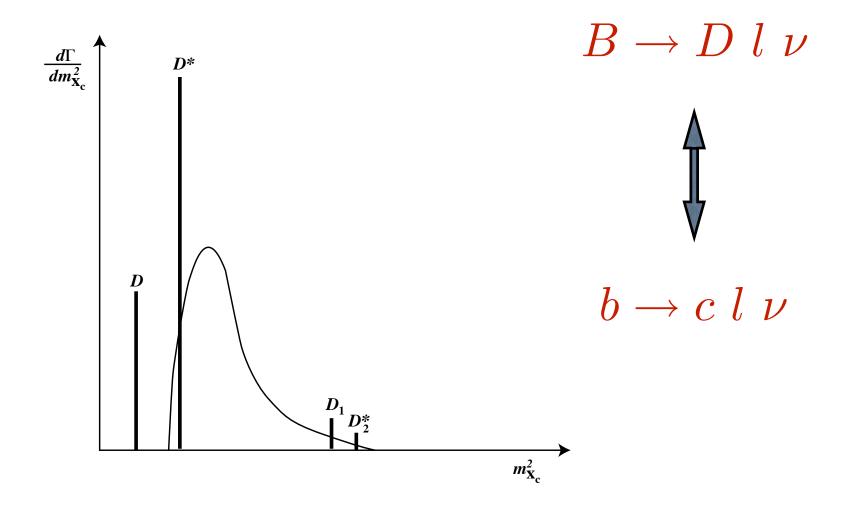
 Duality between quarks (high energy) and hadrons (low energy) manifests itself in many processes

- Duality between quarks (high energy) and hadrons (low energy) manifests itself in many processes
- \bullet e+ e- annihilation
 - total hadronic cross section at high energy averages resonance cross section

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

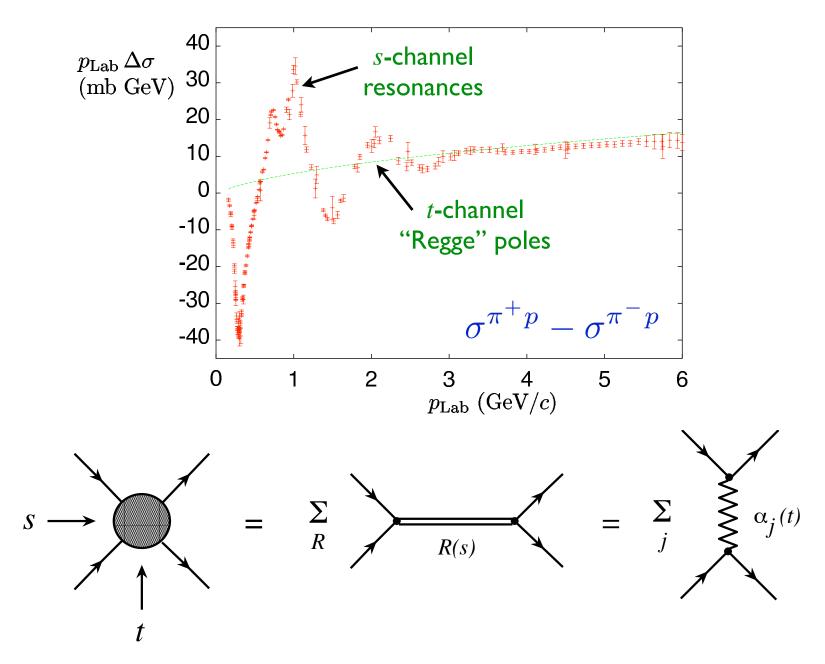


- Duality between quarks (high energy) and hadrons (low energy) manifests itself in many processes
- e+ e- annihilation
 - total hadronic cross section at high energy averages resonance cross section
- Heavy meson decays
 - duality between hadronic & quark descriptions of decays in $m_Q \to \infty$ limit



Voloshin, Shifman, Sov. J. Nucl. Phys. 41 (1985) 120 Isgur, Phys. Lett. B448 (1999) 111

- Duality between quarks (high energy) and hadrons (low energy) manifests itself in many processes
- \bullet e+ e- annihilation
 - total hadronic cross section at high energy averages resonance cross section
- Heavy meson decays
 - duality between hadronic & quark descriptions of decays in $m_Q \to \infty$ limit
- Duality between s-channel resonances and
 t-channel (Regge) poles in hadronic reactions

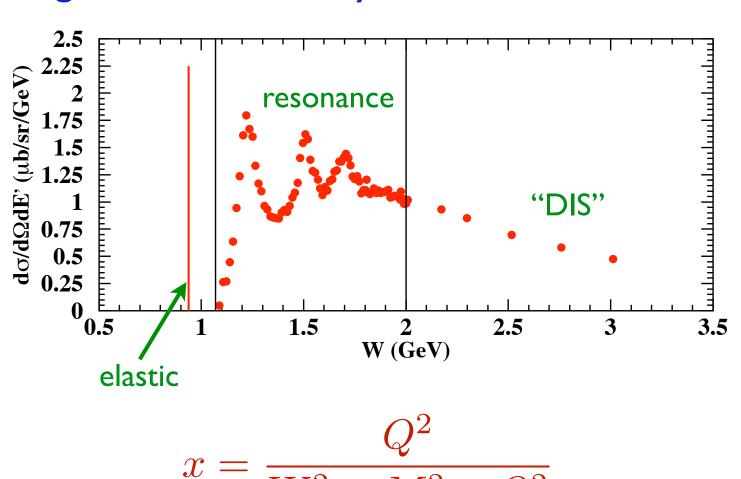


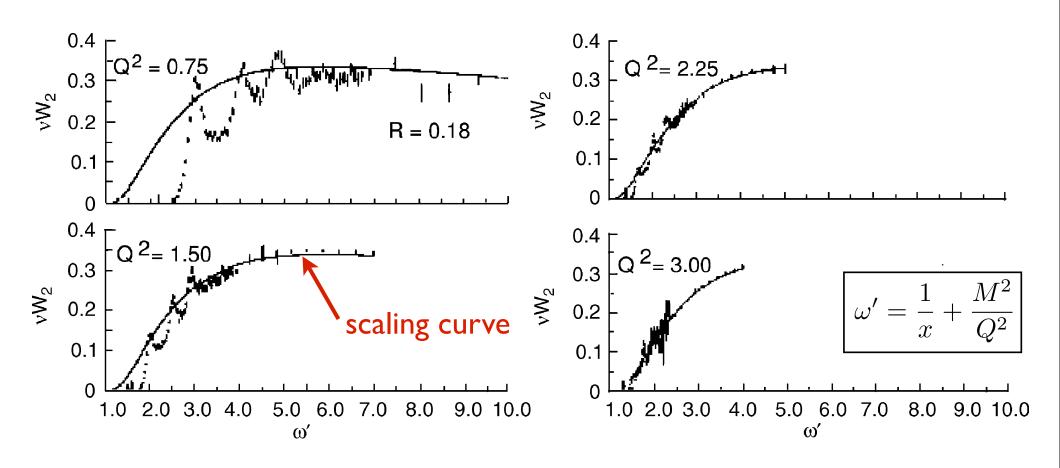
"Finite energy sum rules"

Quark-hadron duality in structure functions

Structure functions in the resonance region

As W decreases, DIS region gives way to region dominated by nucleon resonances





Bloom, Gilman, Phys. Rev. Lett. 85 (1970) 1185

resonance – scaling duality in proton $\nu W_2 = F_2$ structure function

Average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function

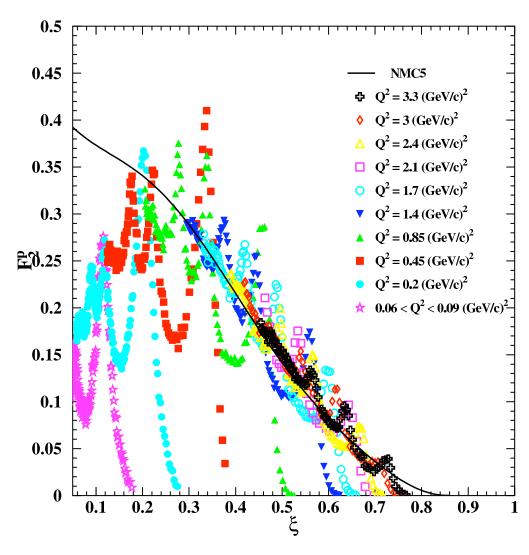
"Finite energy sum rule" for eN scattering

$$\frac{2M}{Q^2} \int_0^{\nu_m} d\nu \ \nu W_2(\nu, Q^2) = \int_1^{\omega_m'} d\omega' \ \nu W_2(\omega')$$

measured structure function (function of ν and Q^2)

$$\omega' = \frac{1}{x} + \frac{M^2}{Q^2}$$

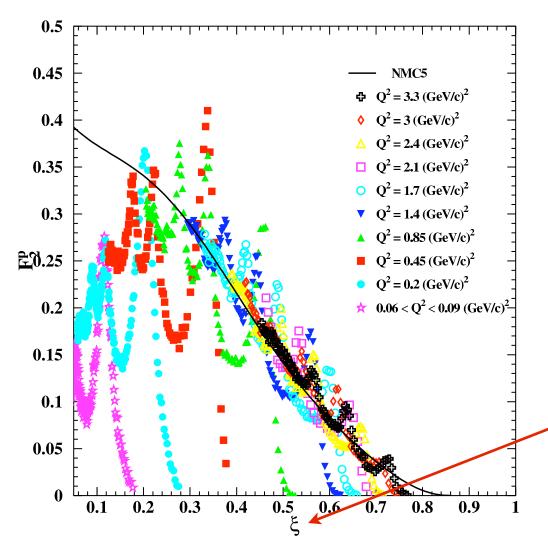
scaling function (function of ω' only)



Jefferson Lab (Hall C)

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

Average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function



Jefferson Lab (Hall C)

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

Average over (strongly Q^2 dependent) resonances

 $pprox Q^2$ independent scaling function

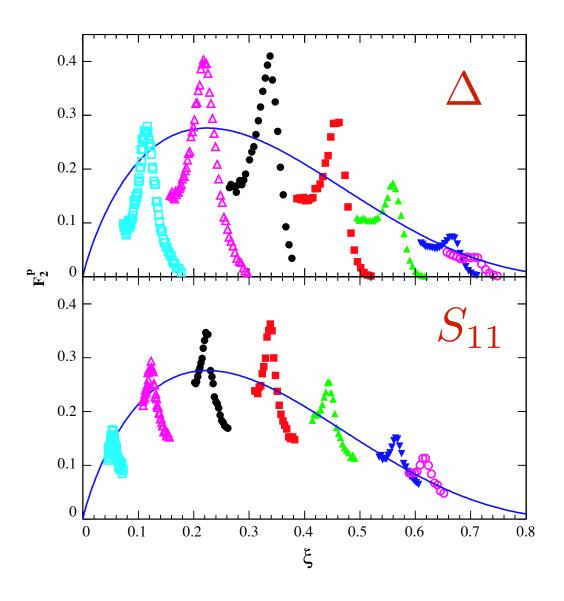
"Nachtmann scaling variable"

$$\xi = \frac{2x}{1 + \sqrt{1 + 4M^2x^2/Q^2}}$$

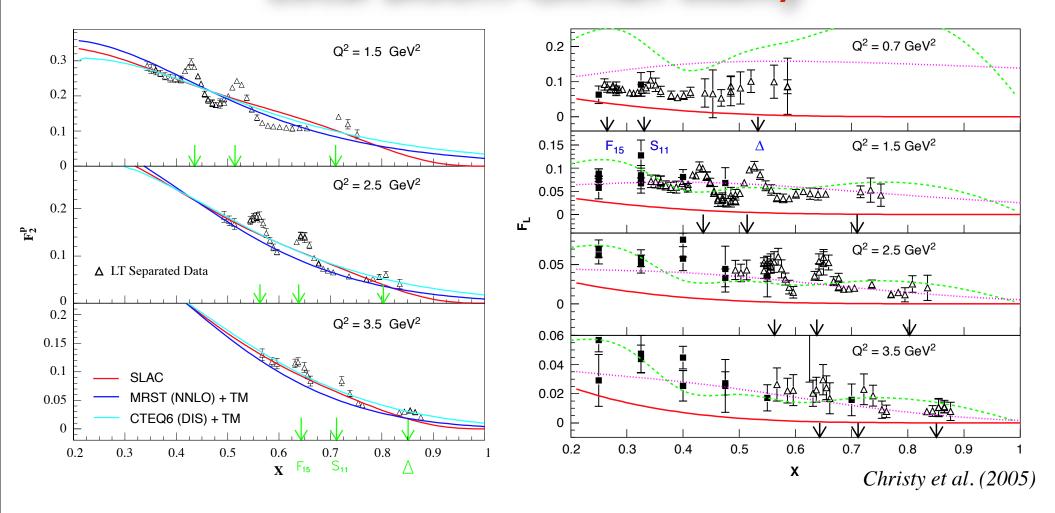
see also:

Fritzsch, Proc. of the Coral Gables Conf. (1971) Greenberg & Bhaumik, PRD4 (1971) 2048

Duality exists also in <u>local</u> regions, around individual resonances



Local Bloom-Gilman duality

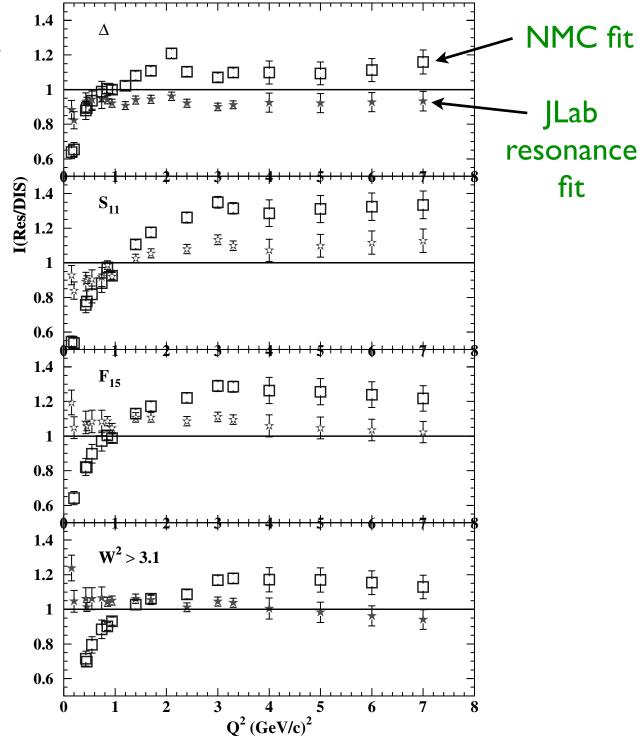


duality in F_2 and F_L structure functions (from longitudinal-transverse separation)

importance of target mass corrections

Integrated strength

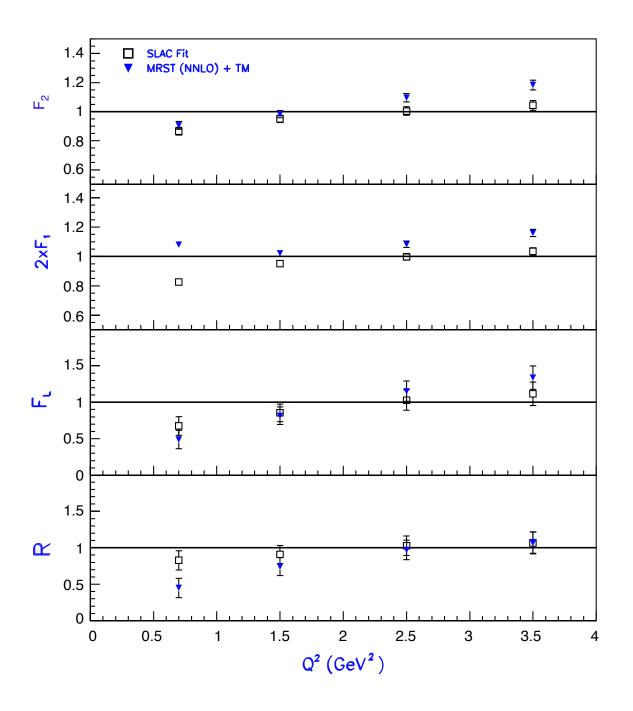
~ 10% agreement for $Q^2 > 1 \text{ GeV}^2$



Niculescu et al, Phys. Rev. Lett. 85 (2000) 1186

Moments

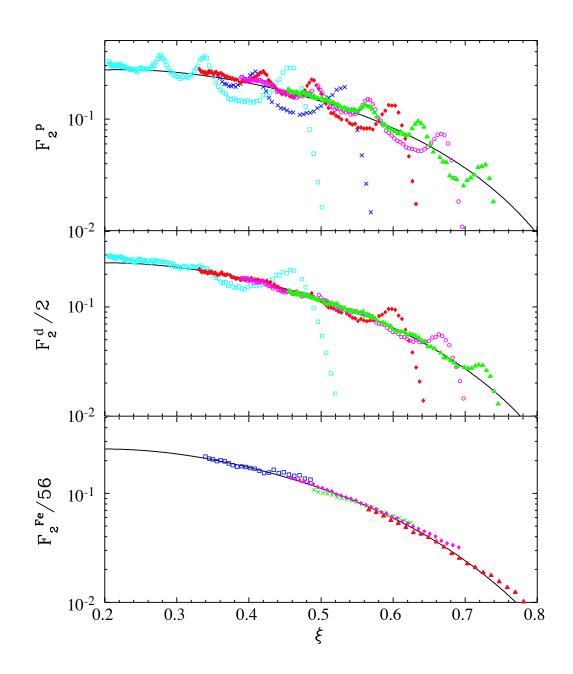
data from longitudinaltransverse separation!



Jefferson Lab (Hall C)

Nuclear structure functions

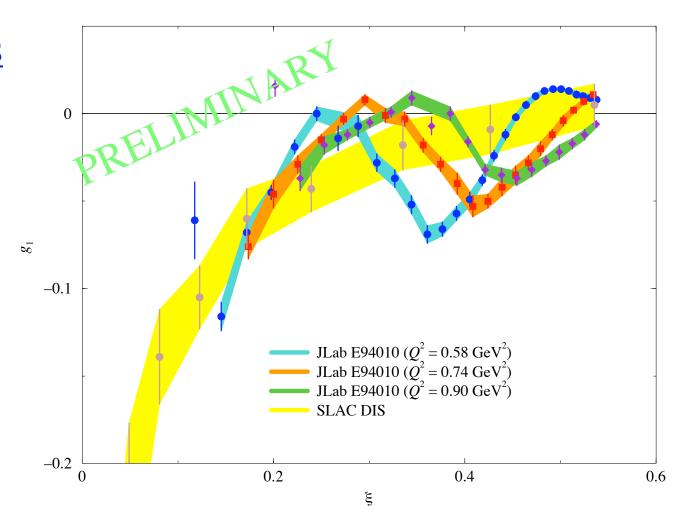
for larger nuclei, Fermi motion does resonance averaging automatically!



Jefferson Lab (Hall C)

Spin-dependent structure functions

neutron (³He) g₁ structure function



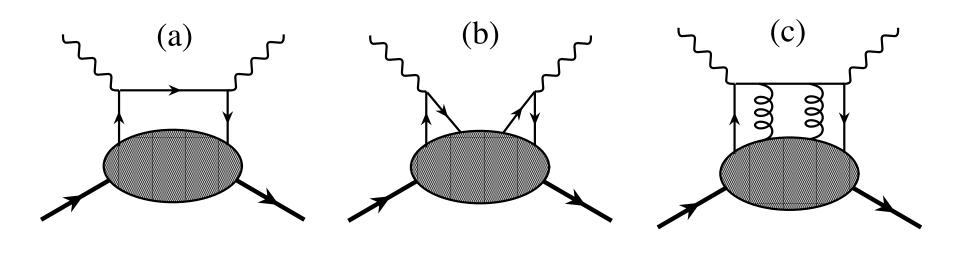
Solvignon et al., PRL 101, 182502 (2008)

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific "twist" au

$$\tau = \text{dimension} - \text{spin}$$



$$\tau = 2$$

 $\tau > 2$

single quark scattering

e.g. $ar{\psi}$ γ_{μ} ψ

qq and qg correlations

$$e.g.$$
 $ar{\psi}$ γ_{μ} ψ $ar{\psi}$ $\gamma_{
u}$ ψ or $ar{\psi}$ $\widetilde{G}_{\mu
u}\gamma^{
u}$ ψ

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

If moment \approx independent of Q^2

 \Longrightarrow higher twist terms $A_n^{(\tau>2)}$ small

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

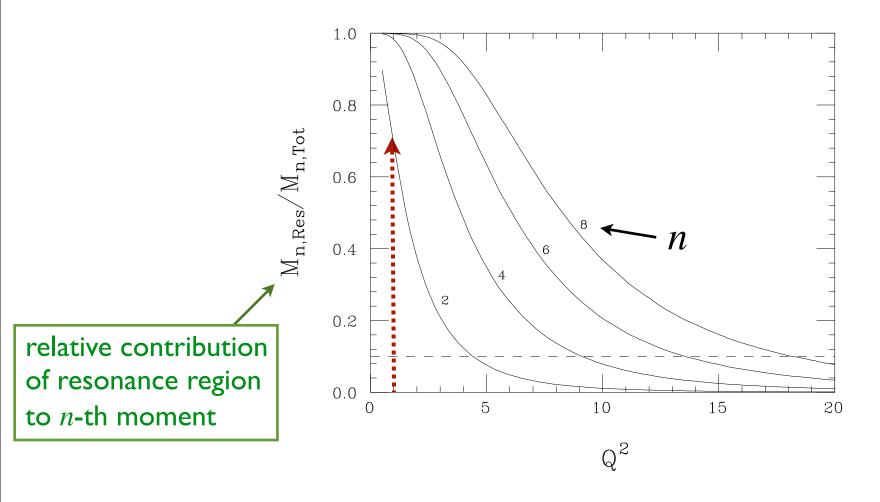
$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

Duality \iff suppression of higher twists

- Much of recent new data is in <u>resonance</u> region, W < 2 GeV
- → common wisdom: pQCD analysis not valid in resonance region
- → in fact: partonic interpretation of moments <u>does</u> include resonance region

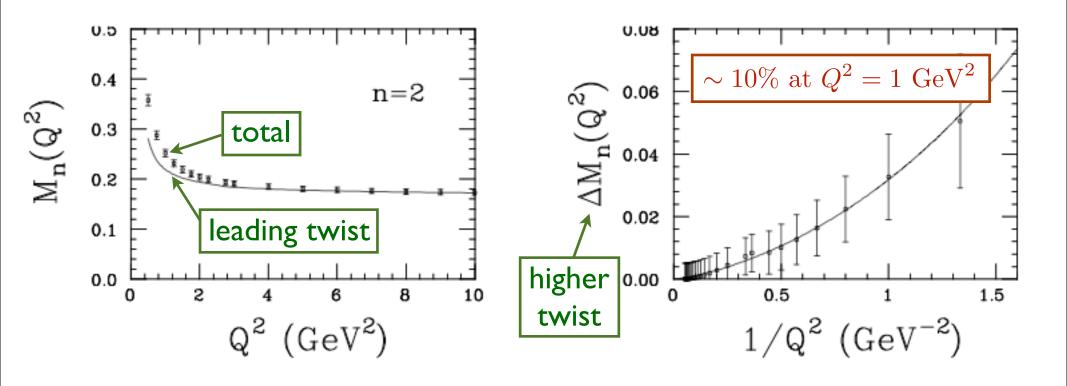
- Resonances are an <u>integral part</u> of deep inelastic structure functions!
- → implicit role of quark-hadron duality

Proton moments



At $Q^2 = 1 \text{ GeV}^2$, ~ $\frac{70\%}{}$ of lowest moment of F_2^p comes from W < 2 GeV

Proton moments



BUT resonances and DIS continuum conspire to produce only $\sim 10\%$ higher twist contribution!

\longrightarrow total higher twist <u>small</u> at $Q^2 \sim 1 - 2 \text{ GeV}^2$

 on average, nonperturbative interactions between quarks and gluons not dominant at these scales

suggests strong cancellations between resonances, resulting in dominance of leading twist

- OPE does not tell us <u>why</u> higher twists are small
 - need more detailed information (e.g. about individual resonances) to understand behavior dynamically

Duality & Truncated Moments

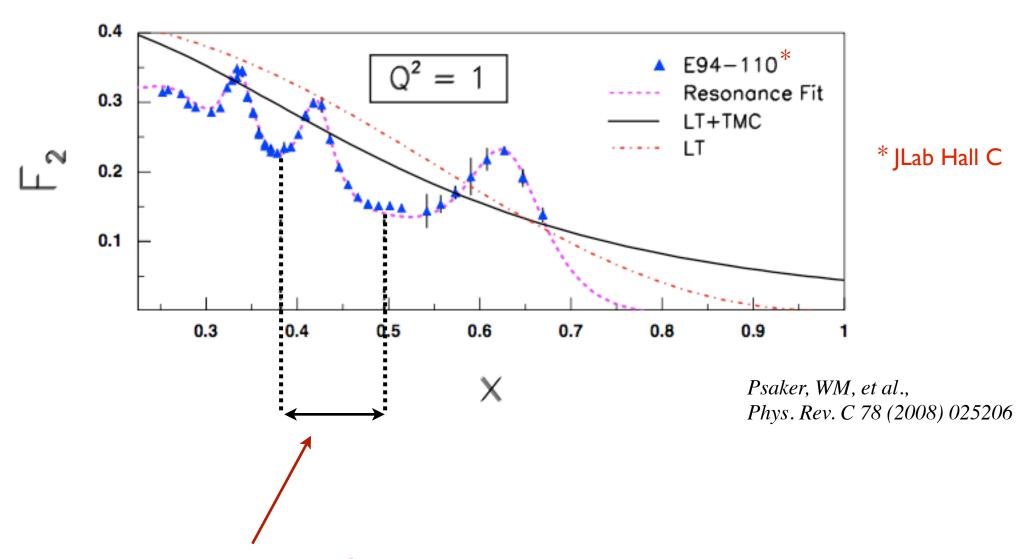
Truncated moments

- complete moments can be studied in pQCD via twist expansion
 - → Bloom-Gilman duality has a precise meaning
 (i.e., duality violation = higher twists)
- for local duality, difficult to make rigorous connection with QCD
 - \rightarrow e.g. need prescription for how to average over resonances

lacktriangleright truncated moments allow study of restricted regions in x (or W) within pQCD in well-defined, systematic way

$$\overline{M}_n(\Delta x, Q^2) = \int_{\Delta x} dx \ x^{n-2} \ F_2(x, Q^2)$$

 F_2^p resonance spectrum



how much of this region is <u>leading twist</u>?

Truncated moments

truncated moments obey DGLAP-like evolution equations, similar to PDFs

$$\frac{d\overline{M}_n(\Delta x, Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \left(P'_{(n)} \otimes \overline{M}_n \right) (\Delta x, Q^2)$$

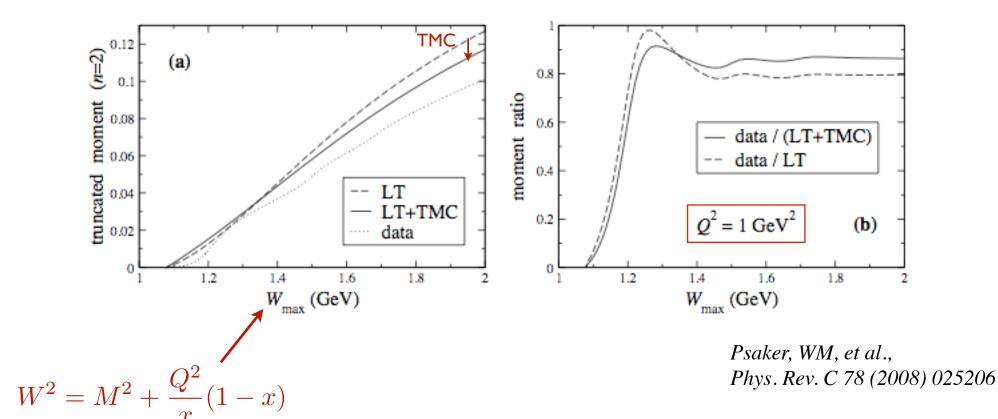
where modified splitting function is

$$P'_{(n)}(z,\alpha_s) = z^n \ P_{NS,S}(z,\alpha_s)$$

- \rightarrow can follow evolution of specific resonance (region) with Q^2 in pQCD framework!
- → suitable when complete moments not available

Data analysis

- lacktriangle assume data at large enough Q^2 are entirely leading twist
- lacksquare evolve fit to data at large Q^2 down to lower Q^2
- lacktriangle apply target mass corrections (TMC) and compare with low- Q^2 data



consider individual resonance regions:

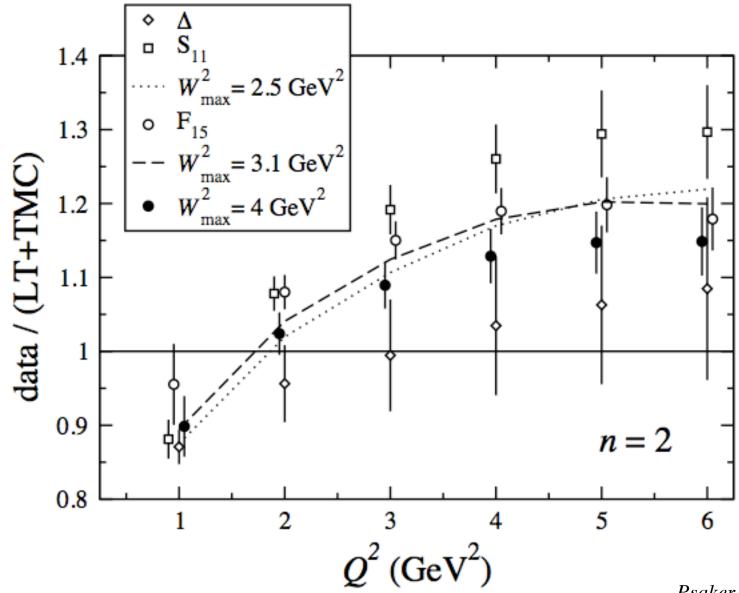
$$\rightarrow W_{\text{thr}}^2 < W^2 < 1.9 \text{ GeV}^2$$
 " $\Delta(1232)$ "

$$\rightarrow$$
 1.9 < W² < 2.5 GeV² "S₁₁(1535)"

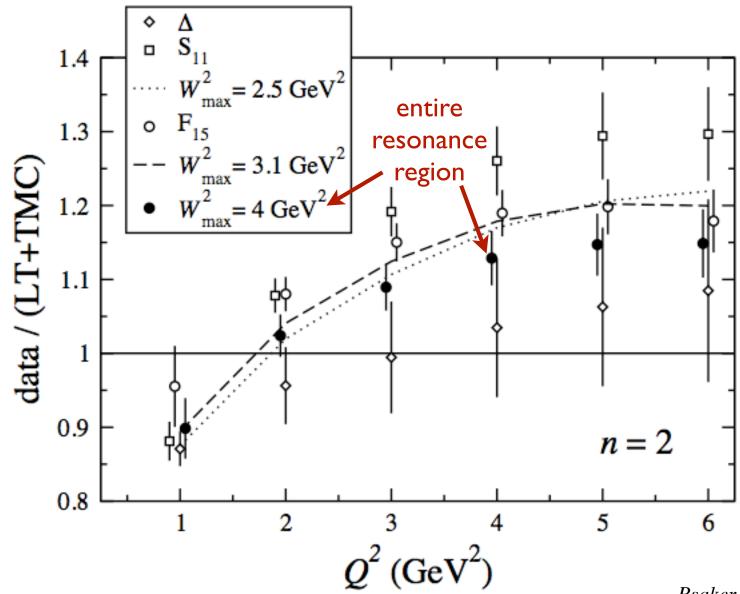
$$\rightarrow$$
 2.5 < W² < 3.1 GeV² "F₁₅(1680)"

as well as total resonance region:

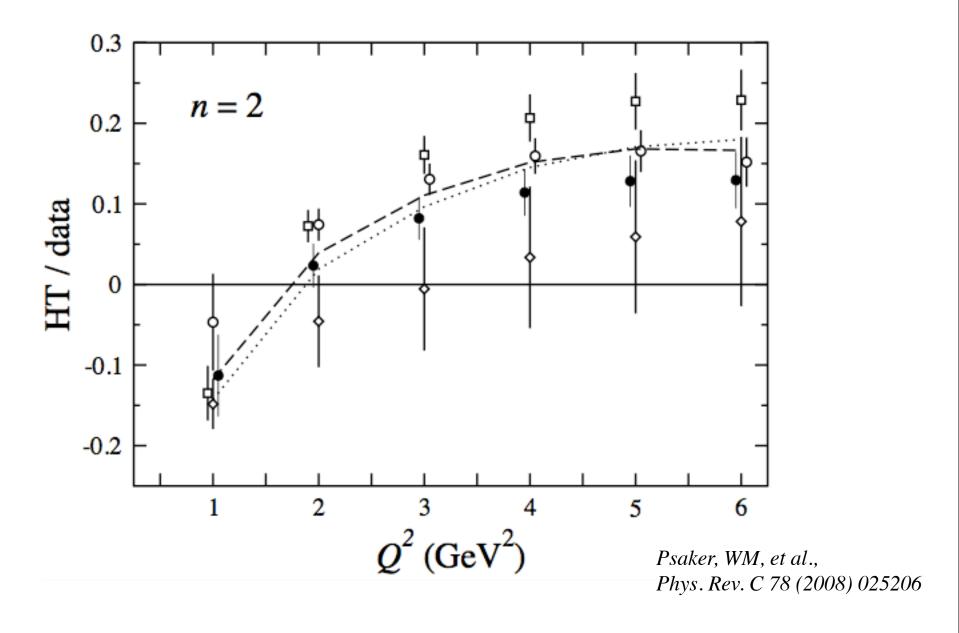
$$\rightarrow$$
 $W^2 < 4 \text{ GeV}^2$



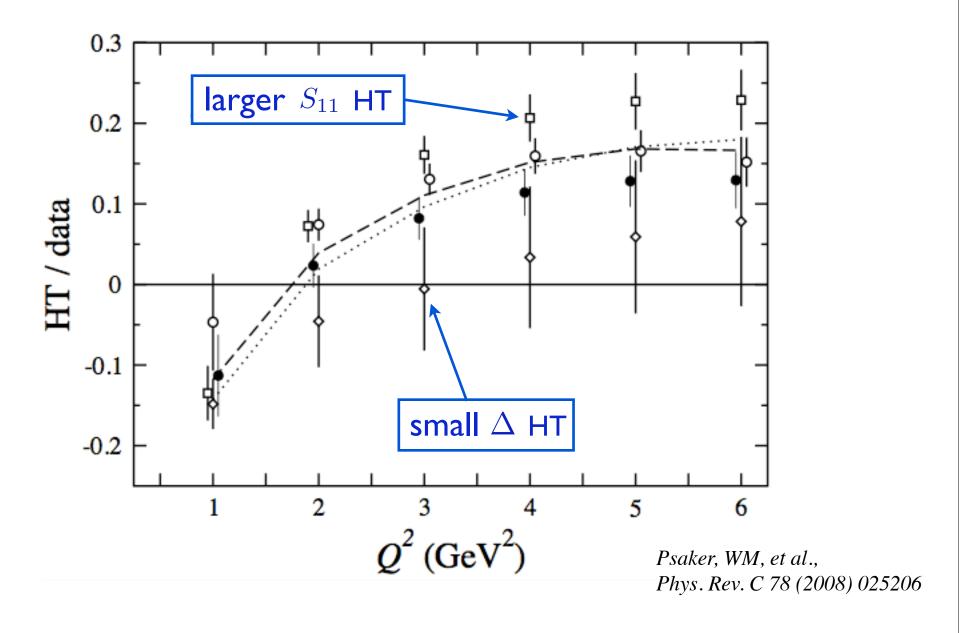
Psaker, WM, et al., Phys. Rev. C 78 (2008) 025206



Psaker, WM, et al., Phys. Rev. C 78 (2008) 025206



 \rightarrow higher twists < 10-15% for $Q^2 > 1 \text{ GeV}^2$



 \rightarrow higher twists < 10-15% for $Q^2 > 1 \text{ GeV}^2$

Can we understand this behavior dynamically?

Can we understand this behavior dynamically?

How do cancellations between coherent resonances produce incoherent scaling function?

Coherence vs. incoherence

Exclusive form factors

coherent scattering from quarks

$$d\sigma \sim \left(\sum_{i} e_{i}\right)^{2}$$

Coherence vs. incoherence

Exclusive form factors

coherent scattering from quarks

$$d\sigma \sim \left(\sum_{i} e_{i}\right)^{2}$$

Inclusive structure functions

incoherent scattering from quarks

$$d\sigma \sim \sum_{i} e_{i}^{2}$$

Coherence vs. incoherence

Exclusive form factors

coherent scattering from quarks

$$d\sigma \sim \left(\sum_{i} e_{i}\right)^{2}$$

Inclusive structure functions

incoherent scattering from quarks

$$d\sigma \sim \sum_{i} e_{i}^{2}$$

How can the <u>square of a sum</u> become the <u>sum of squares</u>?

Two quarks bound in a harmonic oscillator potential

exactly solvable spectrum

Two quarks bound in a harmonic oscillator potential

exactly solvable spectrum

Structure function given by sum of squares of transition form factors

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} |G_{0,n}(\mathbf{q}^2)|^2 \delta(E_n - E_0 - \nu)$$

Two quarks bound in a harmonic oscillator potential

exactly solvable spectrum

Structure function given by sum of squares of transition form factors

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} |G_{0,n}(\mathbf{q}^2)|^2 \delta(E_n - E_0 - \nu)$$

Charge operator $\Sigma_i \ e_i \exp(i \mathbf{q} \cdot \mathbf{r}_i)$ excites even partial waves with strength $\propto (e_1 + e_2)^2$ odd partial waves with strength $\propto (e_1 - e_2)^2$

Resulting structure function

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} \left\{ (e_1 + e_2)^2 \ G_{0,2n}^2 + (e_1 - e_2)^2 \ G_{0,2n+1}^2 \right\}$$

Resulting structure function

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} \left\{ (e_1 + e_2)^2 \ G_{0,2n}^2 + (e_1 - e_2)^2 \ G_{0,2n+1}^2 \right\}$$

If states degenerate, cross terms ($\sim e_1e_2$) cancel when averaged over nearby even and odd parity states

Resulting structure function

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} \left\{ (e_1 + e_2)^2 \ G_{0,2n}^2 + (e_1 - e_2)^2 \ G_{0,2n+1}^2 \right\}$$

If states degenerate, cross terms ($\sim e_1e_2$) cancel when averaged over nearby even and odd parity states

Minimum condition for duality:

at least one complete set of <u>even</u> and <u>odd</u> parity resonances must be summed over

Quark model

- In NR Quark Model, even and odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)
 - scaling occurs if contributions from 56 and 70 have equal overall strengths

Close, Nucl. Phys. B80, 269 (1974) Isgur, Karl, Phys. Rev. D 18, 4187 (1978)

SU(6) symmetric proton wave function

$$p^{\uparrow} = -\frac{1}{3}d^{\uparrow}(uu)_{1} - \frac{\sqrt{2}}{3}d^{\downarrow}(uu)_{1}$$
$$+ \frac{\sqrt{2}}{6}u^{\uparrow}(ud)_{1} - \frac{1}{3}u^{\downarrow}(ud)_{1} + \frac{1}{\sqrt{2}}u^{\uparrow}(ud)_{0}$$

Quark model

- In NR Quark Model, even and odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)
 - scaling occurs if contributions from 56 and 70 have equal overall strengths

Close, Nucl. Phys. B80, 269 (1974)

Isgur, Karl, Phys. Rev. D 18, 4187 (1978)

- lacksquare Simplified case: magnetic coupling of γ^* to quark
 - \longrightarrow expect dominance over electric at large Q^2

Quark model

- In NR Quark Model, even and odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)
 - scaling occurs if contributions from 56 and 70 have equal overall strengths

representation	² 8 [56 ⁺]	⁴ 10[56 ⁺]	² 8 [70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
$F_1^p \ F_1^n$	$\frac{9\rho^2}{(3\rho+\lambda)^2/4}$	$8\lambda^2$ $8\lambda^2$	$\frac{9\rho^2}{(3\rho-\lambda)^2/4}$	$0 \\ 4\lambda^2$	λ^2 λ^2	$\frac{18\rho^2 + 9\lambda^2}{(9\rho^2 + 27\lambda^2)/2}$

 $\lambda \ (\rho) =$ (anti) symmetric component of ground state wfn.

- \blacksquare SU(6) limit \longrightarrow $\lambda = \rho$
 - \longrightarrow relative strengths of $N \longrightarrow N^*$ transitions:

	$[{f 56}, {f 0}^+]^{f 28}$	$[{f 56}, {f 0}^+]^{f 4}{f 10}$	$[70, 1^{-}]^{2}8$	$[70, 1^{-}]^{4}8$	$[70, 1^{-}]^{2}10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18

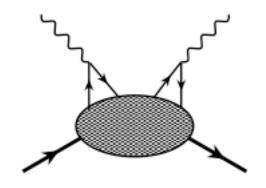
 \blacksquare summing over all resonances in 56^+ and 70^- multiplets

$$\longrightarrow \frac{F_1^n}{F_1^p} = \frac{2}{3}$$
 as in quark-parton model (for $u=2d$)!

- proton sum saturated by lower-lying resonances
 - \rightarrow expect duality to appear *earlier* for p than n

Is duality in the proton a coincidence?

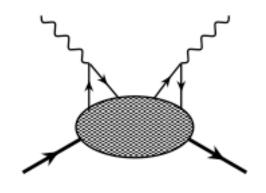
consider symmetric nucleon wave function



<u>cat's ears diagram</u> (4-fermion higher twist $\sim 1/Q^2$)

Is duality in the proton a coincidence?

--> consider symmetric nucleon wave function



<u>cat's ears diagram</u> (4-fermion higher twist $\sim 1/Q^2$)

$$\propto \sum_{i \neq j} e_i \ e_j \sim \left(\sum_i e_i\right)^2 - \sum_i e_i^2$$

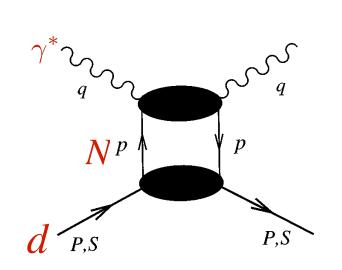
- proton HT $\sim 1 \left(2 \times \frac{4}{9} + \frac{1}{9}\right) = 0!$
- neutron HT $\sim 0 \left(\frac{4}{9} + 2 \times \frac{1}{9}\right) \neq 0$
- need to test duality in the neutron!

Extraction of Neutron Structure Function

- Problem: no free neutron targets! (neutron half-life ~ 12 mins)
 - use deuteron as "effective neutron target"

- But: deuteron is a nucleus, and $F_2^d \neq F_2^p + F_2^n$
 - nuclear effects (nuclear binding, Fermi motion, shadowing)
 obscure neutron structure information
 - → need to correct for "nuclear EMC effect"

- nuclear "impulse approximation"
 - incoherent scattering from individual nucleons in d (good approx. at x >> 0)

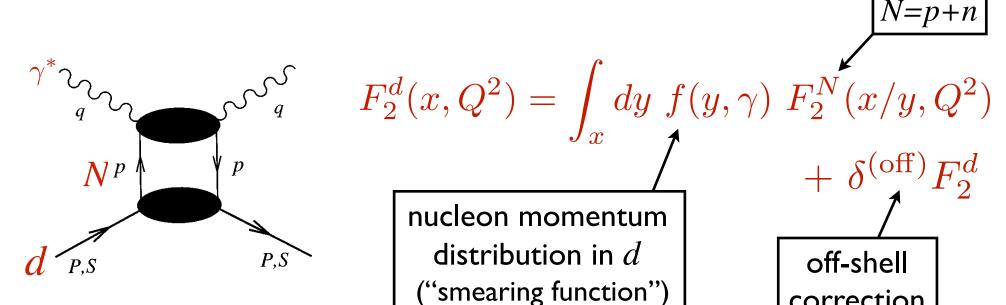


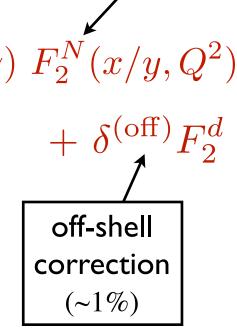
$$F_2^d(x,Q^2) = \int_x dy \ f(y,\gamma) \ F_2^N(x/y,Q^2) + \delta^{(\text{off})} F_2^d$$

N=p+n

nuclear "impulse approximation"

incoherent scattering from individual nucleons in d(good approx. at x >> 0)



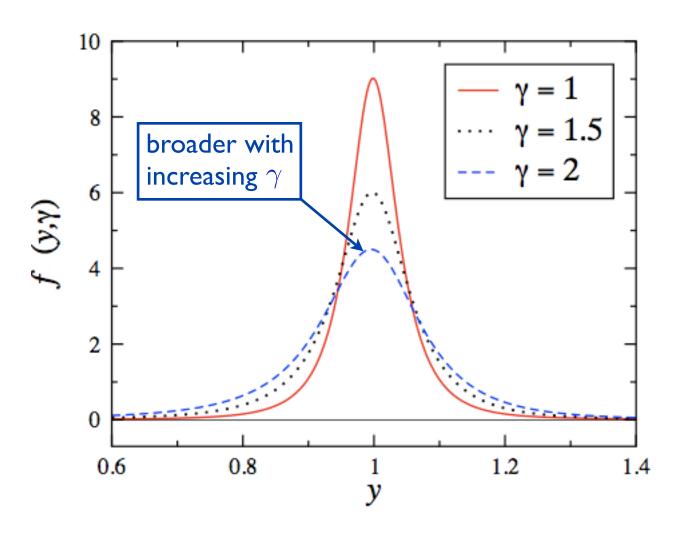


N=p+n

at finite Q^2 , smearing function depends also on parameter

$$\gamma = |\mathbf{q}|/q_0 = \sqrt{1 + 4M^2 x^2/Q^2}$$

N momentum distributions in d



 \longrightarrow for most kinematics $\gamma \lesssim 2$

Unsmearing - additive method

 \blacksquare calculated F_2^d depends on input F_2^n

 \rightarrow extracted n depends on input n ... cyclic argument

Unsmearing - additive method

- \blacksquare calculated F_2^d depends on input F_2^n
 - \rightarrow extracted n depends on input n ... cyclic argument

Solution: <u>iteration procedure</u>

- 0. subtract $\delta^{(\text{off})}F_2^d$ from d data: $F_2^d \to F_2^d \delta^{(\text{off})}F_2^d$
- 1. define difference between smeared and free SFs

$$F_2^d - \widetilde{F}_2^p = \widetilde{F}_2^n \equiv f \otimes F_2^n \equiv F_2^n + \Delta$$

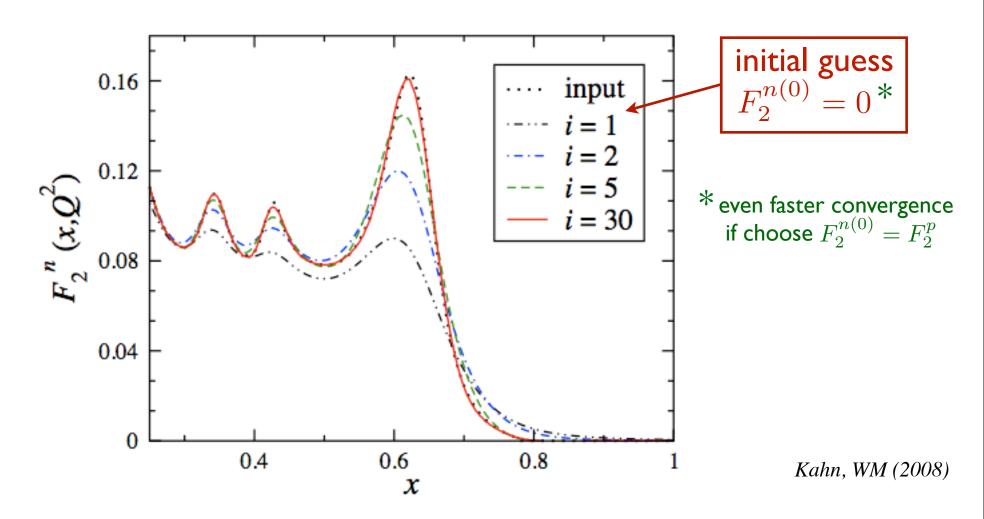
- 2. first guess for $F_2^{n(0)} \longrightarrow \Delta^{(0)} = \widetilde{F}_2^{n(0)} F_2^n$
- 3. after one iteration, gives

$$F_2^{n(1)} = F_2^{n(0)} + (\widetilde{F}_2^n - \widetilde{F}_2^{n(0)})$$

4. repeat until convergence

Unsmearing – test of convergence

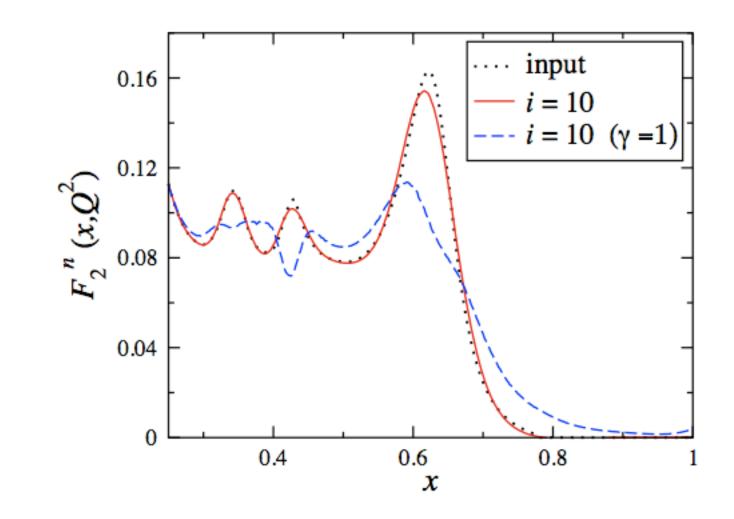
 $= F_2^d$ constructed from known F_2^p and F_2^n inputs (using MAID resonance parameterization)



can reconstruct almost arbitrary shape

Unsmearing – Q^2 dependence

lacksquare important to use correct γ dependence in extraction

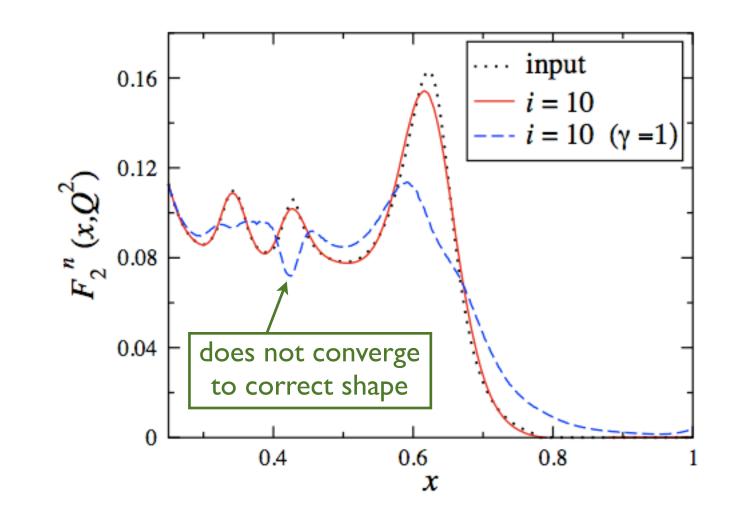


Kahn, WM (2008)

important also in DIS region (do not have resonance "benchmarks")

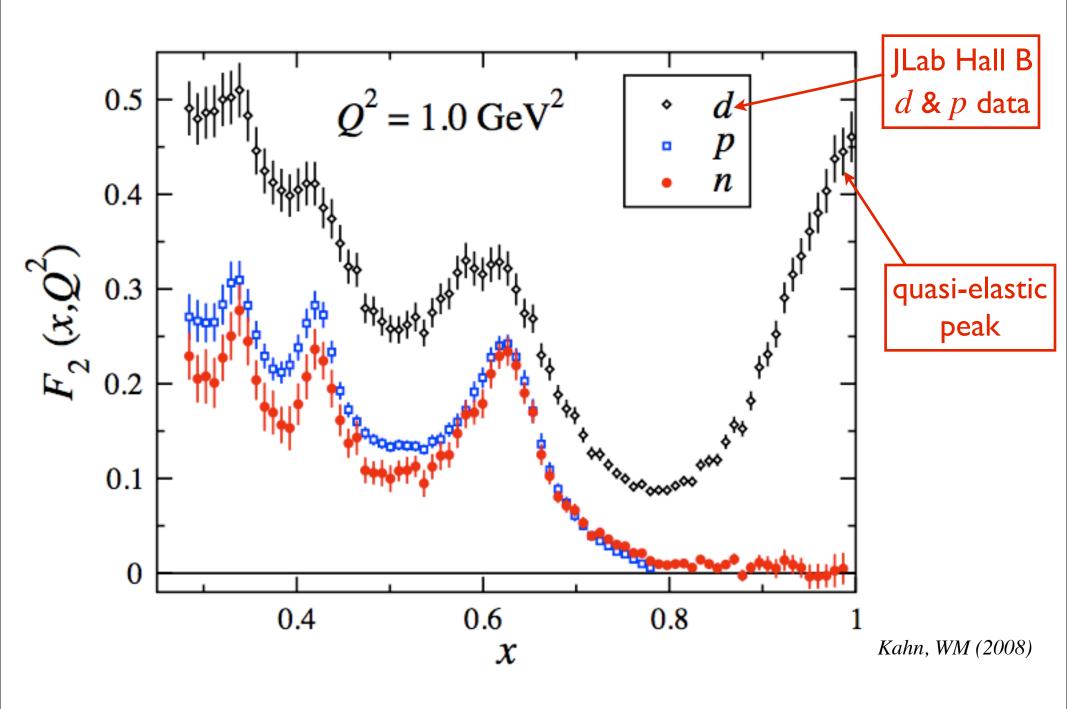
Unsmearing – Q^2 dependence

lacksquare important to use correct γ dependence in extraction

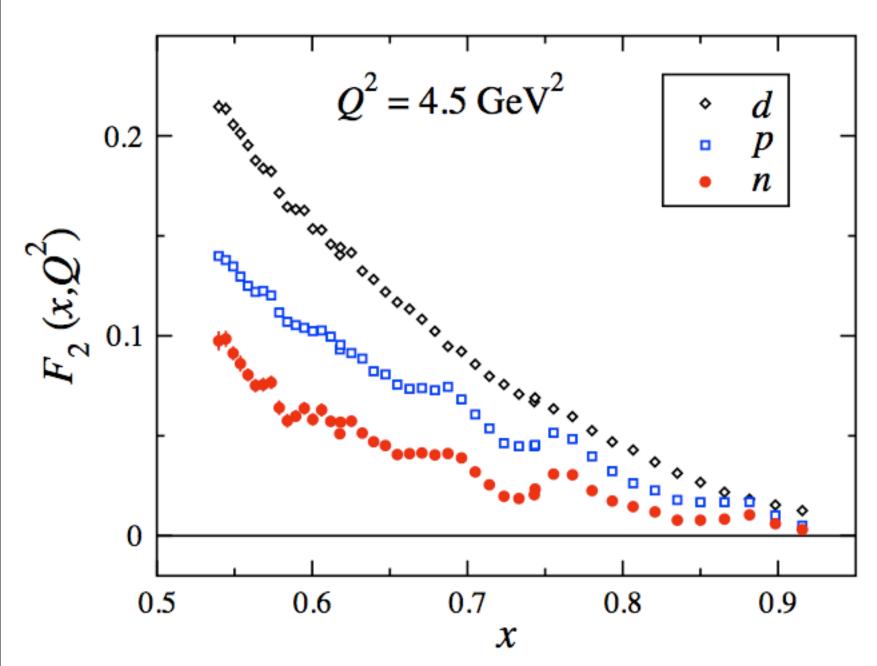


Kahn, WM (2008)

important also in DIS region (do not have resonance "benchmarks")



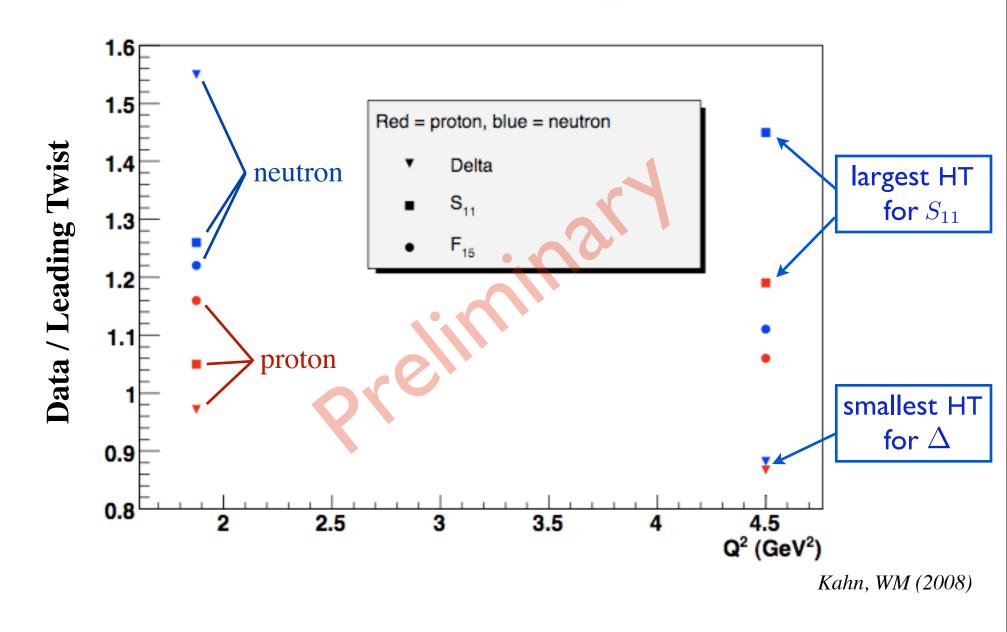
 \longrightarrow first extraction of F_2^n in resonance region



Kahn, WM (2008)

→ works also in DIS region

Structure function integral ratios



neutron HT indeed larger than proton!

Summary

- Remarkable confirmation of quark-hadron duality in proton structure functions
 - \rightarrow duality violating higher twists $\sim 10\%$ in few-GeV range
- Truncated moments
 - \rightarrow firm foundation for study of *local* duality in QCD
 - \rightarrow HTs largest in S_{11} region, smallest in Δ region
- Duality in the *neutron*
 - -> extraction of neutron structure function from deuteron data
 - → neutron HTs *larger* than proton HTs (as expected from quark models)

Future

- Complete analysis of neutron structure function extraction
 - quantify isospin dependence of HTs

- Application to spin-dependent structure functions
 - -> extraction method works also for functions with zeros
- Cross-check with neutron extracted from ³He data