XIV Escola de Veraõ Jorge André Swieca, Fisica Nuclear Teórica Itaipava, Brazil January 25-31, 2009

Quark Structure of the Nucleon

Wally Melnitchouk

Outline

Lecture 1

- QCD and the strong nuclear force
- Electron-nucleon scattering
- Quark distributions in the nucleon
 - \rightarrow valence quarks at large x
 - \rightarrow nuclear effects on quark structure

Outline

Lecture 2

- Quark-hadron duality
- "Bloom-Gilman" duality in structure functions
- Duality in QCD
- Resonances & local quark-hadron duality
 - \rightarrow "truncated" moments in QCD
- Duality in the neutron
 - \rightarrow extraction of neutron resonance structure from nuclear data

Outline

Lecture 3

- Elastic *ep* scattering
- Two-photon exchange
 - \rightarrow Rosenbluth separation vs. polarization transfer
- Global analysis of form factors
- Parity-violating electron scattering
 - \rightarrow strangeness in the proton
 - → constraints on "new" physics

QCD and the strong nuclear force

Building Blocks of the Universe

FERMIONS matter constituents spin = 1/2, 3/2, 5/2, ...

Leptons spin = 1/2			Quarks spin = 1/2			
lavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	
e electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3	
electron	0.000511	-1	d down	0.006	-1/3	
$\mu_{\rm neutrino}^{\rm muon}$	< 0.0002	0	C charm	1.3	2/3	
u muon	0.106	-1	S strange	0.1	-1/3	
, tau $ au$ neutrino	<0.02	0	t top	175	2/3	
T tau	1.7771	-1	b bottom	4.3	-1/3	

- Each quark comes in 3 "colours": red, green and blue.
- Leptons do not carry color charge.

Building Blocks of the Universe

FERMIONS matter constituents spin = 1/2, 3/2, 5/2, ...

Leptons spin = 1/2			Quarks spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
ve electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3
e electron	0.000511	-1	d down	0.006	-1/3
ν_{μ} muon neutrino	< 0.0002	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
$ u_{ au}^{ ext{ tau }}_{ ext{ neutrino }}$	< 0.02	0	t top	175	2/3
au tau	1.7771	-1	b bottom	4.3	-1/3

- Each quark comes in 3 "colours": red, green and blue.
- Leptons do not carry color charge.

Force Carriers of the Universe

BOSONS force carriers spin = 0, 1, 2,						
Unified Electroweak spin = 1			Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge	
γ photon	0	0	g gluon	0	0	
W-	80.4	-1				
W+	80.4	+1				
Z ⁰	91.187	0				

- The massless photon mediates the long-range e.m. interactions.
- Gluons carry **color** and mediate the strong interaction.
- The very massive W⁻, W⁺, and Z⁰ bosons mediate the weak interaction

Force Carriers of the Universe

- The massless photon mediates the long-range e.m. interactions.
- Gluons carry **color** and mediate the strong interaction.
- The very massive W⁻, W⁺, and Z⁰ bosons mediate the weak interaction

Quantum Chromodynamics (QCD)

- Photons do not carry electric charge.
- Gluons do carry colour charge!
- Gluons can directly interact with other gluons!
- This is new!

A red quark emitting a red anti-blue gluon to leave a blue quark.

 \rightarrow calculate observables using perturbation theory as power series in small expansion parameter α_s

BUT - only part of the story... at low energy $\longrightarrow \underline{confinement}$!

BUT - only part of the story... at low energy $\rightarrow confinement$!

 $\implies \alpha_s \sim 1$ so cannot use perturbative expansion

BUT - only part of the story... at low energy $\longrightarrow confinement$!

→ $\alpha_s \sim 1$ so cannot use perturbative expansion → here QCD said to be "<u>nonperturbative</u>"

QCD: Unsolved in Nonperturbative Regime

• 2004 Nobel Prize awarded for "asymptotic freedom"

- BUT in nonperturbative regime QCD is still unsolved
- One of the top 10 challenges for physics!
- Is it right/complete?
- Do glueballs, exotics and other apparent predictions

of QCD in this regime agree with experiment?

central to answering these questions is the need to understand <u>how quarks form hadrons</u> Looking for quarks in the nucleon is like looking for the Mafia in Sicily everybody *knows* they're there, but it's hard to find the evidence!

collide hadrons

collide hadrons

probe with leptons

collide hadrons

probe with leptons

Electron scattering

Electron Scattering Provides an Ideal Microscope for Nuclear Physics

U.S. DEPARTMEN

- Electrons are point-like
- The interaction (QED) is well-known
- The interaction is weak

Electron scattering (at Jefferson Lab)

located in Newport News, Virginia

located in Newport News, Virginia

located in Newport News, Virginia

Newport News, Virginia

Hall A

Hall B

Hall C

Hall D

Hall A

• high luminosity $> 10^{38} \text{ cm}^{-2} \text{ s}^{-1}$

- very high precision measurements
- high Q^2 form factors, parity-violating *e* scattering, precision structure functions

- large acceptance lower luminosity $\sim 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- collect all data "at once"

Hall B

CLAS (<u>CEBAF Large Acceptance Spectrometer</u>)

 N* spectroscopy (multi-hadron final states), deep exclusive reactions (generalized parton distributions)

new Hall to be constructed as part of 12 GeV Upgrade

• 4π acceptance

- photon beam
- exotic meson spectroscopy $(q\overline{q}g \text{ states})$

JLab Central to all of Nuclear Science

Electron scattering (theory)

Electron scattering

Inclusive cross section for $eN \to eX$

 $\begin{array}{c} {\rm most\ likely\ event}\\ {\rm at\ high\ energy} \end{array}$

one-photon exchange approximation

Electron scattering

$$Q^{2} = \vec{q}^{2} - \nu^{2} = 4EE' \sin^{2} \frac{\theta}{2} \quad \mathbf{f} \quad x = \frac{Q}{2M\nu} \quad \text{"Bjorken scaling variable"}$$

 F_1 , F_2 "structure functions"

- \longrightarrow functions of x, Q^2 in general

<mark>/(</mark>6) scatter from individual quarks ("partons") in hadron $+ \cdot \cdot \frac{A_{n}^{(6)}}{F_2}(x, Q^2) = x \sum e_q^2 q(x, Q^2) \qquad (q = u, d, s...)$ cattering $\mathcal{I}\mathcal{Q}$ $g \xrightarrow{f} q(x,Q^2) = \text{probability to find quark type "q" in nucleon, carrying (light-cone) momentum fraction x$ $\frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$

Structure function data

Lai et al., Eur. Phys. J. C12 (2000) 375

Nucleon polarized along *z*-axis

 \rightarrow electron spin *parallel* or *anti-parallel* to nucleon spin

Usually measure polarization asymmetry
$$A_1 = \frac{g_1}{F_1}$$

Parton model

$$g_1(x,Q^2) = \frac{1}{2} \sum_q e_q^2 \Delta q(x,Q^2)$$

$$\rightarrow \Delta q = q^{\uparrow\uparrow} - q^{\downarrow\uparrow}$$
probability to find quark "q" with spin
aligned vs. antialigned with nucleon spin

 \rightarrow gives total spin of nucleon carried by quarks

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$

Spin sum rule

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Spin sum rule

Spin sum rule

- \rightarrow naive (nonrelativistic) expectation: $\Delta\Sigma~\sim~1$
- \longrightarrow early experiments: $\Delta\Sigma~\sim~0$ "proton spin crisis"
- \rightarrow latest data: $\Delta\Sigma$ \sim 0.3 (RGI scheme)
- \rightarrow where is the proton spin?

STAR (RHIC) data on $\vec{p} \, \vec{p} \rightarrow \text{jets}$ $\Delta g \approx 0$

"statistically consistent with zero"

HERMES proton + JLab neutron data on deeply virtual Compton scattering

 $J_u \sim 0.4 \pm 0.2$ $J_d \sim 0.1 \pm 0.2$

"model-dependent extraction"

Parton distributions functions

- PDFs extracted in global analyses of structure function data from electron, muon & neutrino scattering (also from Drell-Yan & W-boson production in hadronic collisions)
 - \rightarrow determined over large range of x and Q^2
- provide basic information on structure of QCD bound states
- needed to understand backgrounds in searches for physics beyond the Standard Model in high-energy colliders
 - \rightarrow e.g. neutrino oscillations

recent parameterization

p

Quark distributions valence quarks

- Most direct connection between quark distributions and models of the nucleon is through *valence* quarks
- Nucleon structure at intermediate & large x dominated by valence quarks

At large x, valence u and d distributions extracted from p and n structure functions

$$F_2^p \approx \frac{4}{9}u_v + \frac{1}{9}d_v$$
$$F_2^n \approx \frac{4}{9}d_v + \frac{1}{9}u_v$$

At large x, valence u and d distributions extracted from p and n structure functions

$$F_2^p \approx \frac{4}{9}u_v + \frac{1}{9}d_v$$
$$F_2^n \approx \frac{4}{9}d_v + \frac{1}{9}u_v$$

- \blacksquare *u* quark distribution well determined from *p*
- \blacksquare d quark distribution requires *n* structure function

$$\qquad \qquad \ \bullet \qquad \ \frac{d}{u} \approx \frac{4 - F_2^n / F_2^p}{4F_2^n / F_2^p - 1}$$

v(0) $\tau \equiv dRation$ of d to u quark distributions particularly dere wisensitive to quark dynamics in nucleon d <u>SU(6) spin-flavor symmetry</u> ___''twist'' proton wave function 6) $p^{\uparrow} = -\frac{1}{3}d^{\uparrow}(uu)_1 - \frac{\sqrt{2}}{3}d^{\downarrow}(uu)_1$ $\stackrel{p}{\xrightarrow{4}} \stackrel{-}{\xrightarrow{4}} \frac{3}{4} \stackrel{-}{\xrightarrow{4}} \frac{3}{6} u^{\uparrow} (ud)_{1} - \frac{1}{3} u^{\downarrow} (ud)_{1} + \frac{1}{\sqrt{2}} u^{\uparrow} (ud)_{0}$ diquark spin interacting quark spectator diquark

- Ratio of d to u quark distributions particularly sensitive to quark dynamics in nucleon
- <u>SU(6) spin-flavor symmetry</u>

proton wave function

$$p^{\uparrow} = -\frac{1}{3}d^{\uparrow}(uu)_{1} - \frac{\sqrt{2}}{3}d^{\downarrow}(uu)_{1} + \frac{\sqrt{2}}{6}u^{\uparrow}(ud)_{1} - \frac{1}{3}u^{\downarrow}(ud)_{1} + \frac{1}{\sqrt{2}}u^{\uparrow}(ud)_{0}$$

X

$$\longrightarrow \ u(x) = 2 \ d(x) \text{ for all}$$

$$\longrightarrow \ \frac{F_2^n}{F_2^p} = \frac{2}{3}$$

<u>scalar diquark dominance</u>

 $M_{\Delta} > M_N \implies (qq)_1$ has larger energy than $(qq)_0$

 \implies scalar diquark dominant in $x \rightarrow 1$ limit

<u>scalar diquark dominance</u>

 $M_{\Delta} > M_N \implies (qq)_1$ has larger energy than $(qq)_0$

 \implies scalar diquark dominant in $x \rightarrow 1$ limit

since only u quarks couple to scalar diquarks

$$\longrightarrow \quad \frac{d}{u} \rightarrow 0$$

$$\longrightarrow \quad \frac{F_2^n}{F_2^p} \rightarrow \frac{1}{4}$$

Feynman 1972, Close 1973, Close/Thomas 1988

hard gluon exchange

at large x, helicity of struck quark = helicity of hadron

hard gluon exchange

at large x, helicity of struck quark = helicity of hadron

 \implies helicity-zero diquark dominant in $x \rightarrow 1$ limit

$$\begin{array}{ccc} \longrightarrow & \frac{d}{u} \rightarrow & \frac{1}{5} \\ \longrightarrow & \frac{F_2^n}{F_2^p} \rightarrow & \frac{3}{7} \end{array} \end{array}$$

Farrar, Jackson 1975

Polarized valence quarks

■ SU(6) symmetry

$$A_{1}^{p} = \frac{5}{9} , \quad A_{1}^{n} = 0$$
$$\frac{\Delta u}{u} = \frac{2}{3} , \quad \frac{\Delta d}{d} = -\frac{1}{3}$$

Polarized valence quarks

■ SU(6) symmetry

$$A_{1}^{p} = \frac{5}{9} , \quad A_{1}^{n} = 0$$
$$\frac{\Delta u}{u} = \frac{2}{3} , \quad \frac{\Delta d}{d} = -\frac{1}{3}$$

scalar diquark dominance

$$egin{array}{ccc} A_1^p &
ightarrow 1 \ , & A_1^n
ightarrow 1 \ \displaystyle rac{\Delta u}{u}
ightarrow 1 \ , & \displaystyle rac{\Delta d}{d}
ightarrow - \displaystyle rac{1}{3} \end{array}$$

Polarized valence quarks

■ SU(6) symmetry

$$A_{1}^{p} = \frac{5}{9} , \quad A_{1}^{n} = 0$$
$$\frac{\Delta u}{u} = \frac{2}{3} , \quad \frac{\Delta d}{d} = -\frac{1}{3}$$

scalar diquark dominance

$$egin{array}{ccc} A_1^p
ightarrow 1 \ , & A_1^n
ightarrow 1 \ \displaystyle rac{\Delta u}{u}
ightarrow 1 \ , & \displaystyle rac{\Delta d}{d}
ightarrow - \displaystyle rac{1}{3} \end{array}$$

hard gluonexchange

$$\begin{aligned} A_1^p &\to 1 \ , \quad A_1^n \to 1 \\ \frac{\Delta u}{u} &\to 1 \ , \quad \frac{\Delta d}{d} \to 1 \end{aligned}$$

No <u>FREE</u> neutron targets (neutron half-life ~ 12 mins)

→ use deuteron as "effective" neutron target

<u>BUT</u> deuteron is a nucleus, and $F_2^d \neq F_2^p + F_2^n$

nuclear effects (nuclear binding, Fermi motion, shadowing)
<u>obscure neutron structure</u> information

Quark distributions nuclear effects

Nuclear "EMC effect"

 $F_2^A(x,Q^2) \neq AF_2^N(x,Q^2)$

Nuclear "EMC effect"

Nuclear "EMC effect"

EMC effect in deuteron

Nuclear "impulse approximation"

incoherent scattering from individual nucleons in deuteron

EMC effect in deuteron

Nuclear "impulse approximation"

incoherent scattering from individual nucleons in deuteron

$$F_2^d(x) = \int dy \ f_{N/d}(y) \ F_2^N(x/y) \ + \ \delta^{(\text{off})}F_2^d(x)$$

nucleon momentum distribution

off-shell correction
Nucleon momentum distribution in deuteron

→ relativistic *dNN* vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

Nucleon momentum distribution in deuteron

→ relativistic *dNN* vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d \ y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

momentum fraction of deuteron
carried by nucleon

Nucleon momentum distribution in deuteron

 \rightarrow relativistic *dNN* vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

Nucleon momentum distribution in deuteron

 \rightarrow relativistic *dNN* vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

Wave function dependence only at large |y-1/2|

→ sensitive to large-*p* components of wave function

Nucleon momentum distribution in deuteron

 \rightarrow relativistic *dNN* vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

Nucleon off-shell correction

 $\delta^{(\text{off})}F_2^d$

Nucleon momentum distribution in deuteron

 \rightarrow relativistic *dNN* vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

Nucleon off-shell correction

$$\delta^{(\mathrm{off})}F_2^d \longrightarrow \delta^{(\Psi)}F_2^d$$

negative energy components of d wave function

Nucleon momentum distribution in deuteron

 \rightarrow relativistic *dNN* vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

Nucleon off-shell correction

$$\delta^{(\text{off})} F_2^d \longrightarrow \delta^{(\Psi)} F_2^d \quad \begin{array}{c} \text{negative energy components} \\ \text{of } d \text{ wave function} \end{array}$$

$$\longrightarrow \delta^{(p^2)} F_2^d \quad \text{off-shell } N \text{ structure function}$$

Off-shell correction

 \rightarrow $\leq 1-2$ % effect

WM, *Schreiber*, *Thomas*, *Phys. Lett. B* 335 (1994) 11

Iarger EMC effect (smaller d/N ratio) with off-shell + binding corrections

Neutron to proton ratio

 \rightarrow F_2^n underestimated at large x !

large uncertainty from nuclear effects in deuteron (range of nuclear models) beyond $x \sim 0.5$

"Cleaner" methods of determining d/u

$$e^{\mp} p \to \nu(\bar{\nu}) X$$

$$\nu(\bar{\nu}) p \to l^{\mp} X$$

$$p p(\bar{p}) \to W^{\pm} X$$

$$\vec{e}_L(\vec{e}_R) p \to e X$$

weak current as flavor probe

→ difficult to get high rates/luminosities

$$e \ p \to e \ \pi^{\pm} \ X$$

 $e^{3}\mathrm{He}(^{3}\mathrm{H}) \rightarrow e^{X}$

 $e \ d \to e \ p_{\text{spec}} \ X$

need $z \sim 1$, factorization

³He-tritium mirror nuclei

semi-inclusive DIS from d \rightarrow tag "spectator" protons

"Cleaner" methods of determining d/u

$$e^{\mp} p \to \nu(\bar{\nu}) X$$

$$\nu(\bar{\nu}) p \to l^{\mp} X$$

$$p p(\bar{p}) \to W^{\pm} X$$

$$\vec{e}_L(\vec{e}_R) p \to e X$$

weak current as flavor probe

→ difficult to get high rates/luminosities

$$e \ p \to e \ \pi^{\pm} \ X$$

$$e^{3}\mathrm{He}(^{3}\mathrm{H}) \rightarrow e X$$

 $e \ d \rightarrow e \ p_{\mathrm{spec}} X$

need $z \sim 1$, factorization

³He-tritium mirror nuclei

semi-inclusive DIS from d \rightarrow tag "spectator" protons ³He-³H mirror

EMC ratios for A=3 mirror nuclei

$$R(^{3}\text{He}) = \frac{F_{2}^{^{3}\text{He}}}{2F_{2}^{p} + F_{2}^{n}}$$
$$R(^{3}\text{H}) = \frac{F_{2}^{^{3}\text{H}}}{F_{2}^{p} + 2F_{2}^{n}}$$

Extract n/p ratio from measured ³He-³H ratio

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3\mathrm{He}}/F_2^{^3\mathrm{H}}}{2F_2^{^3\mathrm{He}}/F_2^{^3\mathrm{H}} - \mathcal{R}} \qquad \qquad \mathcal{R} = \frac{R(^3\mathrm{He})}{R(^3\mathrm{H})}$$

 \rightarrow nuclear effects cancel to < 1% level

³He-³H mirror

Spectator proton tagging $_{V-Q^2}$

Spectator proton tagging $M_{\nu} - Q^2$

Spectator proton tagging $M_{\nu} - Q^2$

Spectator proton tagging $M_{\nu} - Q^2$

- Electron scattering
 - → clean probe of quark structure of nucleon
 - → new era of experiments with unprecedented precision
- Valence quarks at large x
 - \rightarrow d quark properties unknown at large x
 - nuclear corrections in deuteron important (deuteron <u>is</u> a nucleus!)
 - → long-standing puzzles about $x \to 1$ behavior of valence quarks will soon be solved!