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Quark-hadron duality

Complementarity between quark and 
hadron descriptions of observables

∑

hadrons

=

∑

quarks

Can use either set of complete basis states
to describe all physical phenomena



1.
Bloom-Gilman duality
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As W decreases, DIS region gives way to
 region dominated by nucleon resonances
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Fig. 9. Early proton !W2 structure function data in the resonance region, as a function of "′, compared to a smooth fit to the
data in the scaling region at largerQ2. The resonance data were obtained at the indicated kinematics, withQ2 in GeV2, for the

longitudinal to transverse ratio R = 0.18. (Adapted from Ref. [3].)

perturbative QCD (as will be discussed in Section 4). Nevertheless, the astute observations made by

Bloom and Gilman are still valid, and may be summarized as follows:

I. The resonance region data oscillate around the scaling curve.

II. The resonance data are on average equivalent to the scaling curve.

III. The resonance region data “slide” along the deep inelastic curve with increasingQ2.

These observations led Bloom and Gilman to make the far-reaching conclusion that “the resonances are

not a separate entity but are an intrinsic part of the scaling behavior of !W2” [2].

In order to quantify these observations, Bloom and Gilman drew on the work on duality in hadronic

reactions to determine a FESR equating the integral over ! of !W2 in the resonance region, to the integral

over "′ of the scaling function [2],

2M

Q2

∫ !m

0

d! !W2(!, Q
2) =

∫ 1+W 2
m/Q2

1

d"′!W2("
′) . (63)

Here the upper limit on the ! integration, !m = (W 2
m −M2+Q2)/2M , corresponds to the maximum value

of "′ = 1 + W 2
m/Q2, where Wm ∼ 2GeV, so that the integral of the scaling function covers the same

range in "′ as the resonance region data. FESR (63) allows the area under the resonances in Fig. 9 to
be compared to the area under the smooth curve in the same "′ region to determine the degree to which
the resonance and scaling data are equivalent. A comparison of both sides in Eq. (63) for Wm = 2GeV

showed that the relative differences ranged from∼ 10%atQ2=1GeV2, to!2%beyondQ2=2GeV2 [3],
thus demonstrating the near equivalence on average of the resonance and deep inelastic regimes (point II

above). Using this approach, Bloom andGilman’s quark–hadron duality was able to qualitatively describe

the data in the range 1!Q2!10GeV2.

scaling curve

resonance - scaling duality in
proton                 structure function νW2 = F2

Electron scattering
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Bloom-Gilman duality

Average over (strongly Q  dependent) resonances 
     Q   independent scaling function2
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Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

Bloom-Gilman duality
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Fig. 13. Proton F2 structure function in the ! (top) and S11 (bottom) resonance regions from Jefferson Lab Hall C, compared

with the scaling curve from Ref. [7]. The resonances move to higher " with increasing Q2, which ranges from ∼ 0.5GeV2

(smallest " values) to ∼ 4.5GeV2 (largest " values).

higherQ2 values. It is difficult to evaluate precisely the equivalence of the two ifQ2 evolution [60] is not

taken into account. Furthermore, the resonance data and scaling curves, although at the same " or #′, are
at different x and sensitive therefore to different parton distributions. A more stringent test of the scaling

behavior of the resonances would compare the resonance data with fundamental scaling predictions for

the same low-Q2, high-x values as the data.

Such predictions are now commonly available from several groups around the world, for instance,

the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [61]; Martin, Roberts, Stirling, and

Thorne (MRST) [62]; Gluck, Reya, andVogt (GRV) [63]; and Blümlein and Böttcher [64], to name a few.

These groups provide results from global QCD fits to a full range of hard scattering processes—including

lepton–nucleon deep inelastic scattering, prompt photon production, Drell–Yan measurements, jet pro-

duction, etc.—to extract quark and gluon distribution functions (PDFs) for the proton. The idea of such

global fitting efforts is to adjust the fundamental PDFs to bring theory and experiment into agreement

for a wide range of processes. These PDF-based analyses include pQCD radiative corrections which give

rise to logarithmicQ2 dependence of the structure function. In this report, we use parameterizations from

all of these groups, choosing in each case the most straightforward implementation for our needs. It is

not expected that this choice affects any of the results presented here.

(Local)

∆

S11

Bloom-Gilman duality



Scaling variables
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measurements at higher Q2 —data which are planned but
not yet available [24].

Figure 3 shows the same duality integral ratio as in
Fig. 2, but here obtained more locally, in restricted j
ranges around the three prominent resonance enhancement
regions observed in inclusive nucleon resonance electro-
production, i.e., around the masses of the D P33(1232)
(1.3 # W2 , 1.9 GeV2), the S11(1535) (1.9 # W2 ,
2.5 GeV2), and the F15(1680) (2.5 # W2 , 3.1 GeV2)
resonances, and in the higher W2 region above these
(3.1 # W2 # 3.9 GeV2). The uncertainties shown were
computed as in Fig. 2. The latter higher mass ratios,
which compare near deep inelastic data to deep inelastic
data are essentially one and similar to the results in Fig. 2.
It has been pointed out [25] that the D resonance form
factor decreases faster in Q2 than the leading order pertur-
bative QCD Q24 behavior which the scaling curve should
reflect. A similar observation may possibly be made from
Fig. 3 where the ratio (res!DIS) drops below unity in the
region 1 , Q2 , 3.5 "GeV!c#2. The S11 region, on the
other hand, appears systematically higher than the others.
Generally, however, the lower mass resonances appear to
average to the deep inelastic strength, manifesting duality
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FIG. 3. The ratios of integrated data strength in limited ranges
of j around the prominent resonance enhancement mass regions,
to the strength from the resonance fit (stars) and NMC (squares)
scaling curves integrated over the same j regions.

behavior even in these limited ranges of j at low Q2

where higher twist effects might be expected to be large.
By utilizing new inclusive data in the resonance region

at large x, it has been possible to revisit quark-hadron dual-
ity experimentally for the first time in nearly three decades.
These new data, combined with the extensive global mea-
surements of the F2 structure function from deep inelastic
scattering, allow for precision tests of duality in electron-
nucleon scattering. The original duality observations are
verified, and the QCD moment explanation indicates that
higher twist contributions to the n ! 2 moment of the F2
structure function are small or canceling, even in the low
Q2 regime of Q2 $ 0.5 "GeV!c#2. Duality is observed
to hold for local resonance enhancements individually, as
well as for the entire 1 # W2 # 4 GeV2 resonance region.
In all cases, duality appears to be a nontrivial dynamic
property of the nucleon structure function.

This work is supported in part by research grants from
the National Science Foundation. C. E. K. and R. E. wish
to thank A. Radyushkin for many useful discussions.
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2.
Duality in QCD
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Duality in QCD
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de Rujula, Georgi, Politzer,
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Duality ⇐⇒ suppression of higher twists

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

Duality in QCD



Duality in QCD

Much of recent new data is in resonance region,  W < 2 GeV

common wisdom:  pQCD analysis not valid in resonance region

in fact:  partonic interpretation of moments  does  include
resonance region

Resonances are an integral part of deep inelastic
structure functions!

implicit role of quark-hadron duality
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to n-th moment n



Ji, Unrau, 
Phys. Rev. D 52 (1995) 72

BUT resonances and DIS continuum conspire to
produce only  ~ 10%  higher twist contribution!
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3

high-precision An
1 data of the Jefferson Lab E99-117 ex-

periment [19] at large x. Since the elastic contribution is
included separately, the maximum value of x is defined
for each experiment by the pion electroproduction thresh-
old. The resulting total moments Γn

1 from the world data
are plotted in Fig. 1 for 0.5 < Q2 ≤ 10 GeV2, where the
total uncertainty in each data set is the quadratic sum of
the statistical and systematic uncertainties. The Jeffer-
son Lab experiment E94-010 (filled circles) extends the
range of Q2 with precision data below Q2 = 1 GeV2.
In all cases the data include both the inelastic and elas-
tic contributions, with the latter taken from the fit in
Ref. [20].
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FIG. 1: Q2 dependence of Γn

1 from various experiments. The
error bars are a quadratic sum of statistical and systematic
uncertainties. The twist-2 contribution from Eq. (2) is given
by the band with ∆Σ = 0.35, and its width represents the
uncertainty in αs. The elastic contribution is indicated by
the long-dashed curve.

The twist-2 contribution µn
2 is determined by fitting

the neutron data in Fig. 1 assuming there are no higher
twists in the data beyond Q2 = 5 GeV2, from which we
obtain ∆Σ = 0.35±0.08, where the uncertainty is statis-
tical. Using this central value, the twist-2 contribution is
illustrated in Fig. 1 by the shaded band, with the extrema
representing the range of uncertainty associated with the
value of αs in the Wilson coefficients. The exact value of
∆Σ depends somewhat on the x → 0 behavior assumed
in the extrapolation beyond the measured region. How-
ever, since the higher-twist contributions are determined
from the relative variation in Γn

1 from high to low Q2, the
absolute normalization of the leading-twist contribution
does not play a major role in determining fn

2 .
The higher-twist contribution ∆Γn

1 , obtained by sub-
tracting the leading-twist curves in Fig. 1 from data on
the total moment Γn

1 , is shown in Fig. 2 as a function
of 1/Q2 for ∆Σ = 0.35. Here we have used an

2 =
−0.0031(20) for the target mass corrections, obtained
from a fit to the world neutron data [19] at Q2 = 5 GeV2,
and the value dn

2 = 0.0079(48) for the twist-3 matrix el-

ement obtained from SLAC experiment E155X [21]. At
this Q2 value an

2 and dn
2 are dominated by their leading-

twist contributions.
While the Q2 evolution of the (twist-2) an

2 is straight-
forward, the evolution of higher-twist structure func-
tions is in general rather more involved. For the twist-4
fn
2 matrix element the Q2 evolution was computed in

Refs. [6, 22] to leading logarithmic order. In this analy-
sis we assume the leading-twist values for an

2 and dn
2 at

Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn

2 . In prac-
tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn

1 data for Q2 > 0.5 GeV2, using
Eq. (3) with fn

2 and the 1/Q4 correction µn
6 as free pa-

rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be

fn
2 = 0.033± 0.005 , µn

6 = (−0.019± 0.002)M4 , (9)

normalized at Q2 = 1 GeV2. Including the total system-
atic uncertainty for each experiment, we find

fn
2 = 0.034± 0.043 , µn

6 = (−0.019± 0.017)M4 . (10)
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FIG. 2: Higher-twist correction ∆Γn

1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
is a 2-parameter (fn

2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.

higher twist contribution

Neutron g  moment1

Meziani, WM et al.,
Phys. Lett. B613 (2005) 148



nonperturbative interactions between
quarks and gluons not dominant at these scales 

suggests strong cancellations between resonances, 
resulting in dominance of leading twist

Total higher twist  small  at Q2
∼ 1 − 2 GeV

2

OPE does not tell us why higher twists are small !



Can we understand this
behavior dynamically?

How do cancellations between 
coherent resonances produce
incoherent scaling function?



3.
Local duality       

- quark models



Coherence vs. incoherence

Exclusive form factors
coherent scattering from quarks

dσ ∼

(∑
i

ei

)2

dσ ∼

∑

i

e
2

i

Inclusive structure functions

incoherent scattering from quarks

How can  square of a sum      sum of squares ?≈



Pedagogical model

Two quarks bound in a harmonic oscillator potential
exactly solvable spectrum

Structure function given by sum of squares of 
transition form factors

F (ν,q2) ∼

∑

n

∣∣G0,n(q2)
∣∣2 δ(En − E0 − ν)

Charge operator                          excites
∝ (e1 + e2)

2

∝ (e1 − e2)
2

Σi ei exp(iq · ri)

odd  partial waves with strength 
even partial waves with strength



Pedagogical model

Resulting structure function

F (ν,q2) ∼

∑

n

{
(e1 + e2)

2 G2
0,2n

+ (e1 − e2)
2 G2

0,2n+1

}

If states degenerate, cross terms
cancel when averaged over nearby even and odd 
parity states 

(∼ e1e2)

Minimum condition for duality:

at least one complete set of even and odd 
parity resonances must be summed over

Close, Isgur,  Phys. Lett. B509 (2001) 81



Quark model

Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#

R"#
F1

"p

F1
"n
, !4#

and polarization asymmetries,

A1
N#

g1
N

F1
N , !5#

A1
"N#

g1
"N

F1
"N
, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
2

3
, A1

p#
5

9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2
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SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence
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SU(6) may be      valid at x ~ 1/3 ≈

which combinations of resonances reproduce
behavior of structure functions at large x?

significant deviations at large xBut

Quark model

R!!
1

2
, A1

!p!"
1

3
, A1

!n!
2

3
"SU#6 $% , #8$

for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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1
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.
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where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,
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for N#p or n. In particular, for +#, one finds the classic
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for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.
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g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2
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where EN and ER are the energies of the ground state and
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sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
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structure function, on the other hand, corresponds to the dif-
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excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
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The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in
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and neutron. For generality, we separate the contributions
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respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and
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3
2 ) states from the proton are allowed. !Note that the overall
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elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!
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where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!
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SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2

SYMMETRY BREAKING AND QUARK-HADRON DUALITY . . . PHYSICAL REVIEW C 68, 035210 !2003#

035210-3

suppression model! identical production rates
in 56   and 70   channels+ _

important test for future experiments

γ
∗

ν



3.
Local duality               

- phenomenological models



Phenomenological model

Extract                form factors from exclusive data
(for                     )

Calculate structure function from J=1/2 and 3/2 resonance 
form factors P33(1232), D13(1520), P11(1440), S11(1535)

N → N
∗

Q2 ≤ 2 GeV
2

consider both    and     scatteringγ ν

F2(ν, Q2) =
1

M
V2 δ(W 2

− M2

R)

APPENDIX: STRUCTURE OF THE HADRONIC
TENSOR

As we have mentioned, the hadronic tensor is parame-
trized in the form (2.4). The functions W 1; . . . ;W 6 have
been calculated from Eq. (2.9) and led to
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These are the important form factors for most of the kinematic region. As mentioned already, there are two additional
form factors, whose contribution to the cross section is proportional to the square of the muon mass.
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Notice, as it is expected, for the contribution of the
vector form factors the equalities W 5 # W 2 & !q &
p"=Q2 and W 4 # W 2 & !q & p"2=Q4 $W 1m2

N=Q
2 are

satisfied.
In terms of the invariant variables, Q2 and W, the scalar

products of the 4-vectors are:
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Eq. (2.10) must be compared with the known one from
the Ref. [5]. This can be easily done for a specific case
Q2 ! 0, m# ! 0, when only CA

5 contribute to the cross
section. After the integration over W with the help of the
delta-function we obtain
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that identically coincides with the result, obtained in a
similar way from Ref. [5].
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These are the important form factors for most of the kinematic region. As mentioned already, there are two additional
form factors, whose contribution to the cross section is proportional to the square of the muon mass.
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Notice, as it is expected, for the contribution of the
vector form factors the equalities W 5 # W 2 & !q &
p"=Q2 and W 4 # W 2 & !q & p"2=Q4 $W 1m2

N=Q
2 are

satisfied.
In terms of the invariant variables, Q2 and W, the scalar

products of the 4-vectors are:
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Eq. (2.10) must be compared with the known one from
the Ref. [5]. This can be easily done for a specific case
Q2 ! 0, m# ! 0, when only CA

5 contribute to the cross
section. After the integration over W with the help of the
delta-function we obtain
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that identically coincides with the result, obtained in a
similar way from Ref. [5].
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Phenomenological model
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Figure 1: Duality for the isoscalar nucleon F eN
2 structure function. (Left) F eN

2 as a
function of ξ, for Q2 = 0.2, 0.5, 1 and 2 GeV2 (indicated on the spectra), compared with
several leading twist parameterizations [31, 32, 33] (valence and total) at Q2 = 10 GeV2.
(Right) Ratio IeN

2 of the integrated F eN
2 in the resonance region to the leading twist

functions (valence and total).

functions in terms of x and Q2 [34] and perform the integrations over x [20]. For a first

investigation of duality, and since we are mostly concerned about the relative differences

between duality in neutrino and electron scattering, the integrals over ξ in Eq. (23) will

provide a sufficient test of integrated duality.

The ratio IeN
2 for electron scattering is shown in Fig. 1 (right panel). The results

are similar to those of the empirical analysis of JLab proton data [4]. The integrated

resonance contribution is smaller than the leading twist at low Q2, but increases with

increasing Q2. For Q2 ! 1 GeV2, the ratio IeN
2 is within ∼ 20% of unity when using the

total DIS structure function. On the other hand, for the valence-only structure function

the ratio is within ∼ 20% of unity over a larger range, Q2 ! 0.5 GeV2. The better

agreement of the resonance curve with the valence-only leading twist curve supports the

notion of two–component duality [37], as observed in the JLab F ep
2 data [4]. In more

refined treatments one would also take into account the Q2 evolution of the leading twist

structure function. This will modify the quantitative behavior of the ratio with respect

to Q2, but not its essential features.
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~ 10 - 20%  agreement for 1 < Q2 < 2 GeV
2



Phenomenological model

SS resonances. The contribution from the latter becomes more significant with increasing

Q2 since its form factors fall off more slowly than the dipole. The contribution of the

P11(1440) resonance is too small to be seen as a separate peak. The two sets of resonance

curves correspond to the “fast fall-off” (lower curves) and “slow fall-off” (upper curves)

scenarios for the axial form factors discussed in Sec. 2.1. The smooth curves are obtained

from Eq. (16) using the GRV [31] and CTEQ [32] leading twist parton distributions at

Q2 = 10 GeV2, as in Fig. 1. Just as in the case of electron–nucleon scattering, with

increasing Q2 the resonances slide along the leading twist curve, which is required by

duality. As in Fig. 1, we show both the total structure function and the valence-only

contribution.
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Figure 3: Duality for the neutrino–nucleon F νN
2 structure function. (Left) F νN

2 in the
resonance region at several Q2 values (indicated on the spectra), compared with leading
twist parameterizations [31, 32] (valence and total) at Q2 = 10 GeV2. (Right) Ratio
IνN
2 of the integrated F νN

2 in the resonance region to the leading twist functions [31, 32]
(valence and total). The upper (lower) resonance curves and the upper (lower) integrated
ratios correspond to the ”slow” (”fast”) fall-off of the axial form factors.

In Fig. 3 (right panel) we show the ratio of the integrals of the neutrino resonance and

leading twist structure functions, defined in Eq. (23). The ratio is within ∼ 20–25% of

unity for Q2 ! 0.3 GeV2 and, unlike the corresponding electron–nucleon ratio IeN
2 , does

not grow appreciably with Q2. Again, the two sets of resonance curves correspond to

the “fast fall-off” (lower) and “slow fall-off” (upper) scenarios for the axial form factors.
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~ 20%  agreement for 0.5 < Q2 < 2 GeV
2

need to average over proton and neutron
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Phenomenological model

3.3 Adler sum rule

One of the most fundamental results in neutrino scattering is the relation between the

difference of the νn and νp structure functions for quasi-elastic (QE) scattering and for

the rest of the higher mass states [38, 39, 40],

[
g(QE)
1V (Q2)

]2
+

[
g(QE)
1A (Q2)

]2
+

[
g(QE)
2V (Q2)

]2 Q2

4M2
+

∫
dν

[
W νn

2 (Q2, ν) − W νp
2 (Q2, ν)

]
= 2 .

(24)

Because it measures the isospin of the target, this relation must hold for all values of Q2.

In the Q2 → 0 limit, Eq. (24) is reduced to the Adler-Weisberger relation [38, 39],

which has been verified experimentally to good accuracy. For Q2 #= 0, it is known as

the Adler sum rule [40], which has also been tested with data for neutrino deep inelastic

scattering, and found to hold to ≈ 20% accuracy [41]. At large Q2 it has a simple

interpretation in the parton model, in terms of integrals of valence quark distributions.

Using the model [24] for the resonance form factors, we can study how the Adler sum rule

is satisfied as a function of Q2.

For the QE form factors we use the following simple parametrization:

g(QE)
1V =

1

DV
, g(QE)

2V =
3.7

DV
, g(QE)

1A =
1.23

DA
. (25)

The W2 structure functions in Eq. (24) include contributions from resonance production

and from the deep inelastic region. The resonance contribution is calculated for the

first four resonances, as discussed earlier. The integration is performed in the range of

νmin < ν < νmax corresponding to the final state mass range 1.1 < W < 1.6 GeV. In terms

of ξ, the integration of the structure function for each Q2 corresponds to the area under

the resonance curve from ξmin = ξ(Q2, W = 1.6 GeV) to ξmax = ξ(Q2, W = 1.1 GeV).

The contribution from the remaining ξ interval, 0 < ξ < ξmin, corresponds to the higher

W region. For this we assume that the structure functions are given by the leading twist

contributions, calculated from the MRST parametrization [33].
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Figure 6: Decomposition of the Adler sum, as a function of Q2, into its QE (dashed),
resonance (short dashed) and deep inelastic (dotted) contributions, as well as the total
(solid).

In Fig. 6 the individual contributions from the QE, resonance, and DIS regions are

plotted as a function of Q2. The (positive) QE contribution is large at low Q2 but falls

rapidly with increasing Q2. The resonant piece of the sum is negative, and partially

cancels the QE component. The deep inelastic component grows with Q2, since ξ → 1

as Q2 → ∞, and for Q2 > 1 GeV2 contributes some 80% of the integral. Combining

the three terms, the sum rule is found to be satisfied within ∼ 10% over the whole range

0.5 < Q2 < 2 GeV2.

Since the Adler some rule is based on very general grounds, one expects it to be exact.

The 10% deviation of the calculated sum rule from the exact value should therefore be

treated as an indication of the accuracy of the model. In practice, the uncertainty comes

mainly from the axial form factors for the second resonance region, and suggests that
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total

saturated at ~ 90% level 0.5 < Q2 < 2 GeV
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remainder likely indicates need for more resonances
or better determined transition form factors



4.
Target mass corrections



Georgi, Politzer (1976) 

∫
d
4
x e

iq·x〈N |T (Jµ(x)Jν(0))|N〉

=

∑

k

(
−gµνqµ1qµ2 + gµµ1qνqµ2 + qµqµ1gνµ2 + gµµ1gνµ2Q2

)

×qµ3
· · · qµ2k

22k

Q4k
A2kΠµ1···µ2k}
〈N |Oµ1···µ2k

|N〉

traceless, symmetric
rank-2k tensor

=
k∑

j=0

(−1)j (2k − j)!

2j(2k)j
g · · · g p · · · p

Πµ1···µ2k
= pµ1

· · · pµ2k
− (gµiµj

terms)

Operator Product Expansion

Target mass corrections



=
∞∑

j=0

(
M2

Q2

)j
(n + j)!

j!(n − 2)!

An+2j

(n + 2j)(n + 2j − 1)

n-th moment of       structure functionF2

∫
dx xn−2 F2(x, Q2)Mn

2 (Q2) =

An =

∫ 1

0

dy yn F (y)

Target mass corrections

“quark distribution function”

F (y) ≡
F2(y)

y2



inverse Mellin transform (+ tedious manipulations)

r =
√

1 + 4x2M2/Q2ξ =
2x

1 + r

... similarly for other structure functions F1, FL

FGP
2 (x, Q2) =

x2

r3
F (ξ) + 6

M2

Q2

x3

r4

∫ 1

ξ

dξ′ F (ξ′)

+ 12
M4

Q4

x4

r5

∫ 1

ξ

dξ′
∫ 1

ξ′

dξ′′ F (ξ′′)

Target mass corrections



Christy et al. (2005)

no TMCTMC

TMCs significant at large          , especially for x2/Q2
FL
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Fig. 14. Proton F
p
2 structure function in the resonance region for several values of Q2, as indicated. Data from Jefferson Lab

Hall C [65,66] are compared with some recent parameterizations of the deep inelastic data at the same Q2 values (see text).

Comparison of resonance region data with PDF-based global fits allows the resonance–scaling com-

parison to be made at the same values of (x, Q2), making the experimental signature of duality less

ambiguous. Such a comparison is presented in Fig. 14 for F
p
2 data from Jefferson Lab experiment E94-

110 [65,66], with the data bin-centered to the values Q2 = 1.5, 2.5 and 3.5 GeV2 indicated. These F
p
2

data are from an experiment capable of performing longitudinal/transverse cross section separations, and

so are even more precise than those shown in Figs. 11–13.

The smooth curves in Fig. 14 are the perturbative QCD fits from the MRST [67] and CTEQ [68]

collaborations, evaluated at the same Q2 values as the data. The data are shown with target mass (TM)

corrections, which are calculated according to the prescription of Barbieri et al. [16]. The SLAC curve

is a fit to deep inelastic scattering data [69], which implicitly includes target mass effects inherent in

the actual data. The target mass corrected pQCD curves appear to describe, on average, the resonance

strength at each Q2 value. Moreover, this is true for all of the Q2 values shown, indicating that the

resonance averages must be following the same perturbative Q2 evolution [60] which governs the pQCD

parameterizations (MRST and CTEQ). This demonstrates even more emphatically the striking duality

between the nominally highly nonperturbative resonance region and the perturbative scaling behavior.

An alternate approach to quantifying the observation that the resonances average to the scaling curve

has been used recently by Alekhin [70]. Here the differences between the resonance structure func-

tion values and those of the scaling curve, !F
p
2 , are used to demonstrate duality, as shown in Fig. 15,

Target mass corrections



Threshold problem

if                          at largeF (y) ∼ (1 − y)β y

then since ξ0 ≡ ξ(x = 1) < 1

F (ξ0) > 0

FTMC
i (x = 1, Q2) > 0

is this physical?

problem with GP formulation?



work with     dependent PDFs

Steffens, WM
PRC 73 (2006) 055202

ξ0

n-th moment       of distribution function An

An =

∫ ξmax

0

dξ ξn F (ξ)

what is        ?ξmax

GP use                                unphysicalξmax = 1, ξ0 < ξ < 1

strictly, should use                               ξmax = ξ0

Possible solution



what is effect on phenomenology?

try several  “toy distributions”

q(ξ) = N ξ−1/2 (1 − ξ)3 , ξmax = 1

standard TMC (“sTMC”)

modified TMC (“mTMC”)

q(ξ) = N ξ−1/2 (1 − ξ)3 Θ(ξ − ξ0), ξmax = ξ0

threshold dependent (“TD”)

qTD(ξ) = N ξ−1/2 (ξ0 − ξ)3 , ξmax = ξ0

Possible solution
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FIG. 3: The x dependence of the F2 structure function at Q2 = 1 GeV2 (upper) and 5 GeV2 (lower). The effects of TMCs
on the (input) scaling distribution (dotted curve) are illustrated for the sTMC (dashed) and mTMC (double-dot–dashed)
prescriptions, and compared with the effects on the (input) TD-distribution ξqTD(ξ) (dot-dashed) using the TD approach
(prescription C, solid).

the sTMC and mTMC prescriptions, the corrected structure function is significantly larger in magnitude than for the
TD prescription at intermediate and large x. For the sTMC case in particular, it is also seen to approach a nonzero
value in the x → 1 limit. This result suggests that the evaluation of the twist-two part of the longitudinal structure
function at low Q2 may also need to be reassessed in phenomenological analyses, especially at intermediate and large
x.

TMCs in F2

correct threshold behavior for  “TD” correction

non-zero
at x = 1



5

from 0 to 1 (specifically, in the integrals for An, H(ξ) and G(ξ)). Here the normalization N ensures that the
distribution integrates to unity. We denote this prescription the “standard TMC” (sTMC).

(B) Integrate a modified distribution which vanishes for ξ > ξ0, as implied by Eq. (7)1:

q(ξ) = N ξ−1/2(1 − ξ)3 Θ(ξ − ξ0) . (19)

We denote this prescription the “modified TMC” (mTMC).
(C) Use a “threshold dependent” (TD) quark distribution which vanishes in the physical limit:

qTD(ξ) = N ξ−1/2(ξ0 − ξ)3 . (20)
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FIG. 1: Ratio of the n = 2 Nachtmann moment of the F2 structure function and the n = 2 moment of the quark distribution,
as a function of Q2. The curves correspond to prescriptions A [“sTMC”] (dotted), B [“mTMC”] (dashed) and C [“TD”] (solid).

Note that because of the upper limit in Eq. (7), An itself will be M2/Q2 dependent for prescriptions B and C. The
results for the ratio µn

2/An of the n = 2 moments are displayed in Fig. 1 for the three cases, with prescriptions A, B
and C corresponding to the dotted, dashed and solid curves, respectively. Comparing the sTMC and mTMC results,
one can see a reduced Q2 dependence when the integrals are restricted to ξ < ξ0. However, a much more dramatic
change occurs when the quark distribution is constrained to vanish at ξ0. This renders the Nachtmann moment almost
equal to the moment of the quark distribution for virtually all Q2 considered. Certainly for Q2 > 1 GeV2 there is no
visible deviation of the ratio from unity. Even for very small Q2, Q2 ∼ 0.3 GeV2, the ratio differs from unity by only
∼ 0.7% (of course the OPE itself may not be valid at such low values of Q2).

Similarly, the ratios for the n = 4 and n = 6 moments are shown in Fig. 2. The deviation of the ratio from unity
for the sTMC approach is between 10%− 20% for Q2 <

∼ 1 GeV2, while that for the modified TMC with prescription
B is of the order of 5% over the same Q2 region. On the other hand, for the threshold dependent prescription C, the
deviation from unity remains around 1% even at these low Q2 values.

A consequence of prescription C is that the moments of the parton distribution are Q2 dependent. This seems to
be an inevitable consequence if the Nachtmann moments of the structure function are to be equal to the moments of
the parton distribution for all Q2. Note that this Q2 dependence is not of higher twist or perturbative QCD origin,
but arises solely from kinematics. Nevertheless, this avoids the more serious problems which arise within the sTMC

1 We believe this was also the implication of De Rújula et al. [11]
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FIG. 2: Ratios of the n = 4 (upper graph) and n = 6 (lower graph) Nachtmann moment of the F2 structure function and the
corresponding moments of the quark distribution, as a function of Q2. The curves are as in Fig. 1.

approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:

∫ 1

0
dξ ξn F (ξ, Q2

1) =

∫ 1

0
dξ ξn F (ξ, Q2

2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,
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approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:

∫ 1

0
dξ ξn F (ξ, Q2

1) =

∫ 1

0
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2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,
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Summary

Remarkable confirmation of quark-hadron duality in
structure functions  

higher twists “small” down to low Q2
2(~ 1 GeV  )

OPE  “organizes” duality violations in terms of higher twists 
but need quark models to understand origin of resonance 
cancellations  

2Importance of target mass corrections at low Q
avoid unphysical “threshold problem” by 
using threshold-dependent PDFs

phenomenological models for local duality

quantify role of background vs. resonances 

need higher-     transition form factor dataQ2
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