QCD and the Strong Interactions CSSM, Adelaide September 25-29, 2006

Quark-Hadron Duality in Electron-Nucleon Scattering

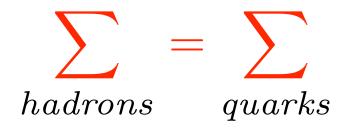
Wally Melnitchouk Jefferson Lab

Outline

- I. Bloom-Gilman duality
- 2. Duality in QCD
- 3. Local duality
 - quark models
 - phenomenological models
- 4. Target mass corrections

Quark-hadron duality

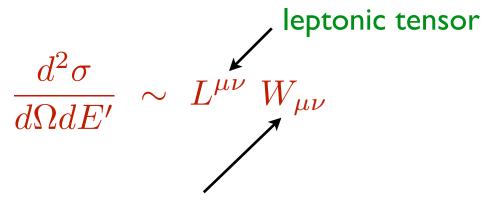
Complementarity between *quark* and *hadron* descriptions of observables

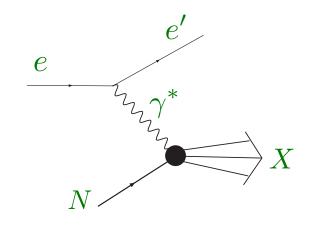


Can use either set of complete basis states to describe all physical phenomena

Bloom-Gilman duality

Inclusive cross section for $eN \to eX$

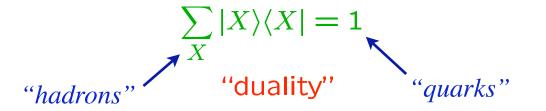


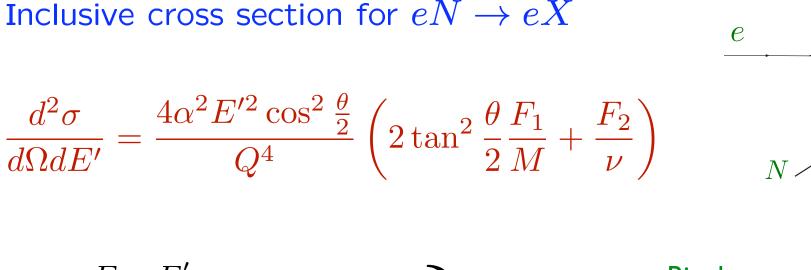


Hadronic tensor

 $W_{\mu\nu} = \sum_{X} \langle X|J_{\mu}(z)|N\rangle \langle N|J_{\nu}(0)|X\rangle \delta^{4}(p+q-p_{X})$ $= \int d^{4}z \ e^{iq\cdot z} \ \langle N|J_{\mu}(z)J_{\nu}(0)|N\rangle$

using completeness (sum over ALL states X)





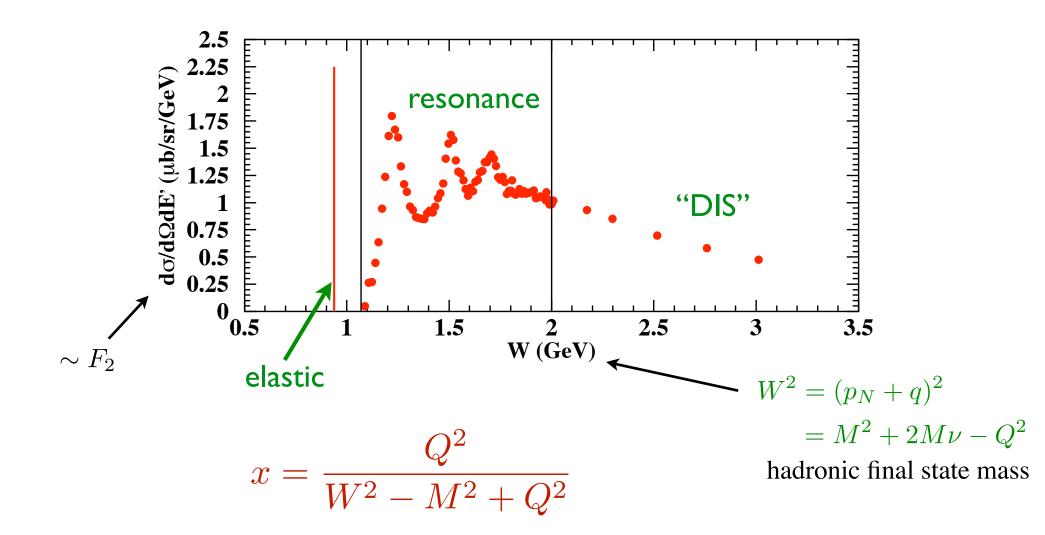
$$\nu = E - E'$$

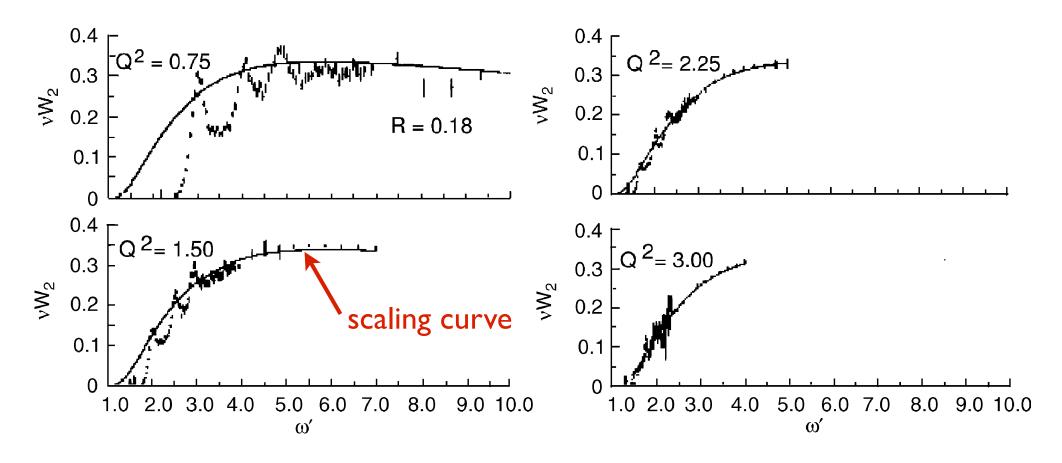
$$Q^{2} = \vec{q}^{2} - \nu^{2} = 4EE' \sin^{2} \frac{\theta}{2} \quad \begin{cases} x = \frac{Q^{2}}{2M\nu} & \text{Bjorken} \\ \text{scaling} \\ \text{variable} \end{cases}$$

 F_1 , F_2 "structure functions"

- —> contain all information about structure of nucleon
- \longrightarrow functions of x, Q^2 in general

As W decreases, DIS region gives way to region dominated by nucleon resonances

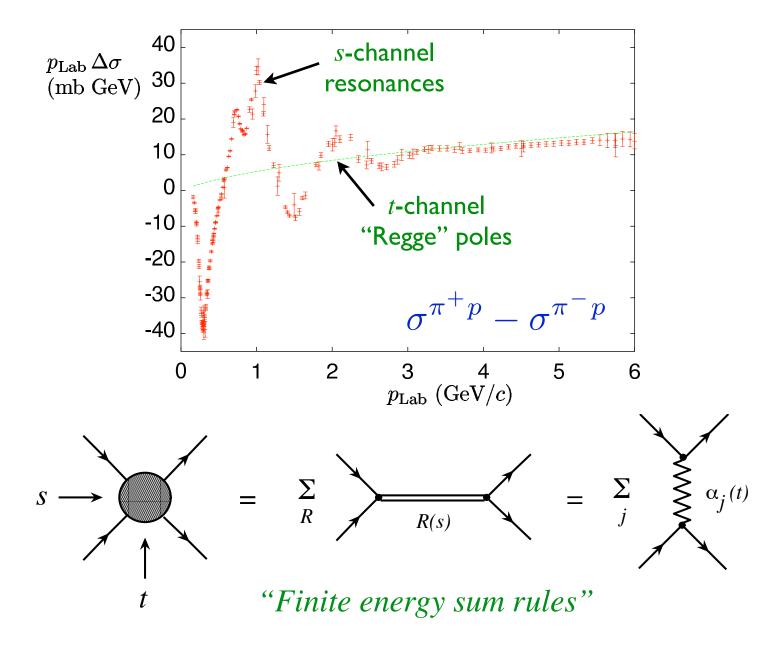




Bloom, Gilman, Phys. Rev. Lett. 85 (1970) 1185

→ resonance – scaling duality in proton $\nu W_2 = F_2$ structure function

cf. hadron-hadron scattering



Igi (1962), Dolen, Horn, Schmidt (1968)

Bloom-Gilman duality

Average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function

Finite energy sum rule for *eN* scattering

$$\frac{2M}{Q^2} \int_0^{\nu_m} d\nu \ \nu W_2(\nu, Q^2) = \int_1^{\omega'_m} d\omega' \ \nu W_2(\omega')$$

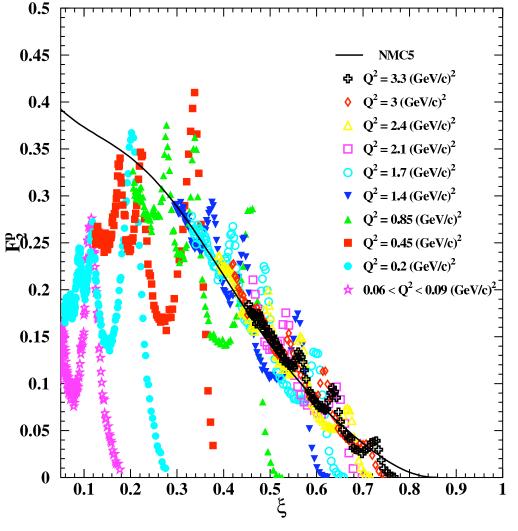
measured structure function (function of ν and Q^2)

"

hadrons"
$$\omega' = \frac{1}{x} + \frac{M^2}{Q^2}$$

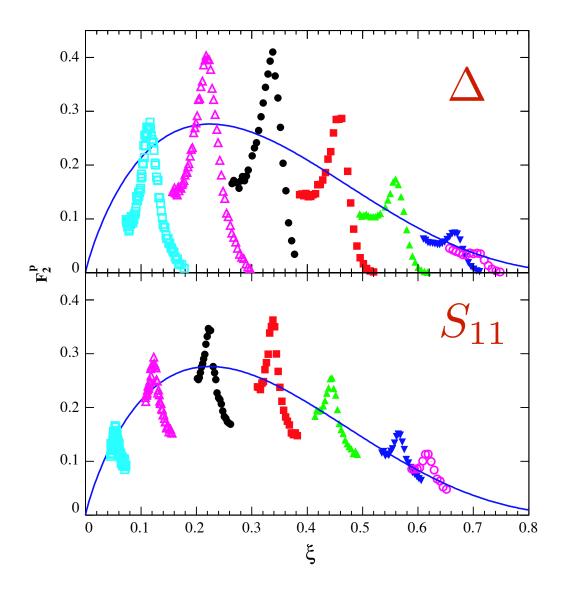
scaling function (function of ω' only)

Bloom-Gilman duality

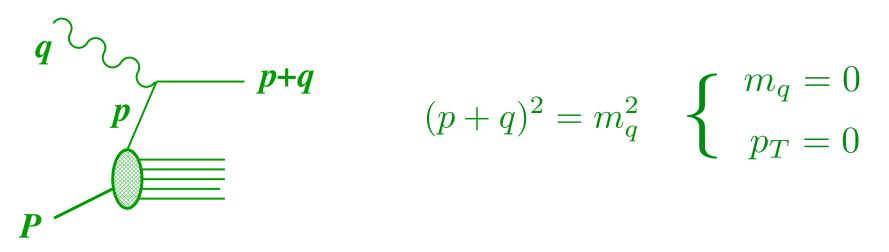


Jefferson Lab (Hall C) Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182 Average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function

(Local) Bloom-Gilman duality



Scaling variables

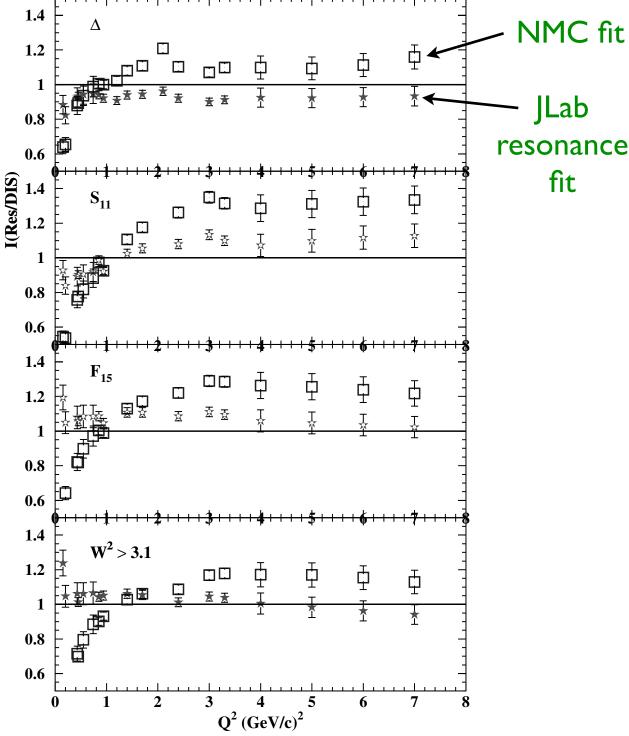


light-cone fraction of target's momentum carried by parton

$$\xi = \frac{p^+}{P^+} = \frac{p^0 + p^z}{M}$$

$$\implies \xi = \frac{2x}{1 + \sqrt{1 + 4x^2 M^2/Q^2}} \quad \rightarrow \quad x \text{ as } Q^2 \rightarrow \infty$$

Nachtmann scaling variable



Niculescu et al., Phys. Rev. Lett. 85 (2000) 1186

Operator product expansion

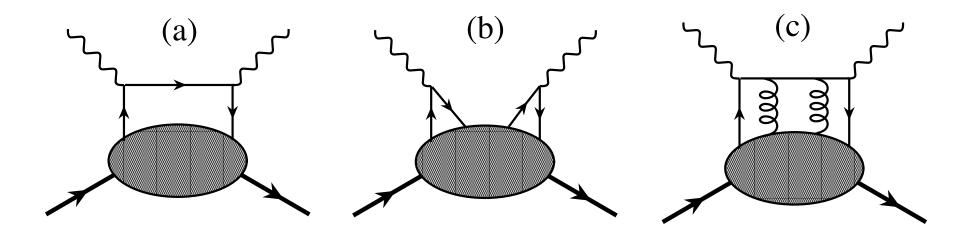
 \implies expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific "twist" au

 $\tau = \text{dimension} - \text{spin}$

Higher twists



 $\tau = 2$

 $\tau > 2$

single quark scattering

$$e.g.$$
 $ar{\psi} \gamma_\mu \psi$

qq and qg correlations

Operator product expansion

 \implies expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

If moment \approx independent of Q^2 \implies higher twist terms $A_n^{(\tau>2)}$ small

Operator product expansion

 \implies expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

Duality \iff **suppression of higher twists**

de Rujula, Georgi, Politzer, Ann. Phys. 103 (1975) 315

■ Much of recent new data is in <u>resonance</u> region, W < 2 GeV

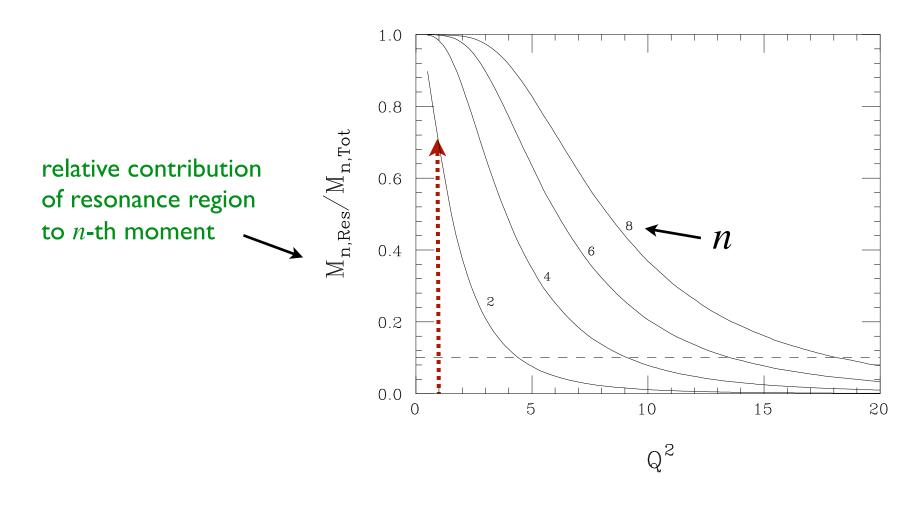
 \rightarrow common wisdom: pQCD analysis not valid in resonance region

 \rightarrow in fact: partonic interpretation of moments <u>does</u> include resonance region

Resonances are an <u>integral part</u> of deep inelastic structure functions!

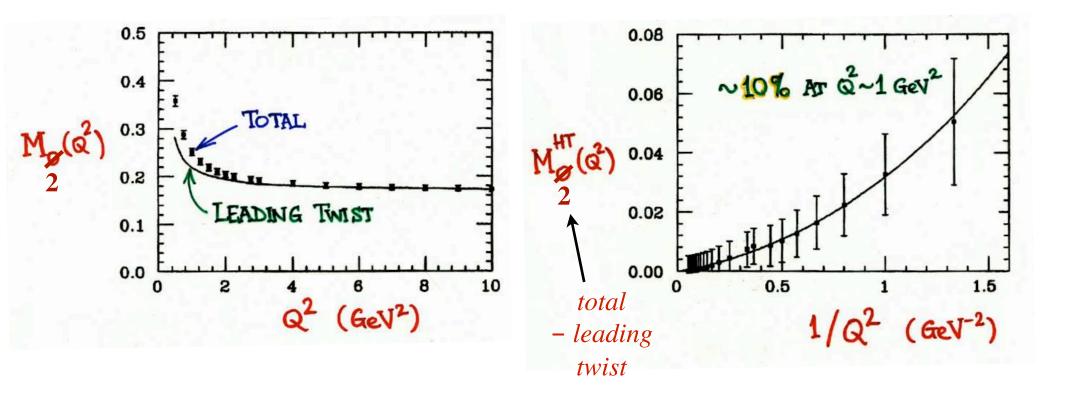
 \rightarrow implicit role of quark-hadron duality

Proton F_2 moments



At $Q^2 = 1 \text{ GeV}^2$, ~ <u>70%</u> of lowest moment of F_2^p comes from W < 2 GeV

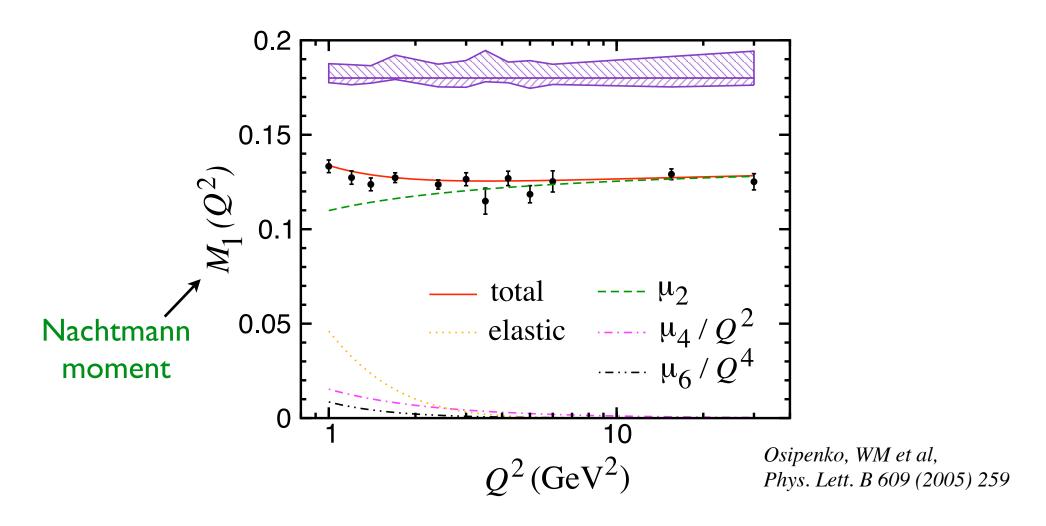
Proton F_2 moments



BUT resonances and DIS continuum conspire to produce only $\sim 10\%$ higher twist contribution!

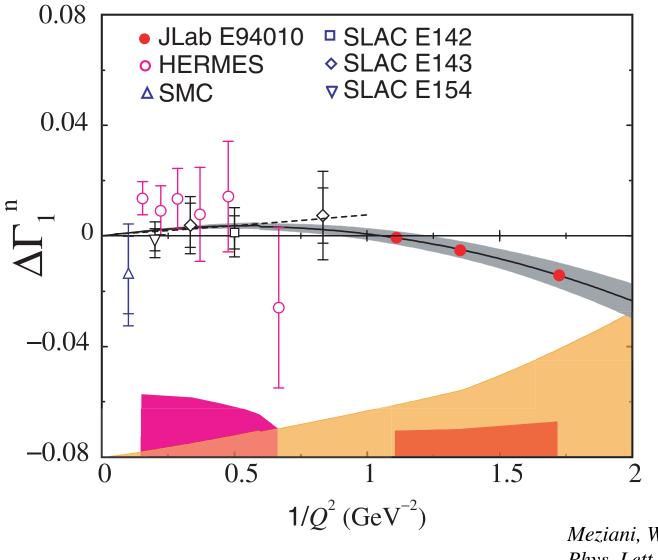
Ji, Unrau, Phys. Rev. D 52 (1995) 72

Proton g_1 moment



$$M_1 = \int_0^1 dx \frac{\xi^2}{x^2} \left[g_1 \left(\frac{x}{\xi} - \frac{M^2 x \xi}{9Q^2} \right) - g_2 \frac{4M^2 x^2}{3Q^2} \right] = \mu_2 + \frac{4M^2}{9Q^2} f_2 + \cdots$$

Neutron g_1 moment \rightarrow higher twist contribution



Meziani, WM et al., Phys. Lett. B613 (2005) 148 Total higher twist <u>small</u> at $Q^2 \sim 1 - 2 \text{ GeV}^2$

nonperturbative interactions between quarks and gluons not dominant at these scales

suggests strong cancellations between resonances, resulting in dominance of leading twist

\longrightarrow OPE does not tell us <u>why</u> higher twists are small !

Can we understand this behavior dynamically?

<u>How</u> do cancellations between coherent resonances produce incoherent scaling function?

3. Local duality - quark models

Coherence vs. incoherence

Exclusive form factors

→ <u>coherent</u> scattering from quarks

$$d\sigma \sim \left(\sum_i e_i\right)^2$$

Inclusive structure functions

→ *incoherent* scattering from quarks

$$d\sigma \sim \sum_i e_i^2$$

 \longrightarrow How can <u>square of a sum</u> \approx <u>sum of squares</u> ?

Pedagogical model

Two quarks bound in a harmonic oscillator potential exactly solvable spectrum

Structure function given by sum of squares of transition form factors

$$F(\nu, \mathbf{q}^2) \sim \sum_n \left| G_{0,n}(\mathbf{q}^2) \right|^2 \delta(E_n - E_0 - \nu)$$

Charge operator $\Sigma_i \ e_i \exp(i\mathbf{q} \cdot \mathbf{r}_i)$ excites even partial waves with strength $\propto (e_1 + e_2)^2$ odd partial waves with strength $\propto (e_1 - e_2)^2$

Pedagogical model

Resulting structure function

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} \left\{ (e_1 + e_2)^2 \ G_{0,2n}^2 + (e_1 - e_2)^2 \ G_{0,2n+1}^2 \right\}$$

If states degenerate, cross terms ($\sim e_1 e_2$) cancel when averaged over nearby even and odd parity states

Minimum condition for duality:

→ at least one complete set of <u>even</u> and <u>odd</u> parity resonances must be summed over

Close, Isgur, Phys. Lett. B509 (2001) 81

Even and odd parity states generalize to 56^+ (L=0) and 70^- (L=1) multiplets of spin-flavor SU(6)

scaling occurs if contributions from 56⁺ and 70⁻ have equal overall strengths

representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
F_1^p	$9\rho^2$	$8\lambda^2$	$9\rho^2$	0	λ^2	$18\rho^2 + 9\lambda^2$
F_1^n	$(3\rho+\lambda)^2/4$	$8\lambda^2$	$(3\rho-\lambda)^2/4$	$4\lambda^2$	λ^2	$(9\rho^2+27\lambda^2)/2$
g_1^p	$9\rho^2$	$-4\lambda^2$	$9\rho^2$	0	λ^2	$18\rho^2 - 3\lambda^2$
g_1^n	$(3\rho+\lambda)^2/4$	$-4\lambda^2$	$(3\rho-\lambda)^2/4$	$-2\lambda^2$	λ^2	$(9\rho^2-9\lambda^2)/2$

 $\lambda \ (\rho) =$ (anti) symmetric component of ground state wfn.

Close, WM Phys. Rev. C 68 (2003) 035210

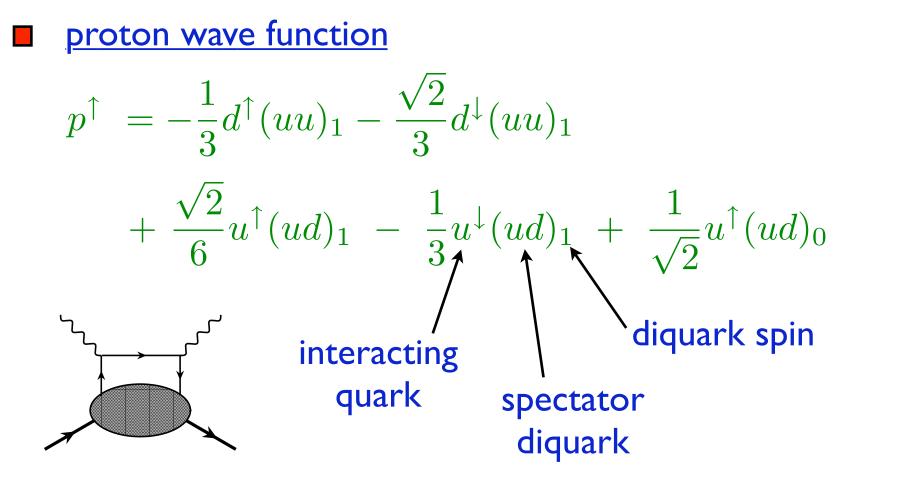
SU(6) limit $\implies \lambda = \rho$

SU(6):	$[56, 0^+]^2 8$	$[{f 56}, 0^+]^{f 4}{f 10}$	$[70, 1^-]^2 8$	$[70, 1^-]^4 8$	$[70, 1^{-}]^{2}10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18
g_1^p	9	-4	9	0	1	15
g_1^n	4	-4	1	-2	1	0

Summing over all resonances in 56^+ and 70^- multiplets

$$\Rightarrow R^{np} = \frac{F_1^n}{F_1^p} = \frac{2}{3} \qquad A_1^p = \frac{g_1^p}{F_1^p} = \frac{5}{9} \qquad A_1^n = \frac{g_1^n}{F_1^n} = 0$$

 \rightarrow as in quark-parton model !



$$\rightarrow u(x) = 2 d(x) \text{ for all } x \qquad \rightarrow \quad \frac{F_2^m}{F_2^p} = \frac{4u+d}{u+4d} = \frac{2}{3}$$

SU(6) may be \approx valid at $x \sim 1/3$

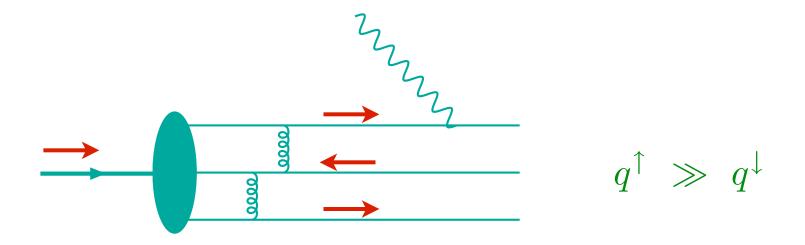
<u>But</u> significant deviations at large x

which combinations of resonances reproduce behavior of structure functions at large x?

Model	SU(6)	No ⁴ 10	No ² 10, ⁴ 10	No S _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
R^{np}	2/3	10/19	1/2	6/19	3/7	1/4
A_1^p	5/9	1	1	1	1	1
A_1^n	0	2/5	1/3	1	1 ★	1
	⁴ 10 [[56 +] and suppre		city 3/2 pression		

hard gluon exchange

at large x, helicity of struck quark = helicity of hadron



 \implies helicity-zero diquark dominant in $x \rightarrow 1$ limit

$$\begin{array}{ccc} \longrightarrow & \frac{d}{u} \longrightarrow & \frac{1}{5} \\ & \longrightarrow & \frac{F_2^n}{F_2^p} \longrightarrow & \frac{3}{7} \end{array} \end{array}$$

Farrar, Jackson 1975

SU(6) may be \approx valid at $x \sim 1/3$

<u>But</u> significant deviations at large x

which combinations of resonances reproduce behavior of structure functions at large x?

Model	SU(6)	No ⁴ 10	No ² 10, ⁴ 10	No <i>S</i> _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
R^{np}	2/3	10/19	1/2	6/19	3/7	1/4
A_1^p	5/9	1	1	1	1	1
A_1^n	0	2/5	1/3	1	1	

suppression of symmetric part of spin-flavor wfn. $e.g. \ \vec{S}_i \cdot \vec{S}_j$ interaction

scalar diquark dominance

 $M_{\Delta} > M_N \implies (qq)_1$ has larger energy than $(qq)_0$

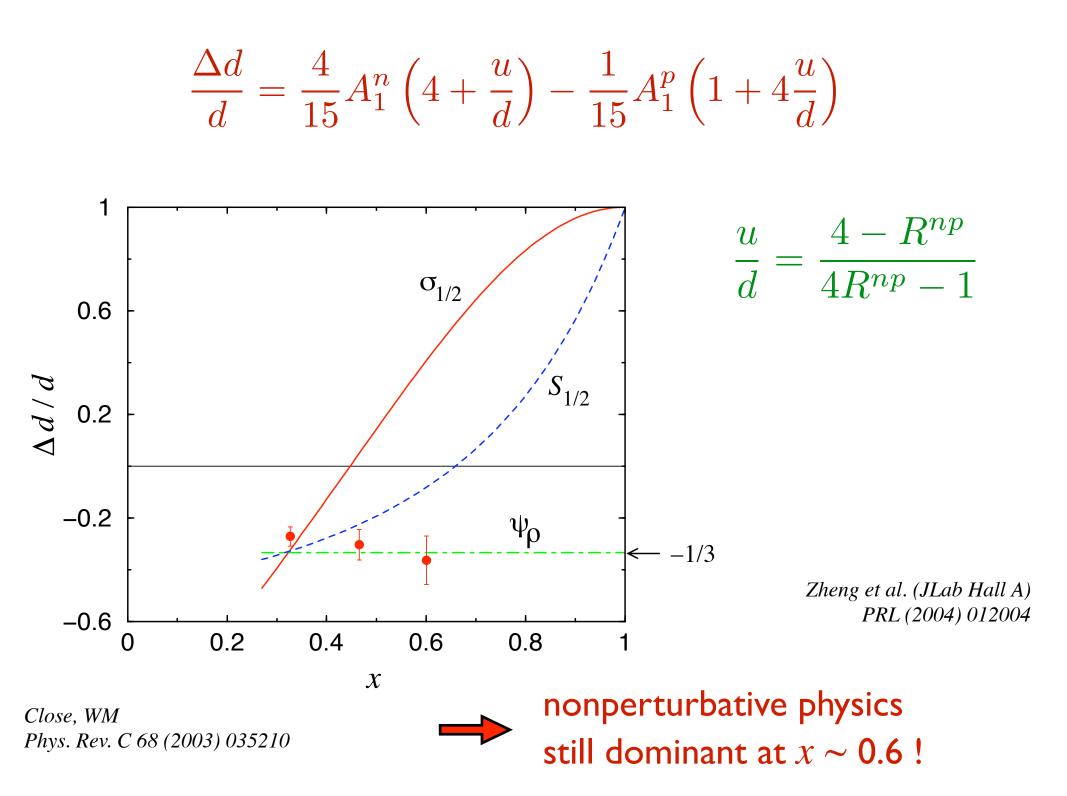
 \implies scalar diquark dominant in $x \rightarrow 1$ limit

since only u quarks couple to scalar diquarks

$$\longrightarrow \quad \frac{d}{u} \rightarrow 0$$

$$\longrightarrow \quad \frac{F_2^n}{F_2^p} \rightarrow \frac{1}{4}$$

Feynman 1972, Close 1973, Close/Thomas 1988



λ suppression model \implies identical production rates in 56⁺ and 70⁻ channels

	representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
	F_1^p	$9\rho^2$	$8\lambda^2$	$9\rho^2$	0	λ^2	$18\rho^2 + 9\lambda^2$
γ^*	$\overline{F_1^n}$	$(3\rho+\lambda)^2/4$	$8\lambda^2$	$(3\rho-\lambda)^2/4$	$4\lambda^2$	λ^2	$(9\rho^2 + 27\lambda^2)/2$
	g_1^p	$9\rho^2$	$-4\lambda^2$	$9\rho^2$	0	λ^2	$18\rho^2 - 3\lambda^2$
	g_1^n	$(3\rho+\lambda)^2/4$	$-4\lambda^2$	$(3\rho-\lambda)^2/4$	$-2\lambda^2$	λ^2	$(9\rho^2-9\lambda^2)/2$
	representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
	representation $F_{1}^{\nu p}$	² 8[56 ⁺] 0	$410[56^+]$ $24\lambda^2$	² 8[70 ⁻] 0	⁴ 8[70 ⁻]	2^{2} 10 [70 ⁻] $3\lambda^{2}$	Total $27\lambda^2$
7.4		0					
ν	$\frac{\Gamma}{F_1^{\nu p}}$		$24\lambda^2$	0	0	$3\lambda^2$	$27\lambda^2$

λ suppression model \implies identical production rates in 56⁺ and 70⁻ channels

	representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
γ^*	F_1^p F_1^n g_1^p g_1^n	$9\rho^{2}$ $(3\rho + 2)^{2}/4$ $9\rho^{2}$ $(3\rho + 2)^{2}/4$	$8 \times^{2}$ $8 \times^{2}$ $-2 \times^{2}$ $-2 \times^{2}$	$9\rho^{2}$ $(3\rho - \chi^{2}/4)$ $9\rho^{2}$ $(3\rho - \chi^{2}/4)$	0 4 2 0 -2 2	×××××	$\frac{18\rho^{2}+9\lambda^{2}}{(9\rho^{2}+27\lambda^{2})/2}$ $\frac{18\rho^{2}-3\lambda^{2}}{(9\rho^{2}-9\lambda^{2})/2}$
	representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
ν	$ F_{1}^{\nu p} \\ F_{1}^{\nu n} \\ g_{1}^{\nu p} \\ g_{1}^{\nu n} $	0 $(9\rho + 2/4)^{2/4}$ $(9\rho + 2/4)^{2/4}$	24^{2} 8 -12^{2} -4^{2}	0 $(9\rho - \frac{1}{\sqrt{2}})^{2}/4$ $(9\rho - \frac{1}{\sqrt{2}})^{2}/4$	0 $4 \times^{2}$ 0 $- \times^{2}$	3×2 × 3×2 ×	$ \begin{array}{r} 27\lambda^2 \\ (81\rho^2 + 27\lambda^2)/2 \\ -9\lambda^2 \\ (81\rho^2 - 9\lambda^2)/2 \end{array} $

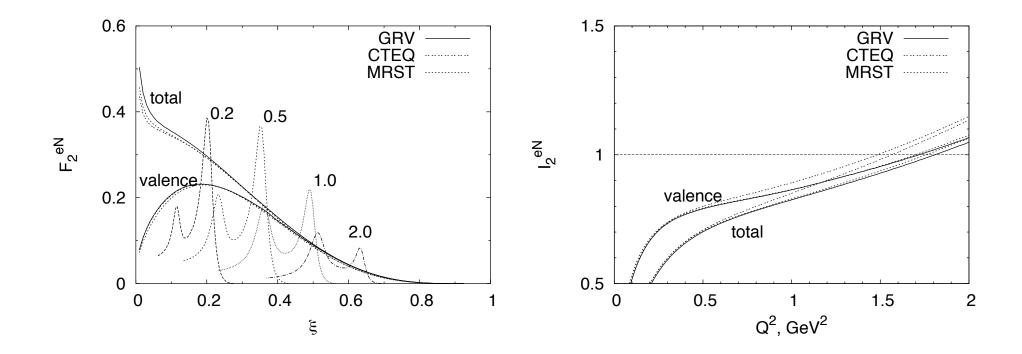
important test for future experiments

3. Local duality - phenomenological models

- Extract $N \to N^*$ form factors from exclusive data (for $Q^2 \le 2 \text{ GeV}^2$)
 - \longrightarrow consider both γ and ν scattering
- Calculate structure function from J=1/2 and 3/2 resonance form factors $\longrightarrow P_{33}(1232), D_{13}(1520), P_{11}(1440), S_{11}(1535)$

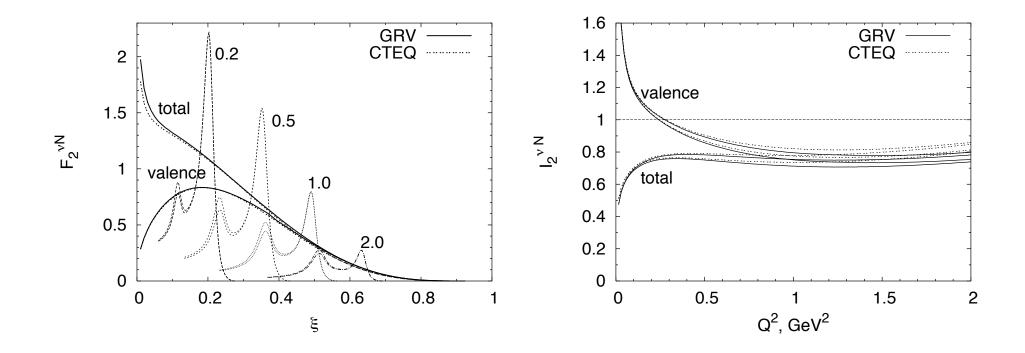
$$F_{2}(\nu, Q^{2}) = \frac{1}{M} V_{2} \, \delta(W^{2} - M_{R}^{2})$$
vector and axial
form factors
$$\frac{V_{2}}{3} = (C_{3}^{V})^{2} \frac{2}{3M_{R}^{2}} Q^{2}[q \cdot p + m_{N}^{2} + M_{R}^{2}] + \frac{(C_{4}^{V})^{2}}{m_{N}^{2}} \frac{2}{3} Q^{2}[q \cdot p + m_{N}^{2} - m_{N}M_{R}]$$

$$+ \frac{C_{3}^{V}C_{4}^{V}}{m_{N}} \frac{2}{3M_{R}} Q^{2}[q \cdot p + (M_{R} - m_{N})^{2}] + \frac{2}{3} \left[(C_{5}^{A})^{2} \frac{m_{N}^{2}}{M_{R}^{2}} + \frac{(C_{4}^{A})^{2}}{m_{N}^{2}} Q^{2} \right] [q \cdot p + m_{N}^{2} + m_{N}M_{R}]$$



 \rightarrow ~10 - 20% agreement for $1 < Q^2 < 2 \text{ GeV}^2$

Lalakulich, WM, Paschos PRC, hep-ph/0608058

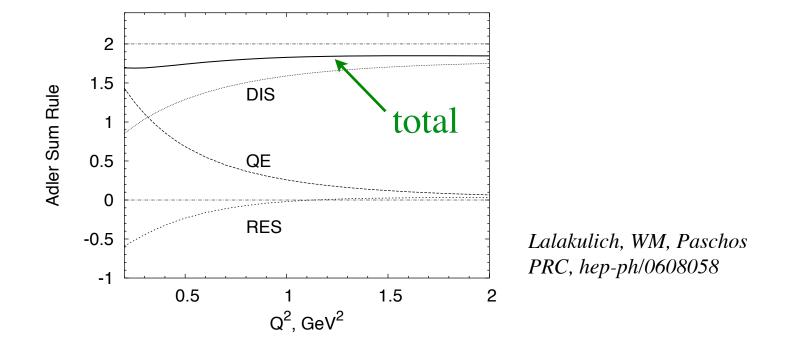


 \blacktriangleright ~ 20% agreement for $0.5 < Q^2 < 2 \ {
m GeV}^2$

need to average over proton and neutron

Adler sum rule (valid for <u>all</u> Q^2)

$$\left[g_{1V}^{(QE)}(Q^2)\right]^2 + \left[g_{1A}^{(QE)}(Q^2)\right]^2 + \left[g_{2V}^{(QE)}(Q^2)\right]^2 \frac{Q^2}{4M^2} + \int d\nu \left[W_2^{\nu n}(Q^2,\nu) - W_2^{\nu p}(Q^2,\nu)\right] = 2$$



- \implies saturated at ~ 90% level $0.5 < Q^2 < 2 \text{ GeV}^2$
- remainder likely indicates need for more resonances or better determined transition form factors

4.

Operator Product Expansion

$$\int d^{4}x \ e^{iq \cdot x} \langle N | T(J^{\mu}(x)J^{\nu}(0)) | N \rangle$$

$$= \sum_{k} \left(-g^{\mu\nu}q^{\mu_{1}}q^{\mu_{2}} + g^{\mu\mu_{1}}q^{\nu}q^{\mu_{2}} + q^{\mu}q^{\mu_{1}}g^{\nu\mu_{2}} + g^{\mu\mu_{1}}g^{\nu\mu_{2}}Q^{2} \right)$$

$$\times q^{\mu_{3}} \cdots q^{\mu_{2k}} \frac{2^{2k}}{Q^{4k}} A_{2k} \Pi_{\mu_{1} \cdots \mu_{2k}}$$

$$\langle N | \mathcal{O}_{\mu_{1} \cdots \mu_{2k}} | N \rangle \qquad \text{Georgi, Politzer (1976)}$$

$$\Pi_{\mu_1 \cdots \mu_{2k}} = p_{\mu_1} \cdots p_{\mu_{2k}} - (g_{\mu_i \mu_j} \text{ terms})$$
$$= \sum_{j=0}^k (-1)^j \frac{(2k-j)!}{2^j (2k)^j} g \cdots g \ p \cdots p$$

traceless, symmetric rank-2k tensor

n-th moment of F_2 structure function

$$M_2^n(Q^2) = \int dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= \sum_{j=0}^\infty \left(\frac{M^2}{Q^2}\right)^j \frac{(n+j)!}{j!(n-2)!} \frac{A_{n+2j}}{(n+2j)(n+2j-1)}$$

inverse Mellin transform (+ tedious manipulations)

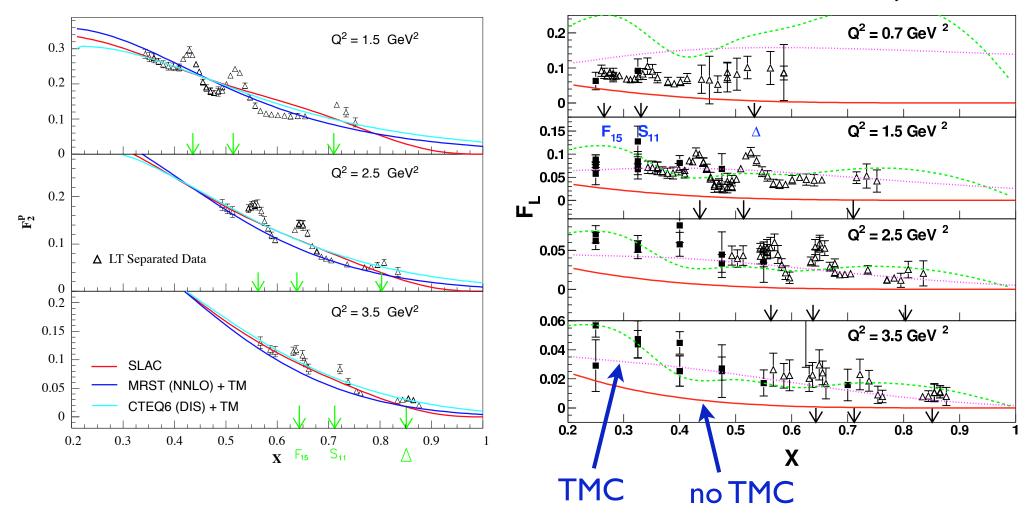
$$F_2^{\rm GP}(x,Q^2) = \frac{x^2}{r^3} F(\xi) + 6 \frac{M^2}{Q^2} \frac{x^3}{r^4} \int_{\xi}^{1} d\xi' F(\xi')$$

$$+ 12 \frac{M^4}{Q^4} \frac{x^4}{r^5} \int_{\xi}^{1} d\xi' \int_{\xi'}^{1} d\xi'' F(\xi'')$$

$$\xi = \frac{2x}{1+r} \qquad r = \sqrt{1 + 4x^2 M^2 / Q^2}$$

... similarly for other structure functions F_1, F_L

Christy et al. (2005)



 \rightarrow TMCs significant at large x^2/Q^2 , especially for F_L

Threshold problem

I if
$$F(y) \sim (1-y)^{\beta}$$
 at large y

then since $\xi_0 \equiv \xi(x=1) < 1$

$$\implies F(\xi_0) > 0$$

$$\implies F_i^{\mathrm{TMC}}(x=1,Q^2) > 0$$

is this physical?

Possible solution

work with ξ_0 dependent PDFs

 \rightarrow *n*-th moment A_n of distribution function

$$A_n = \int_0^{\xi_{\max}} d\xi \ \xi^n \ F(\xi)$$

$$\rightarrow$$
 what is ξ_{\max} ?

• GP use $\xi_{max} = 1$, $\xi_0 < \xi < 1$ unphysical

• strictly, should use $\xi_{max} = \xi_0$

Steffens, WM PRC 73 (2006) 055202

Possible solution

what is effect on phenomenology? → try several "toy distributions"

standard TMC ("sTMC") $q(\xi) = \mathcal{N} \ \xi^{-1/2} \ (1 - \xi)^3 \ , \qquad \xi_{\text{max}} = 1$

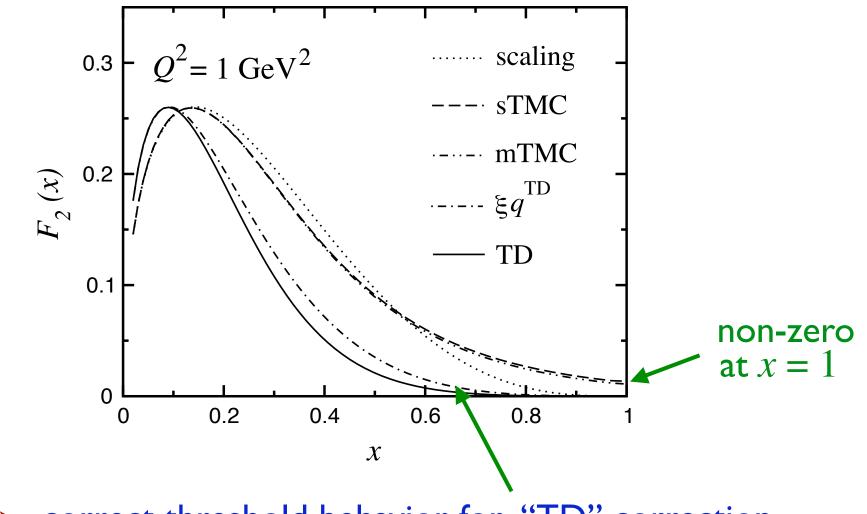
modified TMC ("mTMC")

$$q(\xi) = \mathcal{N} \ \xi^{-1/2} \ (1-\xi)^3 \ \Theta(\xi-\xi_0), \quad \xi_{\max} = \xi_0$$

threshold dependent ("TD")

$$q^{\text{TD}}(\xi) = \mathcal{N} \ \xi^{-1/2} \ (\xi_0 - \xi)^3 \ , \quad \xi_{\text{max}} = \xi_0$$

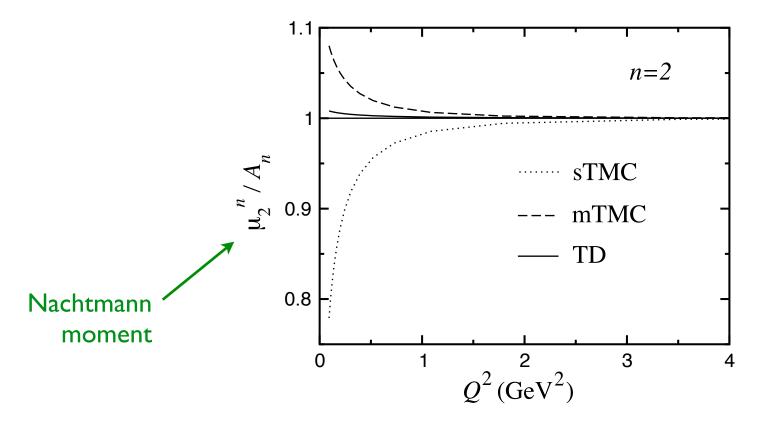
TMCs in F_2



correct threshold behavior for "TD" correction

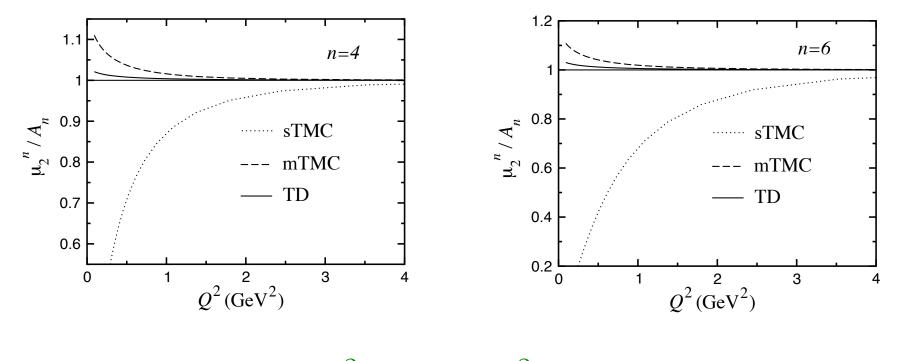
Nachtmann F_2 moments

designed to remove target mass effects explicitly from structure function moment



moment of structure function agrees with moment of PDF to 1% down to very low Q²

Nachtmann F_2 moments



 $\rightarrow \frac{\mu_2^n(\text{finite } Q^2)}{A_n(\text{finite } Q^2)} = \frac{\mu_2^n(Q^2 \to \infty)}{A_n(Q^2 \to \infty)}$

 \rightarrow extract PDFs from structure function data at lower Q^2

Summary

- Remarkable confirmation of quark-hadron duality in structure functions
 - \rightarrow higher twists "small" down to low Q^2 (~ 1 GeV²)
- OPE "organizes" duality violations in terms of higher twists <u>but</u> need quark models to understand origin of resonance cancellations
 - \rightarrow phenomenological models for local duality
 - \rightarrow need higher- Q^2 transition form factor data
 - \rightarrow quantify role of background vs. resonances
 - Importance of target mass corrections at low Q^2
 - → avoid unphysical "threshold problem" by using threshold-dependent PDFs

Summary

■ References: <u>WM, Ent, Keppel: *Phys. Rept.* 406 (2005) 127</u>

Steffens, WM: Phys. Rev. C 73 (2006) 055202

Olness, WM, Steffens et al. (CTEQ): review on TMCs, in preparation

Lalakulich, WM, Paschos: hep-ph/0608058

Close, WM: Phys. Rev. C 68 (2003) 035210