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Quark-hadron duality

Complementarity between quark and 
hadron descriptions of observables

∑

hadrons

=

∑

quarks

Can use either set of complete basis states
to describe all physical phenomena
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Fig. 9. Early proton !W2 structure function data in the resonance region, as a function of "′, compared to a smooth fit to the
data in the scaling region at largerQ2. The resonance data were obtained at the indicated kinematics, withQ2 in GeV2, for the

longitudinal to transverse ratio R = 0.18. (Adapted from Ref. [3].)

perturbative QCD (as will be discussed in Section 4). Nevertheless, the astute observations made by

Bloom and Gilman are still valid, and may be summarized as follows:

I. The resonance region data oscillate around the scaling curve.

II. The resonance data are on average equivalent to the scaling curve.

III. The resonance region data “slide” along the deep inelastic curve with increasingQ2.

These observations led Bloom and Gilman to make the far-reaching conclusion that “the resonances are

not a separate entity but are an intrinsic part of the scaling behavior of !W2” [2].

In order to quantify these observations, Bloom and Gilman drew on the work on duality in hadronic

reactions to determine a FESR equating the integral over ! of !W2 in the resonance region, to the integral

over "′ of the scaling function [2],

2M

Q2

∫ !m

0

d! !W2(!, Q
2) =

∫ 1+W 2
m/Q2

1

d"′!W2("
′) . (63)

Here the upper limit on the ! integration, !m = (W 2
m −M2+Q2)/2M , corresponds to the maximum value

of "′ = 1 + W 2
m/Q2, where Wm ∼ 2GeV, so that the integral of the scaling function covers the same

range in "′ as the resonance region data. FESR (63) allows the area under the resonances in Fig. 9 to
be compared to the area under the smooth curve in the same "′ region to determine the degree to which
the resonance and scaling data are equivalent. A comparison of both sides in Eq. (63) for Wm = 2GeV

showed that the relative differences ranged from∼ 10%atQ2=1GeV2, to!2%beyondQ2=2GeV2 [3],
thus demonstrating the near equivalence on average of the resonance and deep inelastic regimes (point II

above). Using this approach, Bloom andGilman’s quark–hadron duality was able to qualitatively describe

the data in the range 1!Q2!10GeV2.
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Finite energy sum rules

Igi (1962),  Dolen, Horn, Schmidt (1968)

“Finite energy sum rules”
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cf.  hadron-hadron scattering



Average over (strongly Q  dependent) resonances 
     Q   independent scaling function2

2

≈

Finite energy sum rule for eN scattering
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Bloom-Gilman duality



Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

Bloom-Gilman duality

Jefferson Lab (Hall C)

≈
2

Average over
(strongly Q   dependent)
resonances 
     Q   independent
     scaling function

2

ξ =
2x

1 +
√

1 + 4M2x2/Q2

“Nachtmann scaling variable”

see also:
Fritzsch, Proc. of the Coral Gables Conf. (1971)
Greenberg & Bhaumik, PRD4 (1971) 2048
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Fig. 13. Proton F2 structure function in the ! (top) and S11 (bottom) resonance regions from Jefferson Lab Hall C, compared

with the scaling curve from Ref. [7]. The resonances move to higher " with increasing Q2, which ranges from ∼ 0.5GeV2

(smallest " values) to ∼ 4.5GeV2 (largest " values).

higherQ2 values. It is difficult to evaluate precisely the equivalence of the two ifQ2 evolution [60] is not

taken into account. Furthermore, the resonance data and scaling curves, although at the same " or #′, are
at different x and sensitive therefore to different parton distributions. A more stringent test of the scaling

behavior of the resonances would compare the resonance data with fundamental scaling predictions for

the same low-Q2, high-x values as the data.

Such predictions are now commonly available from several groups around the world, for instance,

the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [61]; Martin, Roberts, Stirling, and

Thorne (MRST) [62]; Gluck, Reya, andVogt (GRV) [63]; and Blümlein and Böttcher [64], to name a few.

These groups provide results from global QCD fits to a full range of hard scattering processes—including

lepton–nucleon deep inelastic scattering, prompt photon production, Drell–Yan measurements, jet pro-

duction, etc.—to extract quark and gluon distribution functions (PDFs) for the proton. The idea of such

global fitting efforts is to adjust the fundamental PDFs to bring theory and experiment into agreement

for a wide range of processes. These PDF-based analyses include pQCD radiative corrections which give

rise to logarithmicQ2 dependence of the structure function. In this report, we use parameterizations from

all of these groups, choosing in each case the most straightforward implementation for our needs. It is

not expected that this choice affects any of the results presented here.

∆

S11

local  Bloom-Gilman duality

Duality exists also in local regions, around individual resonances



Duality in QCD



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

Duality in QCD

τ

matrix elements of operators with 
specific “twist”

τ = dimension − spin

Operator product expansion

expand moments of structure functions
in powers of 1/Q2



(a) (b) (c)

τ = 2

single quark
scattering

τ > 2

qq and qg
correlations

Duality in QCD



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
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+
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If moment      independent of Q≈
2

higher twist terms            smallA
(τ>2)
n

Duality in QCD

Operator product expansion

expand moments of structure functions
in powers of 1/Q2



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
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+
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de Rujula, Georgi, Politzer,
Ann. Phys. 103 (1975) 315

Duality ⇐⇒ suppression of higher twists

Duality in QCD

Operator product expansion

expand moments of structure functions
in powers of 1/Q2



Much of recent new data is in resonance region,  W < 2 GeV

common wisdom:  pQCD analysis not valid in resonance region

in fact:  partonic interpretation of moments  does  include
resonance region

Resonances are an integral part of deep inelastic
structure functions!

implicit role of quark-hadron duality

Duality in QCD



Proton moments

F
p

2
At                     ,  ~ 70%  of lowest moment of      Q2

= 1 GeV
2

comes from W < 2 GeV

n

relative contribution
of resonance region
to n-th moment



Ji, Unrau, 
Phys. Rev. D 52 (1995) 72

BUT resonances and DIS continuum conspire to
produce only  ~ 10%  higher twist contribution!

Proton moments

total

leading twist

∼ 10% at Q2 = 1 GeV2

higher
twist



on average, nonperturbative interactions between
quarks and gluons not dominant at these scales 

suggests strong cancellations between resonances, 
resulting in dominance of leading twist

total higher twist  small  at Q2
∼ 1 − 2 GeV

2

OPE does not tell us why higher twists are small

need more detailed information (e.g. about individual 
resonances) to understand behavior dynamically



Duality & Truncated Moments



complete moments can be studied in pQCD via twist expansion

e.g. need prescription for how to average over resonances

for local duality, difficult to make rigorous connection with QCD

truncated moments allow study of restricted regions in x
(or W) within pQCD in well-defined, systematic way

Bloom-Gilman duality has a precise meaning

Mn(∆x, Q2) =

∫
∆x

dx xn−2 F2(x, Q2)

           (i.e., duality violation = higher twists)

Truncated moments



resonance spectrumF
p

2

how much of this region is leading twist ?

Psaker, WM, et al.,
Phys. Rev. C 78 (2008) 025206

JLab Hall C

*

*



truncated moments obey DGLAP-like evolution equations,
similar to PDFs

can follow evolution of specific resonance (region) with
in pQCD framework!

Q2

dMn(∆x, Q2)

d log Q2
=

αs

2π

(

P ′

(n) ⊗ Mn

)

(∆x, Q2)

suitable when complete moments not available

where modified splitting function is

P ′

(n)(z, αs) = zn PNS,S(z, αs)

Truncated moments



Data analysis

assume data at large enough       are entirely leading twistQ2

evolve fit to data at large       down to lower Q2 Q2

apply target mass corrections (TMC) and compare with low-     dataQ2

Psaker, WM, et al.,
Phys. Rev. C 78 (2008) 025206

W 2 = M2 +
Q2

x
(1− x)

TMC



consider individual resonance regions:

“F15(1680)”

“∆(1232)”

“S11(1535)”

W
2
thr < W

2
< 1.9 GeV

2

1.9 < W
2

< 2.5 GeV
2

2.5 < W
2

< 3.1 GeV
2

as well as total resonance region:

W
2

< 4 GeV
2



Psaker, WM, et al.,
Phys. Rev. C 78 (2008) 025206

entire
resonance

region



small     HT∆

larger       HTS11

Psaker, WM, et al.,
Phys. Rev. C 78 (2008) 025206

higher twists  < 10-15%  for Q2 > 1 GeV
2



Proton vs. Neutron



Is duality in the proton a coincidence?

consider symmetric nucleon wave function

cat’s ears diagram  (4-fermion higher twist ~        )    1/Q2

∝
∑

i !=j

ei ej ∼
( ∑

i

e2
i

)2
−

∑

i

e2
i

coherent incoherent

need to test duality in the neutron!

proton

neutron

HT ∼ 1 −
(
2× 4

9
+

1
9

)
= 0 !

HT ∼ 0 −
(4

9
+ 2× 1

9

)
$= 0



How can the square of a sum become the sum of squares?

in hadronic language, duality is realized by summing over at 
least one complete set of even and odd parity resonances

Close, Isgur, Phys. Lett. B509 (2001) 81

Close, WM,  Phys. Rev. C68 (2003) 035210
of squares of form factors, FN→R(q!

2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#

R"#
F1

"p

F1
"n
, !4#

and polarization asymmetries,

A1
N#

g1
N

F1
N , !5#

A1
"N#

g1
"N

F1
"N
, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
2

3
, A1

p#
5

9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2

SYMMETRY BREAKING AND QUARK-HADRON DUALITY . . . PHYSICAL REVIEW C 68, 035210 !2003#

035210-3

λ (ρ) = (anti) symmetric component of ground state wfn.

in NR Quark Model, even and odd parity states generalize
to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)



Close, WM,  Phys. Rev. C68 (2003) 035210

SU(6) limit λ = ρ

Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-
tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence

7

summing over all resonances in 56   and 70   multiplets+ -

R
np

=
Fn

1

F
p

1

=
2

3
as in quark-parton model (for u=2d) !

proton sum saturated by lower-lying resonances

expect duality to appear earlier for p than n

relative strengths of N     N* transitions:



Extraction of Neutron
Structure Function



Problem:  no free neutron targets!
(neutron half-life ~ 12 mins)                                            

use deuteron as ‘‘effective neutron target’’

But:  deuteron is a nucleus,  and F d
2 != F

p
2

+ F
n
2

nuclear effects (nuclear binding, Fermi motion, shadowing)
obscure neutron structure information                                                           

need to correct for  “nuclear EMC effect”



F d
2 (x, Q2) =

∫

x
dy f(y, γ) FN

2 (x/y,Q2)

nuclear  “impulse approximation’’

incoherent scattering from individual nucleons in d

A!"#$k ,q %!i$q2&!"k#"$k2#m2%&!"q#

#2$k!&kq#"#k"&kq#!%%, $8c%

A!"#'$k ,q %!#im$q2g!#g"'"2q#$k!g"'#k"g!'%%.
$8d%

Here k is the interacting quark four-momentum, and m is its

mass. We use the notation &!"kq(&!"#'k
#q'. $The com-

plete forward scattering amplitude would also contain a

crossed photon process which we do not consider here, since

in the subsequent model calculations we focus on valence

quark distributions.% The function H(k ,p) represents the soft
quark-nucleon interaction. Since one is calculating the

imaginary part of the forward scattering amplitude, the inte-

gration over the quark momentum k is constrained by )
functions which put both the scattered quark and the nonin-

teracting spectator system on-mass-shell:

dk̃(
d4k

$2*%4
2*)+$k"q %2#m2,2*)+$p#k %2#mS

2,

$k2#m2%2
,

$9%

where mS
2!(p#k)2 is the invariant mass squared of the

spectator system.

Taking the trace over the quark spin indices we find

Tr+Hr!",!A!"#H
#"A!"#'H

#', $10%

where H# and H#' are vector and tensor coefficients, respec-

tively. The general structure of H# and H#' can be deduced

from the transformation properties of the truncated nucleon

tensor Ĝ!" and the tensors A!"# and A!"#' . Namely, from

A!"#* (k ,q)!A"!#(k ,q) and A!"#( k̃ , q̃)!#A!"#(k ,q), we

have

H#$p ,k %!#PH#$ p̃ , k̃ %P†, $11a%

H#$p ,k %!$TH#$ p̃ , k̃ %T †%*, $11b%

H#$p ,k %!-0H
#†$p ,k %-0 . $11c%

Similarly, since A!"#'* (k ,q)!A"!#'(k ,q) and A
!"#'( k̃ , q̃ )

!A!"#'(k ,q), one finds

H#'$p ,k %!PH#'$ p̃ , k̃ %P†, $12a%

H#'$p ,k %!#$TH#'$ p̃ , k̃ %T†%*, $12b%

H#'$p ,k %!-0H
#'†$p ,k %-0 . $12c%

With these constraints, the tensors H# and H#' can be pro-

jected onto Dirac and Lorentz bases as follows:

H#!p#-5$p” g1"k”g2%"k#-5$p” g3"k”g4%
"i-5./0p

/k0$p#g5"k#g6%"-#-5g7

"i-5./#$p/g8"k/g9%, $13a%

H#'!$p#k'#p'k#%./0p
/k0 f 1"$p#./'#p'./#%

$$p/ f 2"k/ f 3%"$k#./'#k'./#%$p/ f 4"k/ f 5%

".#' f 6"&/0#'p
/k0-5$p” f 7"k” f 8%

"&/0#'-5-
0$p/ f 9"k/ f 10%, $13b%

where the functions g1•••9 and f 1•••10 are scalar functions of
p and k .

Performing the integration over k in Eq. $7% and using
Eqs. $13%, we obtain expressions for the truncated structure
functions G (i) in terms of the nonperturbative coefficient

functions f i and gi . The explicit forms of these are given in

Appendix I. From Eq. $4% we then obtain the leading twist
contributions to the truncated nucleon tensor Ĝ!" . It is im-

portant to note that at leading twist the non-gauge-invariant

contributions to Ĝ!" vanish, so that the expansion in Eq. $4%
is the most general one which is consistent with the gauge

invariance of the hadronic tensor.

III. NUCLEAR STRUCTURE FUNCTIONS

Our discussion of polarized deep-inelastic scattering from

nuclei is restricted to the nuclear impulse approximation, il-

lustrated in Fig. 1. Nuclear effects which go beyond the im-

pulse approximation include final state interactions between

the nuclear debris of the struck nucleon +17,, corrections due
to meson exchange currents +18–20, and nuclear shadowing
$see +21–24, and references therein%. Since we are interested
in the medium- and large-x regions, coherent multiple scat-

tering effects, which lead to nuclear shadowing for x%0.1,
will not be relevant. In addition, it has been argued +6, that
meson exchange currents are less important in polarized

deep-inelastic scattering than in the unpolarized case since

their main contribution comes from pions.

Within the impulse approximation, deep-inelastic scatter-

ing from a polarized nucleus with spin 1/2 or 1 is then de-

scribed as a two-step process, in terms of the virtual photon-

nucleon interaction, parametrized by the truncated

antisymmetric nucleon tensor Ĝ!"(p ,q), and the polarized

nucleon-nucleus scattering amplitude Â(p ,P ,S). The anti-

FIG. 1. DIS from a polarized nucleus in the impulse approxima-

tion. The nucleus, virtual nucleon, and photon momenta are denoted

by P , p , and q , respectively, and S stands for the nuclear spin

vector. The upper blob represents the truncated antisymmetric

nucleon tensor Ĝ!" , while the lower one corresponds to the polar-

ized nucleon-nucleus amplitude Â .

896 54G. PILLER, W. MELNITCHOUK, AND A. W. THOMAS

d

N

γ
∗

(good approx. at x >> 0)
N=p+n

+ δ(off)F d
2

Kulagin, WM, Phys. Rev. C 77, 015210 (2008)

at finite     , smearing function depends also on parameterQ2

γ = |q|/q0 =
√

1 + 4M2x2/Q2

nucleon momentum

(“smearing function”)
distribution in d off-shell

correction
(~1%)



N momentum distributions in d

for most kinematics γ ! 2

broader with
increasing γ



Unsmearing - additive method

calculated      depends on input 

extracted n depends on input n ...  cyclic argument

F d
2 Fn

2

Solution:  iteration procedure 

define difference between smeared and free SFs1.

first guess for  2.

3. after one iteration, gives

4. repeat until convergence

subtract              from d data: 0. F
d
2 → F

d
2 − δ

(off)
F

d
2δ

(off)
F

d
2

Fn(0)
2

Fn(1)
2 = Fn(0)

2 + (F̃n
2 − F̃n(0)

2 )

∆(0) = F̃n(0)
2 − Fn

2

F d
2 − F̃ p

2 = F̃n
2 ≡ f ⊗ Fn

2 ≡ Fn
2 + ∆



F d
2 constructed from known      and       inputsF p

2 Fn
2

(using MAID resonance parameterization)

can reconstruct almost arbitrary shape

Fn(0)
2 = 0

initial guess

Unsmearing - test of convergence

Kahn, WM (2008)

*

even faster convergence
 if choose 

*
Fn(0)

2 = F p
2



Unsmearing - Q  dependence2

important to use correct     dependence in extractionγ

does not converge
to correct shape

important also in DIS region
(do not have resonance “benchmarks”)

Kahn, WM (2008)



Kahn, WM (2008)

first extraction of       in resonance regionFn
2

JLab Hall B
d & p data

quasi-elastic
peak



Kahn, WM (2008)

works also in DIS region



neutron HT indeed larger than proton!
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Summary

Truncated moments  

Duality in the neutron

duality violating higher twists ~ 10% in few-GeV range

Remarkable confirmation of quark-hadron duality in
proton structure functions  

firm foundation for study of local duality in QCD

extraction of neutron structure function from deuteron data

neutron HTs larger than proton HTs
(as expected from quark models)

HTs largest in      region,  smallest in    region ∆S11



Future

Application to spin-dependent structure functions

Complete analysis of neutron structure function extraction  

extraction method works also for functions with zeros

quantify isospin dependence of HTs

Cross-check with neutron extracted from  He data3



The End


