Approaches to QCD, Oberwoelz, Austria September 10, 2008

Quark-Hadron Duality in Structure Functions

Wally Melnitchouk

- Bloom-Gilman duality
- Duality in QCD
 - \rightarrow OPE & higher twists
- Resonances & local quark-hadron duality
 - \rightarrow truncated moments in QCD
- Duality in the neutron
 - \rightarrow extraction of neutron resonance structure from nuclear data
 - \rightarrow comparison with proton
 - Summary

Quark-hadron duality

Complementarity between *quark* and *hadron* descriptions of observables

Can use either set of complete basis states to describe all physical phenomena

Electron scattering

 $\nu = E - E'$ $Q^{2} = \vec{q}^{2} - \nu^{2} = 4EE' \sin^{2} \frac{\theta}{2} \quad \left\{ \begin{array}{c} x = \frac{Q^{2}}{2M\nu} & \text{``Bjorken scaling variable''} \end{array} \right\}$

 F_1 , F_2 "structure functions"

- contain all information about structure of nucleon
- \longrightarrow functions of x, Q^2 in general

Bloom-Gilman duality

Bloom, Gilman, Phys. Rev. Lett. 85 (1970) 1185

resonance – scaling duality in proton $\nu W_2 = F_2$ structure function

cf. hadron-hadron scattering

Igi (1962), Dolen, Horn, Schmidt (1968)

Bloom-Gilman duality

Average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function

Finite energy sum rule for eN scattering

$$\frac{2M}{Q^2} \int_0^{\nu_m} d\nu \ \nu W_2(\nu, Q^2) = \int_1^{\omega'_m} d\omega' \ \nu W_2(\omega')$$

measured structure function (function of ν and Q^2)

"hadrons" $\omega' = \frac{1}{x} + \frac{M^2}{Q^2}$

scaling function (function of ω' only)

Bloom-Gilman duality

Duality exists also in <u>local</u> regions, around individual resonances

local Bloom-Gilman duality

Operator product expansion

→ expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific "twist" τ

 $\tau = \text{dimension} - \text{spin}$

 $\tau = 2$

 $\tau > 2$

single quark scattering

$$e.g.~~ar{\psi}~\gamma_\mu~\psi$$

qq and qg correlations

Operator product expansion

→ expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

If moment \approx independent of Q^2 \implies higher twist terms $A_n^{(\tau>2)}$ small

Operator product expansion

→ expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

Duality \iff **suppression of higher twists**

de Rujula, Georgi, Politzer, Ann. Phys. 103 (1975) 315

■ Much of recent new data is in <u>resonance</u> region, W < 2 GeV

- \rightarrow common wisdom: pQCD analysis not valid in resonance region
- \rightarrow in fact: partonic interpretation of moments <u>does</u> include resonance region

- Resonances are an <u>integral part</u> of deep inelastic structure functions!
- \rightarrow implicit role of quark-hadron duality

Proton moments

• At $Q^2 = 1 \text{ GeV}^2$, ~ <u>70%</u> of lowest moment of F_2^p comes from W < 2 GeV

Proton moments

BUT resonances and DIS continuum conspire to produce only ~ <u>10%</u> higher twist contribution!

> Ji, Unrau, Phys. Rev. D 52 (1995) 72

 \implies total higher twist <u>small</u> at $Q^2 \sim 1 - 2 \text{ GeV}^2$

on average, nonperturbative interactions between quarks and gluons not dominant at these scales

suggests strong cancellations between resonances, resulting in dominance of leading twist

• OPE does not tell us \underline{why} higher twists are small

Duality & Truncated Moments

Truncated moments

complete moments can be studied in pQCD via twist expansion

→ Bloom-Gilman duality has a precise meaning

(*i.e.*, duality violation = higher twists)

for local duality, difficult to make rigorous connection with QCD

 \rightarrow e.g. need prescription for how to average over resonances

truncated moments allow study of restricted regions in x (or W) within pQCD in well-defined, systematic way

$$\overline{M}_n(\Delta x, Q^2) = \int_{\Delta x} dx \ x^{n-2} \ F_2(x, Q^2)$$

F_2^p resonance spectrum

Truncated moments

truncated moments obey DGLAP-like evolution equations, similar to PDFs

$$\frac{dM_n(\Delta x, Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \left(P'_{(n)} \otimes \overline{M}_n \right) (\Delta x, Q^2)$$

where modified splitting function is

$$P'_{(n)}(z,\alpha_s) = z^n P_{NS,S}(z,\alpha_s)$$

- \rightarrow can follow evolution of <u>specific resonance (region)</u> with Q^2 in pQCD framework!
- \rightarrow suitable when complete moments not available

Data analysis

- assume data at large enough Q^2 are entirely leading twist
- evolve fit to data at large Q^2 down to lower Q^2
- \blacksquare apply target mass corrections (TMC) and compare with low- Q^2 data

consider individual resonance regions:

→
$$W_{\text{thr}}^2 < W^2 < 1.9 \text{ GeV}^2$$
 " $\Delta(1232)$ "
→ $1.9 < W^2 < 2.5 \text{ GeV}^2$ " $S_{11}(1535)$ "
→ $2.5 < W^2 < 3.1 \text{ GeV}^2$ " $F_{15}(1680)$ "

as well as total resonance region:

$$\rightarrow$$
 $W^2 < 4 \text{ GeV}^2$

Psaker, WM, et al., Phys. Rev. C 78 (2008) 025206

higher twists < 10-15% for $Q^2 > 1 \text{ GeV}^2$

Proton vs. Neutron

- Is duality in the proton a coincidence?

proton HT ~ 1 -
$$\left(2 \times \frac{1}{9} + \frac{1}{9}\right) = 0!$$
neutron HT ~ 0 - $\left(\frac{4}{9} + 2 \times \frac{1}{9}\right) \neq 0$

need to test duality in the neutron!

How can the <u>square of a sum</u> become the <u>sum of squares</u>?

in *hadronic* language, duality is realized by summing over at least one complete set of <u>even</u> and <u>odd</u> parity resonances

Close, Isgur, Phys. Lett. B509 (2001) 81

in NR Quark Model, even and odd parity states generalize to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8[70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
$F^p_1 \\ F^n_1$	$\frac{9\rho^2}{(3\rho+\lambda)^2/4}$	$rac{8\lambda^2}{8\lambda^2}$	$\frac{9\rho^2}{(3\rho-\lambda)^2/4}$	$0 \\ 4\lambda^2$	$\lambda^2 \ \lambda^2$	$\frac{18\rho^2 + 9\lambda^2}{(9\rho^2 + 27\lambda^2)/2}$

 $\lambda \ (
ho) =$ (anti) symmetric component of ground state wfn.

Close, WM, Phys. Rev. C68 (2003) 035210

SU(6) limit $\rightarrow \lambda = \rho$

\rightarrow relative strengths of $N \rightarrow N^*$ transitions:

SU(6):	$[{f 56},{f 0^+}]^{f 2}{f 8}$	$[{f 56}, 0^+]^{f 4}{f 10}$	$[{f 70}, 1^-]^{f 28}$	$[{f 70}, 1^-]^{f 48}$	$[{f 70},1^-]^{f 2}10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18

summing over all resonances in 56⁺ and 70⁻ multiplets $\rightarrow \frac{F_1^n}{F_1^p} = \frac{2}{3}$ as in quark-parton model (for u=2d) !

proton sum saturated by lower-lying resonances

 \rightarrow expect duality to appear *earlier* for *p* than *n*

Close, WM, Phys. Rev. C68 (2003) 035210

Extraction of Neutron Structure Function Problem: no free neutron targets! (neutron half-life ~ 12 mins)

→ use deuteron as "effective neutron target"

But: deuteron is a nucleus, and $F_2^d \neq F_2^p + F_2^n$

nuclear effects (nuclear binding, Fermi motion, shadowing) obscure neutron structure information

→ need to correct for "nuclear EMC effect"

nuclear "impulse approximation"

incoherent scattering from individual nucleons in d (good approx. at x >> 0)

→ at finite Q^2 , smearing function depends also on parameter $\gamma = |\mathbf{q}|/q_0 = \sqrt{1 + 4M^2 x^2/Q^2}$

Kulagin, WM, Phys. Rev. C 77, 015210 (2008)

N momentum distributions in d

 \rightarrow for most kinematics $\gamma \lesssim 2$

Unsmearing – additive method

- **c**alculated F_2^d depends on input F_2^n
 - \rightarrow extracted *n* depends on input *n* ... cyclic argument
- Solution: iteration procedure
 - 0. subtract $\delta^{(\text{off})}F_2^d$ from d data: $F_2^d \to F_2^d \delta^{(\text{off})}F_2^d$
 - 1. define difference between smeared and free SFs

$$F_2^d - \widetilde{F}_2^p = \widetilde{F}_2^n \equiv f \otimes F_2^n \equiv F_2^n + \Delta$$

- 2. first guess for $F_2^{n(0)} \longrightarrow \Delta^{(0)} = \widetilde{F}_2^{n(0)} F_2^n$
- 3. after one iteration, gives

$$F_2^{n(1)} = F_2^{n(0)} + (\widetilde{F}_2^n - \widetilde{F}_2^{n(0)})$$

4. repeat until convergence

Unsmearing – test of convergence

 F_2^d constructed from known F_2^p and F_2^n inputs

(using MAID resonance parameterization)

can reconstruct almost arbitrary shape

Unsmearing – Q^2 dependence

important to use correct γ dependence in extraction

Kahn, WM (2008)

important also in DIS region (do not have resonance "benchmarks")

first extraction of F_2^n in resonance region

 \rightarrow works also in DIS region

Structure function integral ratios

neutron HT indeed larger than proton!

Summary

- Remarkable confirmation of quark-hadron duality in proton structure functions
 - \rightarrow duality violating higher twists ~ 10% in few-GeV range
- Truncated moments
 - \rightarrow firm foundation for study of *local* duality in QCD
 - \rightarrow HTs largest in S_{11} region, smallest in Δ region
- Duality in the *neutron*
 - \rightarrow extraction of neutron structure function from deuteron data
 - neutron HTs *larger* than proton HTs (as expected from quark models)

Complete analysis of neutron structure function extraction

 --> quantify isospin dependence of HTs

- Application to spin-dependent structure functions
 - \rightarrow extraction method works also for functions with zeros
 - Cross-check with neutron extracted from ³He data

The End