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Open questions

Can we reliably extract neutron structure functions from nuclei?

how is spin distributed amongst valence quarks

How large are higher twists?

how does d/u ratio behave as            x→ 1

To what extent are low       data dominated by leading twist?Q2

(joint analysis with CTEQ under way)

What is the structure of valence quarks at large x?

how to quantify duality violation

can we recover neutron resonance structure?

can JLab data be used to constrain global PDFs



Valence quarks



Valence quarks

Nucleon structure at intermediate & large x
dominated by valence quarks
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Most direct connection between quark distributions
and models of the nucleon is through valence quarks 



Ratio of d to u quark distributions particularly
sensitive to quark dynamics in nucleon

SU(6) spin-flavour symmetry
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Valence quarks

SU(6) spin-flavour symmetry
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Valence quarks

scalar diquark dominance

=⇒
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Valence quarks

hard gluon exchange

=⇒
.
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at large x, helicity of struck quark = helicity of hadron 
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At large x,  valence u and d distributions extracted
from p and n structure functions
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Valence quarks



large uncertainty
at large x in d/u 
ratio

Botje, Eur. Phys. J. C 14 (2000) 285



Nuclear effects

no free neutron targets

(neutron half-life ~ 12 mins)                                            

use deuteron as ‘‘effective” neutron target

BUT  deuteron is a nucleus,  and F d
2 != F

p
2

+ F
n
2

nuclear effects (nuclear binding, Fermi motion, shadowing)
obscure neutron structure information                                                           

“nuclear EMC effect”



A similar result is also obtained in the treatment of Brodsky et al. [21] (based on
counting-rules), where the large-x behavior of the parton distribution for a quark polar-
ized parallel (∆Sz = 1) or antiparallel (∆Sz = 0) to the proton helicity is given by:
q↑↓(x) = (1 − x)2n−1+∆Sz , where n is the minimum number of non-interacting quarks
(equal to 2 for the valence quark distributions). In the x → 1 limit one therefore predicts:

F n
2

F p
2

→
3

7
,

d

u
→

1

5
[Sz = 0 dominance]. (11)

Note that the d/u ratio does not vanish in this model. Clearly, if one is to understand the dy-
namics of the nucleon’s quark distributions at large x, it is imperative that the consequences
of these models be tested experimentally.

The reanalyzed SLAC [7,22] data points themselves are plotted in Fig.3, at an average
value of Q2 ≈ 12 GeV2. The very small error bars are testimony to the quality of the SLAC p
and D data. The data represented by the open circles have been extracted with the on-shell
deuteron model of Ref. [6], while the filled circles were obtained using the off-shell model of
Refs. [4,5]. Most importantly, the F n

2 /F p
2 points obtained with the off-shell method appear

to approach a value broadly consistent with the Farrar-Jackson [20] and Brodsky et al. [21]
prediction of 3/7, whereas the data previously analyzed in terms of the on-shell formalism
produced a ratio that tended to the lower value of 1/4.

FIG. 3. Deconvoluted Fn
2 /F p

2 ratio extracted from the SLAC p and D data [7,22], at an average

value of Q2 ≈ 12 GeV2, assuming no off-shell effects (open circles), and including off-shell effects
(full circles).

The d/u ratio, shown in Fig.4, is obtained by inverting F n
2 /F p

2 in the valence quark
dominated region. The points extracted using the off-shell formalism (solid circles) are

7

Melnitchouk & Thomas
Phys. Lett. B 377 (1996) 11

without EMC effect in d
      underestimated at large x!F

n

2

SU(6)

helicity

scalar
diquarks

retention

Fermi motion only

with binding 
& off-shell



“Cleaner” methods of determining d/u

e p → e π± X semi-inclusive DIS
as flavor tag

e
3He(3H) → e X mirror-symmetric nuclei

“BONUS”e d → e pspec X

e∓ p → ν(ν̄)X

ν(ν̄) p → l∓ X

p p(p̄) → W±X

!eL(!eR) p → e X

} weak current
as flavor probe
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Parity-violating DIS
(with Tim Hobbs)



Left-right polarization asymmetry in !e p → e X

Parity-violating e scattering

APV =
σR − σL

σR + σL

measure interference between e.m. and weak currents
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)

where y = ν/E and r2 = 1 + 4M2x2/Q2
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Parity-violating e scattering

Longitudinal-transverse interference cross section ratio

RγZ =
σγZ

L

σγZ
T

unknown phenomenology
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Parity-violating e scattering

Proton asymmetry sensitive to d/u ratio

ap
1 =

12C1u − 6C1d d/u

4 + d/u

*
* d/u→ 0.2

as x→ 1

Hobbs, Melnitchouk
Phys. Rev. D 77, 114023 (2008)



Parity-violating e scattering

Sensitivity to Rγ

relative change
to Bjorken limit 
asymmetry

uncertainty due to      smaller 
than d/u differences at large x

Rγ

Hobbs & Melnitchouk
Phys. Rev. D 77, 114023 (2008)

Q2 = 5 GeV2



Parity-violating e scattering

Sensitivity to RγZ

Hobbs & Melnitchouk
Phys. Rev. D 77, 114023 (2008)

correction from        needs
further investigation 

RγZ



Target mass corrections

Additional corrections from kinematical           effectsQ2/ν2

“target mass corrections” (TMC)

Important at large x and low    Q2

but not unique - depend on formalism
(e.g. OPE, collinear factorization)

most implementations exhibit “threshold problem”

F (x = 1) != 0

uncertainties not overwhelming, except at very large x

new (“Nachtmann”) scaling variable ξ =
2x

1 +
√

1 + 4M2x2/Q2



Hobbs & Melnitchouk (2008)

Target mass corrections

1/     expansionQ2

~ to full OPE~

collinear factoriz’n



Hobbs & Melnitchouk (2008)

leading twist analysis
breaks down

Target mass corrections

1/     expansionQ2

~ to full OPE~

collinear factoriz’n



TMC effects ~ 1-2% in PV asymmetry

larger in absolute structure functions

Hobbs & Melnitchouk (2008)

Target mass corrections



Target mass corrections

Accardi & Qiu,
JHEP 0807, 090 (2008)

collinear factorization

TMC important at large x even for large Q2



Target mass corrections

Important to implement in pQCD data analyses,
if large-x (low-W) & low-     data incorporated into
global PDF fits

greatly expanded data set, especially with high-precision 
JLab data

Q2

Currently working with CTEQ (J. Owens) to study
effects of TMCs on W and      cuts on data
(A. Accardi, E. Christy, C. Keppel, P. Monaghan)

Q2

crucial for neutrino scattering and oscillations

important for “new physics” searches at colliders



Duality & truncated moments
(with Ales Psaker et al.)



Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

Bloom-Gilman duality

2

Average over
(strongly Q   dependent)
resonances 
     Q   independent
     scaling function

2

≈

Jefferson Lab (Hall C)



complete moments can be studied in QCD via twist expansion

e.g. need prescription for how to average over resonances

for local duality, difficult to make rigorous connection with QCD

truncated moments allow study of restricted regions in x
(or W) within QCD in well-defined, systematic way

Bloom-Gilman duality has a precise meaning

Mn(∆x, Q2) =

∫
∆x

dx xn−2 F2(x, Q2)

           (i.e., duality violation = higher twists)

Truncated moments



truncated moments obey DGLAP-like evolution equations,
similar to PDFs

can follow evolution of specific resonance (region) with
in pQCD framework!

Q2

dMn(∆x, Q2)

d log Q2
=

αs

2π

(

P ′

(n) ⊗ Mn

)

(∆x, Q2)

suitable when complete moments not available

where modified splitting function is

P ′

(n)(z, αs) = zn PNS,S(z, αs)

Truncated moments



with TMC

how much of this region
is leading twist ?

Psaker et al.,
arXiv:0803.2055,
Phys. Rev. C (2008)



Data analysis

assume data at large       is entirely leading twistQ2

evolve fit to data (as NS) at large      down to lower Q2

apply TMC, and compare with data at lower Q2

Q2

Psaker et al.,
arXiv:0803.2055,
Phys. Rev. C (2008)



Data analysis

entire
resonance
region

Psaker et al.,
arXiv:0803.2055



higher twists less than 10-15% for n=2 moment

Psaker et al.,
arXiv:0803.2055

Data analysis

also study higher twists in higher moments



Extracting neutron SFs
from nuclear data

(with Yoni Kahn)



EMC effect in deuteron

Nuclear  “impulse approximation’’

incoherent scattering 
from individual nucleons
in deuteron

A!"#$k ,q %!i$q2&!"k#"$k2#m2%&!"q#

#2$k!&kq#"#k"&kq#!%%, $8c%

A!"#'$k ,q %!#im$q2g!#g"'"2q#$k!g"'#k"g!'%%.
$8d%

Here k is the interacting quark four-momentum, and m is its

mass. We use the notation &!"kq(&!"#'k
#q'. $The com-

plete forward scattering amplitude would also contain a

crossed photon process which we do not consider here, since

in the subsequent model calculations we focus on valence

quark distributions.% The function H(k ,p) represents the soft
quark-nucleon interaction. Since one is calculating the

imaginary part of the forward scattering amplitude, the inte-

gration over the quark momentum k is constrained by )
functions which put both the scattered quark and the nonin-

teracting spectator system on-mass-shell:

dk̃(
d4k

$2*%4
2*)+$k"q %2#m2,2*)+$p#k %2#mS

2,

$k2#m2%2
,

$9%

where mS
2!(p#k)2 is the invariant mass squared of the

spectator system.

Taking the trace over the quark spin indices we find

Tr+Hr!",!A!"#H
#"A!"#'H

#', $10%

where H# and H#' are vector and tensor coefficients, respec-

tively. The general structure of H# and H#' can be deduced

from the transformation properties of the truncated nucleon

tensor Ĝ!" and the tensors A!"# and A!"#' . Namely, from

A!"#* (k ,q)!A"!#(k ,q) and A!"#( k̃ , q̃)!#A!"#(k ,q), we

have

H#$p ,k %!#PH#$ p̃ , k̃ %P†, $11a%

H#$p ,k %!$TH#$ p̃ , k̃ %T †%*, $11b%

H#$p ,k %!-0H
#†$p ,k %-0 . $11c%

Similarly, since A!"#'* (k ,q)!A"!#'(k ,q) and A
!"#'( k̃ , q̃ )

!A!"#'(k ,q), one finds

H#'$p ,k %!PH#'$ p̃ , k̃ %P†, $12a%

H#'$p ,k %!#$TH#'$ p̃ , k̃ %T†%*, $12b%

H#'$p ,k %!-0H
#'†$p ,k %-0 . $12c%

With these constraints, the tensors H# and H#' can be pro-

jected onto Dirac and Lorentz bases as follows:

H#!p#-5$p” g1"k”g2%"k#-5$p” g3"k”g4%
"i-5./0p

/k0$p#g5"k#g6%"-#-5g7

"i-5./#$p/g8"k/g9%, $13a%

H#'!$p#k'#p'k#%./0p
/k0 f 1"$p#./'#p'./#%

$$p/ f 2"k/ f 3%"$k#./'#k'./#%$p/ f 4"k/ f 5%

".#' f 6"&/0#'p
/k0-5$p” f 7"k” f 8%

"&/0#'-5-
0$p/ f 9"k/ f 10%, $13b%

where the functions g1•••9 and f 1•••10 are scalar functions of
p and k .

Performing the integration over k in Eq. $7% and using
Eqs. $13%, we obtain expressions for the truncated structure
functions G (i) in terms of the nonperturbative coefficient

functions f i and gi . The explicit forms of these are given in

Appendix I. From Eq. $4% we then obtain the leading twist
contributions to the truncated nucleon tensor Ĝ!" . It is im-

portant to note that at leading twist the non-gauge-invariant

contributions to Ĝ!" vanish, so that the expansion in Eq. $4%
is the most general one which is consistent with the gauge

invariance of the hadronic tensor.

III. NUCLEAR STRUCTURE FUNCTIONS

Our discussion of polarized deep-inelastic scattering from

nuclei is restricted to the nuclear impulse approximation, il-

lustrated in Fig. 1. Nuclear effects which go beyond the im-

pulse approximation include final state interactions between

the nuclear debris of the struck nucleon +17,, corrections due
to meson exchange currents +18–20, and nuclear shadowing
$see +21–24, and references therein%. Since we are interested
in the medium- and large-x regions, coherent multiple scat-

tering effects, which lead to nuclear shadowing for x%0.1,
will not be relevant. In addition, it has been argued +6, that
meson exchange currents are less important in polarized

deep-inelastic scattering than in the unpolarized case since

their main contribution comes from pions.

Within the impulse approximation, deep-inelastic scatter-

ing from a polarized nucleus with spin 1/2 or 1 is then de-

scribed as a two-step process, in terms of the virtual photon-

nucleon interaction, parametrized by the truncated

antisymmetric nucleon tensor Ĝ!"(p ,q), and the polarized

nucleon-nucleus scattering amplitude Â(p ,P ,S). The anti-

FIG. 1. DIS from a polarized nucleus in the impulse approxima-

tion. The nucleus, virtual nucleon, and photon momenta are denoted

by P , p , and q , respectively, and S stands for the nuclear spin

vector. The upper blob represents the truncated antisymmetric

nucleon tensor Ĝ!" , while the lower one corresponds to the polar-

ized nucleon-nucleus amplitude Â .
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d

N

γ
∗

F d
2 (x) =

∫
dy fN/d(y) FN

2 (x/y) + δ
(off)

F
d
2 (x)

nucleon momentum distribution
(“smearing function”)

off-shell correction
(very small in d)



Nucleon momentum distribution in deuteron

computed from d wave function

fN/d(y) =
1

4
Md y

∫ p2

max

−∞

dp2
Ep

p0

∣

∣Ψd(!p
2)

∣

∣

2

EMC effect in deuteron



EMC effect in deuteron

At finite     , smearing function depends also on parameterQ2

γ = |q|/q0 =
√

1 + 4M2x2/Q2

simple factorization of convolution formula breaks down

For polarized SFs, have mixing between     &     at finite g1 g2 Q2

gd
i (x,Q2) =

∫
dy

y
fij(y, γ) gN

j (x/y,Q2) , i, j = 1, 2

for most kinematics γ ! 2

|f12|, |f21| ! f11, f22off diagonal functions small

Kulagin, Melnitchouk
Phys. Rev. C 77, 015210 (2008)



N momentum distributions in d



Unsmearing - multiplicative method

calculated d/N ratio depends on input F
n

2

extracted n depends on input n ...  cyclic argument

Solution:  iteration procedure 

smear       with         : F
p

2
fN/d1. fN/d ⊗ F p

2
≡ Sp F p

2

extract neutron via 2. Fn
2 = Sn(F d

2 − F p
2
/Sp)

starting with e.g. Sn = Sp

3. smear      with         to get new fN/dF
n

2 Sn

4. repeat 2-3 until convergence

subtract              from d data: 0. F
d
2 → F

d
2 − δ

(off)
F

d
2δ

(off)
F

d
2

-1



F d
2 constructed from      and       inputsF p

2 Fn
2

(using Bosted/Christy parameterizations)

Unsmearing - multiplicative method

Kahn, WM (2008)



Solution:  additive iteration procedure 

define difference between smeared and free SFs1.

first guess for  2.

3. after one iteration, gives

4. repeat until convergence

subtract              from d data: 0. F
d
2 → F

d
2 − δ

(off)
F

d
2δ

(off)
F

d
2

Unsmearing - additive method

since     &     are not positive-definite, expect 
multiplicative method to fail for spin-dependent SFs

g1 g2

F̃n
2 = fN/d ⊗ Fn

2 = Fn
2 + δ

Fn(0)
2 δ(0) = F̃n(0)

2 − Fn(0)
2

(avoids zeros)

Fn(1)
2 = Fn(0)

2 + (F̃n
2 − F̃n(0)

2 )



Unsmearing - additive vs. multiplicative

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n 2
F
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0.2

0.25

0.3 5 iterations
n

2
Test function F

Multiplicative method

Additive method

2
 = 1 GeV

2
Comparison of additive and multiplicative methods at Q

Kahn, WM (2008)

both methods work well for unpolarized SFs



Unsmearing - additive vs. multiplicative

Kahn, WM (2008)
x
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2
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2
Comparison of additive and multiplicative methods at Q

multiplicative method problematic for polarized SFs



Unsmearing - additive method

Kahn, WM (2008)

additive method works well for polarized SFs

x
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n 1
x

g
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-0.02
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Test function
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5 iterations

2
 = 1 GeV

2
 at Q

n

1
Convergence of additive method to test function xg



Unsmearing - additive method

Kahn, WM (2008)
x

0 0.2 0.4 0.6 0.8 1

1
x

g

-0.01

0
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0.02
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0.04
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n

1
Extracted xg

p

1
xg

d

1
xg

2 = 10 GeV2 at Qn

1
Preliminary extraction of xg

additive method works well for polarized SF
data at large Q2



Unsmearing - additive method

Kahn, WM (2008)

extraction sensitive to discontinuities in d data

x
0 0.2 0.4 0.6 0.8 1

1
x

g

-0.06

-0.04

-0.02

0

0.02

0.04
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0.08
 (3 iterations)n

1
Extracted xg

 (5 iterations)n

1
Extracted xg

p

1
xg

d

1
xg

2 = 2 GeV2 at Qn

1
Preliminary extraction of xg

cf. future RSS data



Summary

Target mass corrections

Truncated moments  
firm foundation for study of local duality in QCD

higher twists < 10% for      > Q2 2 1 GeV   in resonance region 

Fundamental questions remain to be addressed at large x

joint analysis with CTEQ of global data under way

TMCs in polarized structure functions

Need to account for finite-    effects in PVDIS

New method for extracting neutron SFs from nuclear data
await higher-precision nuclear data!

Q2

quantify effects of       , as well as higher twistsRγZ



The End


