JLab Science & Technology Review July 1, 2008

Recent Developments in Radiative Corrections

Wally Melnitchouk

John Tjon (Utrecht), Peter Blunden (Manitoba) & John Arrington (Argonne)

Outline

- Elastic *ep* scattering
- Two-photon exchange
 Rosenbluth separation vs. polarization transfer
- Global analysis of form factors
- Parity-violating electron scattering
 photon-Z interference & strangeness in the proton

Summary

Elastic *eN* scattering

Proton G_E/G_M **Ratio**

 $\underline{\text{LT}} \text{ method}$ $\sigma_R = G_M^2(Q^2) + \frac{\varepsilon}{\tau} G_E^2(Q^2)$

- \rightarrow G_E from slope in ε plot
- \rightarrow suppressed at large Q^2

 $\frac{PT}{G_E} = -\sqrt{\frac{\tau(1+\varepsilon)}{2\varepsilon}} \frac{P_T}{P_L}$

 $\rightarrow P_{T,L} \text{ recoil proton} \\ \text{polarization in } \vec{e} \ p \rightarrow e \ \vec{p}$

Proton G_E/G_M **Ratio**

Are the G_E^p/G_M^p data consistent?

QED Radiative Corrections

\blacksquare cross section modified by 1γ loop effects

Two-photon exchange

interference between Born and two-photon exchange amplitudes

contribution to cross section:

$$\delta^{(2\gamma)} = \frac{2\mathcal{R}e\left\{\mathcal{M}_{0}^{\dagger} \ \mathcal{M}_{\gamma\gamma}\right\}}{\left|\mathcal{M}_{0}\right|^{2}}$$

standard "soft photon approximation" (used in most data analyses)

- \rightarrow approximate integrand in $\mathcal{M}_{\gamma\gamma}$ by values at γ^* poles
- \rightarrow neglect nucleon structure (no form factors) *Mo*, *Tsai* (1969)

Two-photon exchange

• "exact" calculation of loop diagram (including γ^*NN form factors)

- few % magnitude
 positive slope
 - \rightarrow non-linearity in ε

Two-photon exchange

results essentially independent of form factor input

What about higher-mass intermediate states?

 $N, \Delta, P_{11}, S_{11}, S_{31}, \ldots$ $\left\{ \int q - k \right\}$ k . p_{γ} Amplitude for box diagram (cross-box is simil r) Lowest mass excitation is $\mathcal{P}_{33} = \overline{\Delta}(1232) \frac{d^4k}{(232)} \frac{N(k)}{(232)}$ \rightarrow relativistic $\gamma^* N \Delta$ vertex $\begin{array}{c} \Delta \text{ vertex} \\ N(k) = \bar{u}(p_3) \end{array} & \left(\begin{array}{c} \text{form factor} \\ \eta_{\mu}(p_1 - k + m_e) \gamma_{\nu} u(p_1) \end{array} \right)$ $\Gamma^{\nu\alpha}_{\gamma\Delta\to N}(p,q) \equiv iV^{\nu\alpha}_{\Delta in}(p,q) = \overline{u} \left(\frac{eF_{\Delta}(q^2)}{p_{\Delta}} \left\{ g_1 - \frac{eF_{\Delta}(q^2)}{p_{\Delta}} \left\{ g_1 - \frac{eF_{\Delta}(q^2)}{p_{\Delta}} \right\} \right\} \left(\frac{eF_{\Delta}(q^2)}{p_{\Delta}} \left\{ g_1 - \frac{eF_{\Delta}(q^2)}{p_{\Delta}} \right\} \right) \left(\frac{eF_{\Delta}(q^2)}{p_{\Delta}} \right) \left(\frac{eF_{\Delta}(q^2)}{p_$ $+g_{2}\left[p^{\nu}q^{\alpha}-g^{\nu\alpha}p\cdot q\right]+\left(g_{3}/M_{\Delta}\right)\left[q^{2}\left(p^{\nu}\gamma^{\alpha}-g^{\nu\alpha}p\right)+q^{\nu}\left(q^{\alpha}p-\gamma^{\alpha}p\cdot q\right)\right]\right\}\gamma_{5}T_{3}$ $D(k) = (k^{2}-\lambda^{2})((k-q)^{2}-\lambda^{2})$ coupling constants $\times ((p_{a_1} - k)^2 - m_{a_2}^2 - m_{a_2}^2) ((p_{a_2} + k)^2 - M^2)$ with $\lambda \approx IR regulator and model current is$ $\Gamma^{\mu}(q) \stackrel{g_{3}}{=} \gamma^{\mu\nu} \eta + \frac{i \Gamma^{\mu\nu} q}{2M} \cdot F_{2}^{0}(q^{2})$

Higher-mass intermediate states have also been calculated

 \rightarrow more model dependent, since couplings & form factors not well known (especially at high Q^2)

dominant contribution from N

 $\longrightarrow \Delta$ partially cancels N contribution

Higher-mass intermediate states have also been calculated

Kondratyuk, Blunden Phys. Rev. C **75** (2007) 038201

higher mass resonance contributions small
 much better fit to data including TPE

Global analysis

- reanalyze <u>all</u> elastic *ep* data (Rosenbluth, PT), including TPE corrections consistently from the beginning
 - use explicit calculation of N elastic contribution
- approximate higher mass contributions by phenomenological form, based on N^* calculations:

 $\delta_{\text{high mass}}^{(2\gamma)} = -0.01 \ (1-\varepsilon) \ \log Q^2 / \log 2.2$

for $Q^2 > 1 \text{ GeV}^2$, with $\pm 100\%$ uncertainty

→ decreases $\varepsilon = 0$ cross section by 1% (2%) at $Q^2 = 2.2$ (4.8) GeV²

Phys. Rev. C **76** (2007) 035205

Non-linearity in ε

- unique feature of TPE correction to cross section
- observation of non-linearity in *ɛ* would provide direct evidence of TPE in elastic scattering
- fit reduced cross section as:

$$\sigma_R = P_0 \left[1 + P_1 \ (\varepsilon - \frac{1}{2}) + P_2 \ (\varepsilon - \frac{1}{2})^2 \right]$$

current data give average non-linearity parameter:

$$\langle P_2 \rangle = 4.3 \pm 2.8\%$$

■ Hall C experiment E-05-017 will provide accurate measurement of ε dependence

e^+/e^- comparison

- 1γ (2γ) exchange changes sign (invariant) under $e^+ \leftrightarrow e^-$
- ratio of e^+p / e^-p elastic cross sections sensitive to $\Delta(\varepsilon, Q^2)$:

$$\sigma_{e^+p}/\sigma_{e^-p} \approx 1 - 2\Delta$$

► simultaneous e^-p/e^+p measurement using tertiary $e^+/e^$ beam to $Q^2 \sim 1-2$ GeV² (Hall B expt. E-04-116)

final form factor results from global analysis including TPE corrections

$$\left\{G_E, \ \frac{G_M}{\mu_p}\right\} = \frac{1 + \sum_{i=1}^n a_i \tau^i}{1 + \sum_{i=1}^{n+2} b_i \tau^i}$$

Parameter	G_M/μ_p	G_E
$a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2$	-1.465 1.260 0.262 9.627 0.000	3.439 -1.602 0.068 15.055 48.061
b_2 b_3 b_4 b_5	0.000 11.179 13.245	99.304 0.012 8.650

Arrington, Melnitchouk, Tjon Phys. Rev. C 76 (2007) 035205

Charge density

Parity-violating *e* scattering

• Left-right polarization asymmetry in $\vec{e} \ p \to e \ p$ scattering $A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) (A_V + A_A + A_s)$

measure interference between e.m. and weak currents

Born (tree) level

Parity-violating *e* scattering

• Left-right polarization asymmetry in $\vec{e} \ p \to e \ p$ scattering $A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) (A_V + A_A + A_s)$

measure interference between e.m. and weak currents

using relations between weak and e.m. form factors

$$G_{E,M}^{Zp} = (1 - 4\sin^2\theta_W)G_{E,M}^{\gamma p} - G_{E,M}^{\gamma n} - G_{E,M}^{s}$$

Parity-violating *e* scattering

• Left-right polarization asymmetry in $\vec{e} \ p \to e \ p$ scattering $A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) (A_V + A_A + A_s)$

measure interference between e.m. and weak currents

$$\begin{split} A_A &= g_V^e \sqrt{\tau (1+\tau)(1-\varepsilon^2)} \; \widetilde{G}_A^{Zp} G_M^{\gamma p} / \sigma^{\gamma p} \\ & \swarrow \\ & \swarrow \\ & \text{includes axial RCs + anapole term} \end{split}$$

$$A_{s} = -g_{A}^{e}\rho\left(\varepsilon G_{E}^{\gamma p}G_{E}^{s} + \tau G_{M}^{\gamma p}G_{M}^{s}\right)/\sigma^{\gamma p}$$
strange electric &
magnetic form factors

I current PDG estimates computed at $Q^2=0$

Marciano, Sirlin (1980) Erler, Ramsey-Musolf (2003)

do not include hadron structure effects (parameterized via VNN form factors)

At tree level, $\rho = \kappa = 1$

Including TBE corrections,

→ from vector part of asymmetry,

$$\begin{split} \Delta \rho &= \frac{A_V^p + A_V^n}{A_V^{p,\text{tree}} + A_V^{n,\text{tree}}} - \frac{\Delta \sigma^{\gamma(\gamma\gamma)}}{\sigma^{\gamma p}} \\ \Delta \kappa &= \frac{A_V^p}{A_V^{p,\text{tree}}} - \frac{A_V^p + A_V^n}{A_V^{p,\text{tree}} + A_V^{n,\text{tree}}} \underbrace{\text{tree level contribution}} \end{split}$$

some cancellation between Z(γγ) and γ(γγ) corrections in Δρ
 no γ(γγ) contribution to Δκ

Tjon, Melnitchouk, PRL 100, 082003 (2008)

- 2-3% correction at $Q^2 < 0.1 \text{ GeV}^2$
- strong Q^2 dependence at low Q^2
- \Box cf. Marciano-Sirlin (Q²=0): $\Delta \rho = -0.37\%$, $\Delta \kappa = -0.53\%$

dependence on input form factors

ç	Q ² (GeV	²) θ	Empirical	δ(%) Dipole	Monopole	$\delta = A_{\rm PV}^{\rm TBE} / A_{\rm PV}^{\rm tree}$
			Empiricai	Dipole	Wonopole	_
	0.1	144.0°	1.62	1.52	1.72	SAMPLE (97)
	0.23	35.31°	0.63	0.58	0.84	PVA4 (04)
	0.477	12.3°	0.16	0.15	0.24	HAPPEX (04)
	0.997	20.9°	0.22	0.23	0.30	G0 (05)
	0.109	6.0°	0.20	0.16	0.32	HAPPEX (07)
	0.23	110.0°	1.39	1.33	1.52	G0 Cresults to come
	0.03	8.0°	0.58	0.47	0.86	Qweak f results to come

"dipole" results ~ 5-10% smaller than "empirical"^[1]
 "monopole"^[2] results ~ 50% larger than "empirical"^[1]

[1] *Tjon, Melnitchouk, PRL* **100**, 082003 (2008)

[2] Zhou, Kao, Yang, PRL 99, 262001 (2007)

Effects on strange form factors

global analysis of all PVES data at $Q^2 < 0.3 \text{ GeV}^2$

$$G_E^s = 0.0025 \pm 0.0182$$

 $G_M^s = -0.011 \pm 0.254$
at $Q^2 = 0.1 \text{ GeV}^2$

Young et al., PRL 97, 102002 (2006)

including TBE corrections:

 $G_E^s = 0.0023 \pm 0.0182$ $G_M^s = -0.020 \pm 0.254$

at $Q^2 = 0.1 \text{ GeV}^2$

fixed mainly by ⁴He dataTBE for ⁴He not yet included

Summary

- **TPE corrections resolve most of Rosenbluth / PT** G_E^p/G_M^p discrepancy
 - → excited state contributions $(\Delta, P_{11}(1440), S_{11}(1535), ...)$ small relative to nucleon
- Reanalysis of global data, including TPE from the outset
 - $\rightarrow\,$ first consistent form factor fit at order α^3
 - \rightarrow "25% less charge" in the center of the proton
- $\gamma(Z\gamma)$ and $Z(\gamma\gamma)$ contributions give ~ 2% corrections to PVES at small Q^2
 - \rightarrow strong Q^2 dependence at low Q^2
 - \rightarrow affects extraction of strange form factors