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II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.

A. Rosenbluth technique

The unpolarized differential cross section for elastic scat-

tering can be written in terms of the cross section for scat-

tering from a point charge and the electric and magnetic form

factors:
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where #!Q2/4Mp
2 , % is the electron scattering angle, Q2

!4EeEe!sin
2(%/2), and Ee and Ee! are the incoming and scat-

tered electron energies. One can then define a reduced cross

section,
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where ( is the longitudinal polarization of the virtual photon
)(#1!1"2(1"#)tan2(%/2)* . At fixed Q2, i.e., fixed # , the
form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:
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where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.

J. ARRINGTON PHYSICAL REVIEW C 68, 034325 $2003&

034325-2

Rosenbluth (Longitudinal-Transverse)
Separation

Polarization Transfer

LT method 
σR = G2

M (Q2) +
ε

τ
G2

E(Q2)

PT method
GE

GM

= −

√

τ(1 + ε)

2ε

PT

PL

from slope in    plotGE ε

suppressed at large Q2

P    recoil proton 
polarization in

T,L
!e p→ e !p

Proton              RatioGE/GM



II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.

A. Rosenbluth technique

The unpolarized differential cross section for elastic scat-

tering can be written in terms of the cross section for scat-

tering from a point charge and the electric and magnetic form

factors:

d!

d"
!!Mott!GEp

2 "#GMp

2

1"#
"2#GMp

2 tan2$%/2&" , $1&

where #!Q2/4Mp
2 , % is the electron scattering angle, Q2

!4EeEe!sin
2(%/2), and Ee and Ee! are the incoming and scat-

tered electron energies. One can then define a reduced cross

section,

!R'
d!

d"

($1"#&

!Mott
!#GMp

2 $Q2&"(GEp

2 $Q2&, $2&

where ( is the longitudinal polarization of the virtual photon
)(#1!1"2(1"#)tan2(%/2)* . At fixed Q2, i.e., fixed # , the
form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:

GEp

GMp

!#
Pt

Pl

$Ee"Ee!&tan$%/2&
2Mp

, $3&

where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.

J. ARRINGTON PHYSICAL REVIEW C 68, 034325 $2003&

034325-2

Rosenbluth (Longitudinal-Transverse)
Separation

Polarization Transfer

LT method 
σR = G2

M (Q2) +
ε

τ
G2

E(Q2)

PT method

Are the              data consistent?Gp
E/Gp

M

GE

GM

= −

√

τ(1 + ε)

2ε

PT

PL

Proton              RatioGE/GM



QED Radiative Corrections

! µ

"µ

elastic electron

scattering

electron vertex

correction

electron self-energy

diagrams

vacuum

polarization

proton vertex

correction
proton self-energy

diagrams

box and crossed-

box diagrams

inelast ic ampli tudes

cross section modified by      loop effects 1γ

dσ= dσ0 (1+δ)

δ
ε
   contains additional
   dependence, mostly
from box diagrams
(most difficult to calculate)



Two-photon exchange

interference between Born and two-photon exchange amplitudes

X

contribution to cross section:

δ(2γ) =
2Re

{
M†

0 Mγγ

}

|M0|2

standard “soft photon approximation” (used in most data analyses)

Mo, Tsai (1969)

MγγM0

neglect nucleon structure (no form factors)

approximate integrand in          by values at      polesMγγ γ∗



Two-photon exchange

few % magnitude 

non-linearity in 
positive slope

Blunden, Melnitchouk, Tjon
PRL 91 (2003) 142304;
PRC 72 (2005) 034612
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FIG. 2: Difference between the full two-photon exchange correction to the elastic cross section

(using the realistic form factors in Eq. (26)) and the commonly used expression (23) from Mo &

Tsai [13] for Q2 = 1–6 GeV2. The numbers labeling the curves denote the respective Q2 values in

GeV2.
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dipole

“realistic”
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FIG. 3: Model dependence of the difference between the full two-photon exchange correction and

the Mo & Tsai approximation: (a) at Q2 = 1, 6 and 12 GeV2, using realistic (solid) [16] and

dipole (dashed) form factors; (b) at Q2 = 6 GeV2 using the form factor parameterizations from

Refs. [16] (solid), [26] (dashed), and [25] with Gp
E constrained by the LT-separated (dot-dashed)

and polarization transfer (long-dashed) data.
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Two-photon exchange

Blunden, Melnitchouk, Tjon
PRL 91 (2003) 142304;
PRC 72 (2005) 034612

“exact” calculation of loop diagram (including           form factors)γ∗NN

results essentially independent
of form factor input

form factors:
Mergell et al. (1996)
Brash et al. (2002)
Arrington LT (2004)
Arrington PT (2004)
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Lowest mass excitation is          (1232) resonance P33 Δ

to divide dσ by the well-known factor describing the scattering from a structureless “proton”
(see, e. g., [11]) and thus use the reduced cross section

dσR =
[

G2
M(Q2) +

ε

τ
G2

E(Q2)
]

(1 + δN + δ∆) . (1)

Here the Born contribution is written in terms of the electric and magnetic form factors of
the proton, GE(Q2) and GM(Q2), which are functions of the momentum transfer squared
Q2 ≡ −q2 ≡ 4τM2

N = −(p1 − p3)2. The kinematic variable ε is related to the scattering
angle θ through ε = [1 + 2(1 + τ) tan2(θ/2)]−1, which is equal to the photon polarisation in
the Born approximation.

We denote the Born scattering amplitude as MB and the two-photon exchange ampli-
tudes with the nucleon and ∆ intermediate states as Mγγ

N and Mγγ
∆ , respectively. From the

equation dσ = dσB(1 + δN + δ∆) = |MB + Mγγ
N + Mγγ

∆ |2, where dσB = |MB|
2, we derive

to first order in the electromagnetic coupling e2/(4π) ≈ 1/137:

δN,∆ = 2
Re

(

M†
B Mγγ

N,∆

)

|MB|
2 . (2)

The nucleon part δN of the two-photon exchange was analysed in Ref. [6]. Below we will
evaluate the ∆ two-photon exchange contribution δ∆. The scattering amplitude Mγγ

∆ is
given by the sum of the box and crossed-box loop diagrams depicted in Fig. 1.

1
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FIG. 1: Two-photon exchange box and crossed-box graphs for electron-proton scattering with a ∆

intermediate state, calculated in the present letter.

We use the γN∆ vertex of the following form [12]:

Γνα
γ∆→N(p, q) ≡ iV να

∆in(p, q) = i
eF∆(q2)

2M2
∆

{

g1 [ gναp/q/ − pνγαq/ − γνγαp · q + γνp/qα ]

+g2 [ pνqα − gναp · q ] + (g3/M∆) [ q2(pνγα − gναp/) + qν(qαp/ − γαp · q) ]
}

γ5 T3 , (3)

where M∆ ≈ 1.232 GeV is the ∆ mass, pα and qν are the four-momenta of the incoming ∆
and photon, respectively, and g1, g2 and g3 are the coupling constants.1 An analysis of Eq. (3)
in the ∆ rest frame suggests that g1, g2 − g1 and g3 may be interpreted as magnetic, electric
and Coulomb components, respectively, of the γN∆ vertex. The form factor in Eq. (3)
is necessary for ultraviolet regularisation of the loop integrals evaluated below; we use the
simple dipole form

F∆(q2) =
Λ4

∆

(Λ2
∆ − q2)2 , (4)

1 We use the notation and conventions of Ref. [11] throughout.
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form factor

What about higher-mass intermediate states?

N, ∆, P11, S11, S31, . . .
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higher mass resonance contributions small

much better fit to data including TPE
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Higher-mass intermediate states have also been calculated
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reanalyze all elastic ep data (Rosenbluth, PT), including TPE 
corrections consistently from the beginning

use explicit calculation of N elastic contribution

Global analysis

approximate higher mass contributions by 
phenomenological form, based on N* calculations:

for                     , with             uncertainty Q2 > 1 GeV2 ±100%

decreases    = 0  cross section by 1% (2%)
 at  

ε
Q2 = 2.2 (4.8) GeV2

δ(2γ)
high mass = −0.01 (1− ε) log Q2/ log 2.2
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LT separation

polarization
transfer

with TPE correction

resolves discrepancy
(within errors)



σR = P0

[
1 + P1 (ε− 1

2
) + P2 (ε− 1

2
)2

]

unique feature of TPE correction to cross section

observation of non-linearity in    would provide direct
evidence of TPE in elastic scattering

ε

fit reduced cross section as:

current data give average non-linearity parameter:

〈P2〉 = 4.3± 2.8%

Hall C experiment E-05-017 will provide accurate
measurement of    dependenceε

Non-linearity in ε



1γ (   ) exchange changes sign (invariant) under e+↔ e−2γ

ratio of                 elastic cross sections sensitive to             :         e+p / e−p Δ(ε,Q2)
σe+p/σe−p ≈ 1− 2∆

e−p/e+psimultaneous                measurement using tertiary             
beam to Q   ~ 1-2 GeV    (Hall B  expt. E-04-116)2 2

e+/e−

TPE calculation

data at various    ε

 comparisone+/e−
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we fit the reduced cross section to a quadratic in ε, as in
Ref. [47]:

σR = P0[1 + P1(ε − 0.5) + P2(ε − 0.5)2] , (12)

where P2 represents the fractional ε-curvature parame-
ter, relative to the average (ε = 0.5) reduced cross sec-
tion. With the inclusion of TPE corrections, the average
nonlinearity parameter, 〈P2〉, is found to increase from
1.9 ± 2.7% to 4.3 ± 2.8%. While the extracted nonlin-
earity increases with the TPE corrections, it is not large
enough to be considered inconsistent with P2 = 0. In
addition, the results from Ref. [47] are dominated by
higher Q2 points, where we do not include nonlinearities
in the TPE contributions from higher mass intermediate
states. Including the single-experiment LT separations
from the new low Q2 data sets used in this analysis, we
find 〈P2〉 = 2.8 ± 2.4% (after TPE), still generally con-
sistent with no nonlinearities.

C. Extraction of GE and GM from global analysis

In this section we extract individual GE and GM points
and uncertainties over the full Q2 range where the form
factors can be separated. The analysis follows that of
the corrected cross section data in the previous section,
but now we include the PT measurements in each Q2 bin
as part of the fit. The results for Q2 < 6 GeV2, where
GE and GM can be separated, are given in Table II, and
shown in Fig. 3.

For the combined fit, we fit GE and GM to the com-
bination of cross section and polarization transfer data
in each small Q2 bin. For the cross sections, we use the
TPE-corrected cross section measurements, and normal-
ize each data set using the scale factors found in the
global fit (Sec. III A). After making the initial fit for GE

and GM , we scale each data set by the estimated nor-
malization uncertainty (as in Sec. III B) to find its con-
tribution to the systematic uncertainty, and add these
in quadrature to determine the total uncertainty in GE ,
GM and the ratio due to the normalization uncertainties.

In addition to improving the overall precision, combin-
ing the cross section and PT results has the added benefit
of decreasing the correlation in the uncertainties in GE

and GM . The Rosenbluth separation tends to yield a
large anti-correlation between the uncertainties for GE

and GM , and thus an enhanced uncertainty on the ratio.
The PT data measure the ratio directly, thus dramati-
cally reducing this correlation. Therefore, in Tab. II, we
provide values and uncertainties for both the individual
form factors and the form factor ratio.

D. Extraction of GM at high Q2

In the extraction of GM for Q2 > 6 GeV2, the value
of GE is not known, so that an additional assumption

FIG. 3: (Color Online) Extracted values of GE and GM from
the global analyses. The open circles are the results of the
combined analysis of the cross section data and polarization
measurements (Sec. IIIC, Tab. II). The magenta crosses are
the extracted values of GM (Tab. III) for the high Q2 re-
gion, where GE cannot be extracted. The solid lines are
the fits to TPE-corrected cross section and polarization data
(Sec. III A). The dotted curves show the results of taking
GE and GM to be

√
σL and

√
σT , respectively, from a fit to

the TPE-uncorrected reduced cross section (Appendix A), i.e.
the value one would obtain using only cross section data and
ignoring TPE.

is required in order to extract GM . We extract GM

under two different assumptions for the ratio GE/GM .
First, we assume that the GE term is negligible above
6 GeV2, which would be the case if GE approached zero
and then stayed small. Second, we assume a linear fall-
off, µpGE/GM = 1−0.135 (Q2−0.24), from Ref. [8]. Up
to Q2 ≈ 14 GeV2 this yields a smaller contribution from
GE than in previous analyses, where it was assumed that
µpGE/GM = 1.

At higher Q2, the linear fit yields |µpGE/GM | > 1, and
thus a larger GE contribution, almost 10 times what was
assumed in the inital analysis of the Sill, et al. data [70]
at Q2 = 30 GeV2. This yields a significant change in the
Q2 dependence of the reduced cross section. Instead of

final form factor results
from global analysis
including TPE corrections

Arrington, Melnitchouk, Tjon
Phys. Rev. C 76 (2007) 035205

{
GE ,

GM

µp

}
=

1 +
∑n

i=1 aiτ i

1 +
∑n+2

i=1 biτ i

LT data



Charge density

25% less charge in the
center of the proton



Parity-violating e scattering

measure interference between e.m. and weak currents

Left-right polarization asymmetry in                  scattering!e p → e p

APV =
σL − σR

σL + σR
= −

(
GF Q2

4
√

2α

)
(AV + AA + As)

X

Born (tree) level



Parity-violating e scattering

measure interference between e.m. and weak currents

Left-right polarization asymmetry in                  scattering!e p → e p

using relations between weak and e.m. form factors

GZp
E,M = (1− 4 sin2 θW )Gγp

E,M −Gγn
E,M −Gs

E,M

radiative corrections,
including TBE

AV = ge
Aρ

[
(1− 4κ sin2 θW )− (εGγp

E Gγn
E + τGγp

M Gγn
M )/σγp

]

APV =
σL − σR

σL + σR
= −

(
GF Q2

4
√

2α

)
(AV + AA + As)



Parity-violating e scattering

measure interference between e.m. and weak currents

Left-right polarization asymmetry in                  scattering!e p → e p

includes axial RCs + anapole term

AA = ge
V

√
τ(1 + τ)(1− ε2) G̃Zp

A Gγp
M /σγp

APV =
σL − σR

σL + σR
= −

(
GF Q2

4
√

2α

)
(AV + AA + As)

As = −ge
Aρ (εGγp

E Gs
E + τGγp

M Gs
M ) /σγp

strange electric &
magnetic form factors



do not include hadron structure effects
(parameterized via VNN form factors)  

Two-boson exchange corrections

current PDG estimates computed at           Q2 = 0
Marciano, Sirlin (1980)

X

X

Erler, Ramsey-Musolf (2003)



Two-boson exchange corrections

At tree level, ρ = κ = 1

Including TBE corrections,

ρ = ρ0 + ∆ρ , κ = κ0 + ∆κ

standard RCs Born-TBE
interference

from vector part of asymmetry,

∆ρ =
Ap

V + An
V

Ap,tree
V + An,tree

V

− ∆σγ(γγ)

σγp

∆κ =
Ap

V

Ap,tree
V

− Ap
V + An

V

Ap,tree
V + An,tree

V tree level
contribution



Two-boson exchange corrections

Z(γγ)

γ(γγ)

γ(Zγ)

total

some cancellation between           and          corrections in γ(γγ)Z(γγ) ∆ρ

no           contribution to γ(γγ) ∆κ

Tjon, Melnitchouk, PRL 100, 082003 (2008)



Tjon, Melnitchouk, PRL 100, 082003 (2008)

strong      dependence at low Q2 Q2

2-3% correction at      < 0.1 GeVQ2 2

Two-boson exchange corrections

cf.  Marciano-Sirlin (          ): ∆ρ = −0.37% , ∆κ = −0.53%Q2 = 0



Two-boson exchange corrections

dependence on input form factors

“dipole” results ~ 5-10% smaller than “empirical” [1]

SAMPLE (97)
PVA4 (04)
HAPPEX (04)

HAPPEX (07)
G0 (05) 

G0
Qweak

results to come

δ = ATBE
PV / Atree

PV

}

Tjon, Melnitchouk, PRL 100, 082003 (2008)[1]

[1]“monopole”     results ~ 50% larger than “empirical”[2]

[2] Zhou, Kao, Yang, PRL 99, 262001 (2007)



Effects on strange form factors

global analysis of all PVES data at Q2 < 0.3 GeV2

Young et al., PRL 97, 102002 (2006)

including TBE corrections:
fixed mainly by   He data ...4

... TBE for   He not yet included4Gs
E = 0.0023± 0.0182

Gs
M = −0.020± 0.254

at Q2 = 0.1 GeV2

Gs
M = −0.011± 0.254

Gs
E = 0.0025± 0.0182

at Q2 = 0.1 GeV2



Summary
TPE corrections resolve most of Rosenbluth / PT     
             discrepancyGp

E/Gp
M

Reanalysis of global data, including TPE from the outset

         and           contributions give ~ 2% corrections to
PVES at small 
γ(Zγ) Z(γγ)

Q2

first consistent form factor fit at order α
3

excited state contributions                                  
small relative to nucleon

(∆, P11(1440), S11(1535), ...)

affects extraction of strange form factors

“25% less charge” in the center of the proton

strong       dependence at low Q2Q2


