$\gamma-Z^{0}$ Contributions to the Parity-Violating Asymmetry

Wally Melnitchouk Jefferson Lab
with John Tjon (Utrecht)
(also Peter Blunden (Manitoba) \& John Arrington (Argonne))

Proton G_{E} / G_{M} Ratio

LT method

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)
$$

$\rightarrow G_{E}$ from slope in ε plot
\rightarrow suppressed at large Q^{2}

PT method

$$
\frac{G_{E}}{G_{M}}=-\sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon}} \frac{P_{T}}{P_{L}}
$$

$\rightarrow P_{T, L}$ recoil proton polarization in $\vec{e} p \rightarrow e \vec{p}$

Possible reason - QED Radiative Corrections

- cross section modified by 1γ loop effects

Two-photon exchange

■ interference between Born and two-photon exchange amplitudes

- contribution to cross section:

$$
\delta^{(2 \gamma)}=\frac{2 \mathcal{R} e\left\{\mathcal{M}_{0}^{\dagger} \mathcal{M}_{\gamma \gamma}\right\}}{\left|\mathcal{M}_{0}\right|^{2}}
$$

- standard "soft photon approximation" (used in most data analyses)
\longrightarrow approximate integrand in $\mathcal{M}_{\gamma \gamma}$ by values at γ^{*} poles
\longrightarrow neglect nucleon structure (no form factors)

Two-photon exchange

where

$$
\begin{aligned}
& N(k)=\bar{u}\left(p_{3}\right) \gamma_{\mu}\left(\not p_{1}-\not k+m_{e}\right) \gamma_{\nu} u\left(p_{1}\right) \\
& \quad \times \bar{u}\left(p_{4}\right) \Gamma^{\mu}(q-k)\left(\not p_{2}+\not k+M\right) \Gamma^{\nu}(k) u\left(p_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
D(k) & =\left(k^{2}-\lambda^{2}\right)\left((k-q)^{2}-\lambda^{2}\right) \\
& \times\left(\left(p_{1}-k\right)^{2}-m^{2}\right)\left(\left(p_{2}+k\right)^{2}-M^{2}\right)
\end{aligned}
$$

with λ an IR regulator, and e.m. current is

$$
\Gamma^{\mu}(q)=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}\left(q^{2}\right)
$$

Two-photon exchange

■ "exact" calculation of loop diagram (including $\gamma^{*} N N$ form factors)

\Rightarrow few \% magnitude
\Rightarrow positive slope
\Rightarrow non-linearity in ε

What about higher-mass intermediate states?

- Lowest mass excitation is $P_{33} \Delta$ (1232) resonance
\Rightarrow relativistic $\gamma^{*} N \Delta$ vertex form factor $\frac{\Lambda_{\Delta}^{4}}{\left(\Lambda_{\Delta}^{2}-q^{2}\right)^{2}}$

$$
\begin{aligned}
& \Gamma_{\gamma \Delta \rightarrow N}^{\nu \alpha}(p, q) \equiv i V_{\Delta i n}^{\nu \alpha}(p, q)=i \frac{e F_{\Delta}\left(q^{2}\right)}{2 M_{\Delta}^{2}}\left\{g_{1}\left[g^{\nu \alpha} p p q-p^{\nu} \gamma^{\alpha} \phi q-\gamma^{\nu} \gamma^{\alpha} p \cdot q+\gamma^{\nu} p q^{\alpha}\right]\right. \\
& \left.\quad+g_{2}\left[p^{\nu} q^{\alpha}-g^{\nu \alpha} p \cdot q\right]+\left(g_{3} / M_{\Delta}\right)\left[q^{2}\left(p^{\nu} \gamma^{\alpha}-g^{\nu \alpha} \not p\right)+q^{\nu}\left(q^{\alpha} \not p-\gamma^{\alpha} p \cdot q\right)\right]\right\} \gamma_{5} T_{3}
\end{aligned}
$$

\Rightarrow coupling constants

$$
\begin{aligned}
g_{1} \text { magnetic } & \Rightarrow 7 \\
g_{2}-g_{1} & \text { electric }
\end{aligned} \stackrel{\Rightarrow 9}{g_{3}} \text { Coulomb } \quad \Rightarrow-2 \ldots 0
$$

- Higher-mass intermediate states have also been calculated
\longrightarrow more model dependent, since couplings \& form factors not well known (especially at high Q^{2})

Kondratyuk, Blunden,
Melnitchouk, Tjon
Phys. Rev. Lett 95 (2005) 172503
Kondratyuk, Blunden
Phys. Rev.C 75 (2007) 038201
\longrightarrow dominant contribution from N
$\Rightarrow \Delta$ partially cancels N contribution

- Higher-mass intermediate states have also been calculated

Kondratyuk, Blunden
Phys. Rev.C 75 (2007) 038201
\Rightarrow higher mass resonance contributions small
\Rightarrow much better fit to data including TPE

Global analysis

\square reanalyze all elastic $e p$ data (Rosenbluth, PT), including TPE corrections consistently from the beginning

- use explicit calculation of N elastic contribution

■ approximate higher mass contributions by phenomenological form, based on N^{*} calculations:

$$
\delta_{\text {high mass }}^{(2 \gamma)}=-0.01(1-\varepsilon) \log Q^{2} / \log 2.2
$$

for $Q^{2}>1 \mathrm{GeV}^{2}$, with $\pm 100 \%$ uncertainty
\Rightarrow decreases $\varepsilon=0$ cross section by $1 \%(2 \%)$

$$
\text { at } Q^{2}=2.2(4.8) \mathrm{GeV}^{2}
$$

Arrington, Melnitchouk, Tjon
Phys. Rev.C 76 (2007) 035205

Charge density

Parity-violating e scattering

\square Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents

$$
\begin{aligned}
A_{V}=g_{A}^{e} \rho & {\left[\left(1-4 \kappa \sin ^{2} \theta_{W}\right)-\left(\varepsilon G_{E}^{\gamma p} G_{E}^{\gamma n}+\tau G_{M}^{\gamma p} G_{M}^{\gamma n}\right) / \sigma^{\gamma p}\right] } \\
& \begin{array}{c}
\text { radiative corrections, } \\
\text { including TBE }
\end{array}
\end{aligned}
$$

using relations between weak and e.m. form factors

$$
G_{E, M}^{Z p}=\left(1-4 \sin ^{2} \theta_{W}\right) G_{E, M}^{\gamma p}-G_{E, M}^{\gamma n}-G_{E, M}^{s}
$$

Parity-violating e scattering

\square Left-right polarization asymmetry in $\vec{e} p \rightarrow e p$ scattering

$$
A_{\mathrm{PV}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \alpha}\right)\left(A_{V}+A_{A}+A_{s}\right)
$$

\rightarrow measure interference between e.m. and weak currents

$$
\begin{array}{r}
A_{A}=g_{V}^{e} \sqrt{\tau(1+\tau)\left(1-\varepsilon^{2}\right)} \widetilde{G}_{A}^{Z p} G_{M}^{\gamma p} / \sigma^{\gamma p} \\
\\
\text { includes axial RCs + anapole term }
\end{array}
$$

$$
\begin{aligned}
& A_{s}=-g_{A}^{e} \rho\left(\varepsilon G_{E}^{\gamma p} G_{E}^{s}+\tau G_{M}^{\gamma p} G_{M}^{s}\right) / \sigma^{\gamma p} \\
& \begin{array}{c}
\text { strange electric } \& \\
\text { magnetic form factors }
\end{array}
\end{aligned}
$$

Two-boson exchange corrections

- current PDG estimates (of " $\gamma(Z \gamma)$ ") computed at $Q^{2}=0$

Marciano, Sirlin (1980)
Erler, Ramsey-Musolf (2003)

- do not include hadron structure effects (parameterized via $V N N$ form factors)

Two-boson exchange corrections

ㅁ At tree level, $\rho=\kappa=1$

- Including TBE corrections,

\Rightarrow from vector part of asymmetry,

$$
\begin{aligned}
& \Delta \rho=\frac{A_{V}^{p}+A_{V}^{n}}{A_{V}^{p, \text { tree }}+A_{V}^{n, \text { tree }}-\frac{\Delta \sigma^{\gamma(\gamma \gamma)}}{\sigma^{\gamma p}}} \\
& \Delta \kappa=\frac{A_{V}^{p}}{A_{V}^{p, \text { tree }}-\frac{A_{V}^{p}+A_{V}^{n}}{A_{V}^{p, \text { tree }}+A_{V}^{n, \text { tree }}}} \begin{array}{c}
\begin{array}{c}
\text { tree level } \\
\text { contribution }
\end{array}
\end{array}
\end{aligned}
$$

Two-boson exchange corrections

Tjon, Melnitchouk, PRL 100, 082003 (2008)
\square some cancellation between $Z(\gamma \gamma)$ and $\gamma(\gamma \gamma)$ corrections in $\Delta \rho$

- no $\gamma(\gamma \gamma)$ contribution to $\Delta \kappa$

Two-boson exchange corrections

Tjon, Melnitchouk, PRL 100, 082003 (2008)

- 2-3\% correction at $Q^{2}<0.1 \mathrm{GeV}^{2}$
\square strong Q^{2} dependence at low Q^{2}
ㅁ cf. Marciano-Sirlin $\left(Q^{2}=0\right): \Delta \rho=-0.37 \%, \Delta \kappa=-0.53 \%$

Two-boson exchange corrections

- dependence on input form factors

Empirical Dipole Monopole
$\left.\begin{array}{lrllll} & & 1.62 & 1.52 & 1.72 & \\ \text { SAMPLE (97) } \\ 0.23 & 35.31^{\circ} & 0.63 & 0.58 & 0.84 & \text { PVA4 (04) } \\ 0.477 & 12.3^{\circ} & 0.16 & 0.15 & 0.24 & \text { HAPPEX (04) } \\ 0.997 & 20.9^{\circ} & 0.22 & 0.23 & 0.30 & \text { G0 (05) } \\ 0.109 & 6.0^{\circ} & 0.20 & 0.16 & 0.32 & \text { HAPPEX (07) } \\ 0.23 & 110.0^{\circ} & 1.39 & 1.33 & 1.52 & \text { G0 } \\ 0.03 & 8.0^{\circ} & 0.58 & 0.47 & 0.86 & \text { Qweak }\end{array}\right\}$ results to come
\Rightarrow "dipole" results $\sim 5-10 \%$ smaller than "empirical" ${ }^{[1]}$
\Longrightarrow "monopole" ${ }^{[2]}$ results $\sim 50 \%$ larger than "empirical" ${ }^{[1]}$
[1] Tjon, Melnitchouk, PRL 100, 082003 (2008)
[2] Zhou, Kao, Yang, PRL 99, 262001 (2007)

Effects on strange form factors

\square global analysis of all PVES data at $Q^{2}<0.3 \mathrm{GeV}^{2}$

$$
\begin{array}{r}
G_{E}^{s}=0.0025 \pm 0.0182 \\
G_{M}^{s}=-0.011 \pm 0.254 \\
\quad \text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
\end{array}
$$

Young et al., PRL 97, 102002 (2006)

- including TBE corrections:

$$
\begin{aligned}
& G_{E}^{s}=0.0023 \pm 0.0182 * \\
& G_{M}^{s}=-0.020 \pm 0.254
\end{aligned}
$$

$$
\text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
$$

TBE in nuclei

ㅁ scatter from individual nucleons (quasi-elastic), or whole nuclei?
\square assume nucleus is Z protons and $(A-Z)$ neutrons
(i.e. nuclear corrections in $A_{\mathrm{PV}}^{A} \rightarrow A_{\mathrm{PV}}^{N}$ have already been removed)

	$\Delta \rho(\%)$	$\Delta \kappa(\%)$
$\gamma(\gamma \gamma)$	-0.11	
$Z(\gamma \gamma)$	0.05	0.00
$\gamma(Z \gamma)$	0.61	-0.04
total	0.56	-0.04

TBE in nuclei

\square at the nuclear level, consider TBE with elastic intermediate state

\square assume dipole form factor with cut-off $\Lambda_{\mathrm{Pb}}=\sqrt{12 /\left\langle r^{2}\right\rangle} \approx 0.12 \mathrm{GeV}$

	$\delta_{\gamma(\gamma \gamma)}$	0.052
	$\delta_{Z(\gamma \gamma)}$	-0.026
	$\delta_{\gamma(Z \gamma)}$	0.018
$1+\delta_{\gamma(Z \gamma)}+\delta_{Z(\gamma \gamma)}$ $-\delta_{\gamma(\gamma \gamma)}$	$\frac{A_{\mathrm{PV}}}{A_{\mathrm{PV}}^{(0)}}$	0.944

Summary

- TPE corrections resolve most of Rosenbluth vs. PT G_{E}^{p} / G_{M}^{p} discrepancy
\rightarrow " 25% less charge" in the center of the proton
\rightarrow first consistent form factor fit at order α^{3}
- $\gamma(Z \gamma)$ and $Z(\gamma \gamma)$ contributions give $\sim 2 \%$ corrections to PVES at small Q^{2}
\rightarrow strong Q^{2} dependence at low Q^{2}
\rightarrow affects extraction of strange form factors
- First results on TBE in nuclei ($\left({ }^{208} \mathrm{~Pb}\right)$
\rightarrow at nucleon level, correction $<1 \%(\Delta \rho)$
\rightarrow larger effect at nuclear level (elastic intermediate state only)

The End

