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Quark-hadron duality

Complementarity between quark and 
hadron descriptions of observables

∑

hadrons

=

∑

quarks

Can use either set of complete basis states
to describe all physical phenomena
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Fig. 9. Early proton !W2 structure function data in the resonance region, as a function of "′, compared to a smooth fit to the
data in the scaling region at largerQ2. The resonance data were obtained at the indicated kinematics, withQ2 in GeV2, for the

longitudinal to transverse ratio R = 0.18. (Adapted from Ref. [3].)

perturbative QCD (as will be discussed in Section 4). Nevertheless, the astute observations made by

Bloom and Gilman are still valid, and may be summarized as follows:

I. The resonance region data oscillate around the scaling curve.

II. The resonance data are on average equivalent to the scaling curve.

III. The resonance region data “slide” along the deep inelastic curve with increasingQ2.

These observations led Bloom and Gilman to make the far-reaching conclusion that “the resonances are

not a separate entity but are an intrinsic part of the scaling behavior of !W2” [2].

In order to quantify these observations, Bloom and Gilman drew on the work on duality in hadronic

reactions to determine a FESR equating the integral over ! of !W2 in the resonance region, to the integral

over "′ of the scaling function [2],

2M

Q2

∫ !m

0

d! !W2(!, Q
2) =

∫ 1+W 2
m/Q2

1

d"′!W2("
′) . (63)

Here the upper limit on the ! integration, !m = (W 2
m −M2+Q2)/2M , corresponds to the maximum value

of "′ = 1 + W 2
m/Q2, where Wm ∼ 2GeV, so that the integral of the scaling function covers the same

range in "′ as the resonance region data. FESR (63) allows the area under the resonances in Fig. 9 to
be compared to the area under the smooth curve in the same "′ region to determine the degree to which
the resonance and scaling data are equivalent. A comparison of both sides in Eq. (63) for Wm = 2GeV

showed that the relative differences ranged from∼ 10%atQ2=1GeV2, to!2%beyondQ2=2GeV2 [3],
thus demonstrating the near equivalence on average of the resonance and deep inelastic regimes (point II

above). Using this approach, Bloom andGilman’s quark–hadron duality was able to qualitatively describe

the data in the range 1!Q2!10GeV2.

scaling curve

resonance - scaling duality in
proton                 structure function νW2 = F2

Inclusive electron-proton scattering



Bloom-Gilman duality

Average over (strongly Q  dependent) resonances 
     Q   independent scaling function2

2

≈

Finite energy sum rule for eN scattering

2M

Q2

∫
νm

0

dν νW2(ν, Q2) =

∫
ω

′

m

1

dω′ νW2(ω
′)

measured structure function
(function of    and     )ν Q2

“hadrons” ω′
=

1

x
+

M2

Q2

scaling function
(function of      only)ω

′

“quarks”
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Bloom-Gilman duality

2

Average over
(strongly Q   dependent)
resonances 
     Q   independent
     scaling function

2

≈

Jefferson Lab (Hall C)



Scaling variables

ξ =
2x

1 +
√

1 + 4x2M2/Q2

Nachtmann scaling variable

p+q
q

p

P

→ x as Q2
→ ∞

mq = 0

pT = 0
(p + q)2 = m

2

q {

ξ =
p+

P+
=

p0 + pz

M

light-cone fraction of target’s momentum carried by parton



Scaling variables
A Review of Target Mass Corrections 6

Figure 2. The Nachtmann variable ξ as a function of the Bjorken scaling variable x,
for Q2 = 1, 2, 4 and 10 GeV2. For reference, a dotted line is shown for the limiting
case ξ = x.

At large values of Q2, ξ ∼ x. As Fig. 2 shows, however, for Q2 less than a few times the

target mass of ∼ 1 GeV, ξ can deviate significantly from x, especially at large x values.

The Nachtmann variable appears naturally in the OPE, as we outline below. The full

details of the notation, including parton masses, appear in Appendix A.
We can write any generic inclusive lepton–nuclear scattering cross section as a

combination of a hadronic tensor Wµν and a leptonic tensor Lµν :

dσ ∼ Wµν Lµν ,

where the hadronic tensor is given in terms of a product of hadronic currents,‖

Wµν ≡
1

2π

∫
d4z eiq·z 〈N |[Jµ(z), Jν(0)]|N〉

= − gµνW1 +
pµpν

M2
W2 − iεµνρσ

pρqσ

M2
W3

+
qµqν

M2
W4 +

pµqν + pνqµ

M2
W5 . (4)

The structure functions Wi depend on x and Q2, as well as the target mass M . The
hadronic tensor can be related to the discontinuity of the virtual forward Compton

scattering amplitude Tµν via

Wµν =
1

π
disc Tµν . (5)

‖ In this work, we will focus on the unpolarized results. For TMC effects on the polarized structure
function see Refs. [43–45], and references therein.
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Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

Duality in QCD

τ

matrix elements of operators with 
specific “twist”

τ = dimension − spin



Higher twists

(a) (b) (c)

τ = 2

single quark
scattering

τ > 2

qq and qg
correlations



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

     

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

If moment      independent of Q≈
2

higher twist terms            smallA
(τ>2)
n

Duality in QCD



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

     

de Rujula, Georgi, Politzer,
Ann. Phys. 103 (1975) 315

Duality ⇐⇒ suppression of higher twists

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

Duality in QCD
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Fig. 13. Proton F2 structure function in the ! (top) and S11 (bottom) resonance regions from Jefferson Lab Hall C, compared

with the scaling curve from Ref. [7]. The resonances move to higher " with increasing Q2, which ranges from ∼ 0.5GeV2

(smallest " values) to ∼ 4.5GeV2 (largest " values).

higherQ2 values. It is difficult to evaluate precisely the equivalence of the two ifQ2 evolution [60] is not

taken into account. Furthermore, the resonance data and scaling curves, although at the same " or #′, are
at different x and sensitive therefore to different parton distributions. A more stringent test of the scaling

behavior of the resonances would compare the resonance data with fundamental scaling predictions for

the same low-Q2, high-x values as the data.

Such predictions are now commonly available from several groups around the world, for instance,

the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [61]; Martin, Roberts, Stirling, and

Thorne (MRST) [62]; Gluck, Reya, andVogt (GRV) [63]; and Blümlein and Böttcher [64], to name a few.

These groups provide results from global QCD fits to a full range of hard scattering processes—including

lepton–nucleon deep inelastic scattering, prompt photon production, Drell–Yan measurements, jet pro-

duction, etc.—to extract quark and gluon distribution functions (PDFs) for the proton. The idea of such

global fitting efforts is to adjust the fundamental PDFs to bring theory and experiment into agreement

for a wide range of processes. These PDF-based analyses include pQCD radiative corrections which give

rise to logarithmicQ2 dependence of the structure function. In this report, we use parameterizations from

all of these groups, choosing in each case the most straightforward implementation for our needs. It is

not expected that this choice affects any of the results presented here.

∆

S11

“local Bloom-Gilman duality”

Duality exists also in local regions, around individual resonances
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measurements at higher Q2 —data which are planned but
not yet available [24].

Figure 3 shows the same duality integral ratio as in
Fig. 2, but here obtained more locally, in restricted j
ranges around the three prominent resonance enhancement
regions observed in inclusive nucleon resonance electro-
production, i.e., around the masses of the D P33(1232)
(1.3 # W2 , 1.9 GeV2), the S11(1535) (1.9 # W2 ,
2.5 GeV2), and the F15(1680) (2.5 # W2 , 3.1 GeV2)
resonances, and in the higher W2 region above these
(3.1 # W2 # 3.9 GeV2). The uncertainties shown were
computed as in Fig. 2. The latter higher mass ratios,
which compare near deep inelastic data to deep inelastic
data are essentially one and similar to the results in Fig. 2.
It has been pointed out [25] that the D resonance form
factor decreases faster in Q2 than the leading order pertur-
bative QCD Q24 behavior which the scaling curve should
reflect. A similar observation may possibly be made from
Fig. 3 where the ratio (res!DIS) drops below unity in the
region 1 , Q2 , 3.5 "GeV!c#2. The S11 region, on the
other hand, appears systematically higher than the others.
Generally, however, the lower mass resonances appear to
average to the deep inelastic strength, manifesting duality
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FIG. 3. The ratios of integrated data strength in limited ranges
of j around the prominent resonance enhancement mass regions,
to the strength from the resonance fit (stars) and NMC (squares)
scaling curves integrated over the same j regions.

behavior even in these limited ranges of j at low Q2

where higher twist effects might be expected to be large.
By utilizing new inclusive data in the resonance region

at large x, it has been possible to revisit quark-hadron dual-
ity experimentally for the first time in nearly three decades.
These new data, combined with the extensive global mea-
surements of the F2 structure function from deep inelastic
scattering, allow for precision tests of duality in electron-
nucleon scattering. The original duality observations are
verified, and the QCD moment explanation indicates that
higher twist contributions to the n ! 2 moment of the F2
structure function are small or canceling, even in the low
Q2 regime of Q2 $ 0.5 "GeV!c#2. Duality is observed
to hold for local resonance enhancements individually, as
well as for the entire 1 # W2 # 4 GeV2 resonance region.
In all cases, duality appears to be a nontrivial dynamic
property of the nucleon structure function.
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~10% agreement 
for Q   > 1 GeV22

NMC fit

JLab
resonance 

fit

ratio of integrated 
resonance to DIS 
contributions



Truncated Moments



complete moments can be studied in QCD via twist expansion

e.g. need prescription for how to average over resonances

for local duality, difficult to make rigorous connection with QCD

truncated moments allow study of restricted regions in x
(or W) within QCD in well-defined, systematic way

Bloom-Gilman duality has a precise meaning

Mn(∆x, Q2) =

∫
∆x

dx xn−2 F2(x, Q2)

           (i.e., duality violation = higher twists)

Truncated moments



truncated moments obey DGLAP-like evolution equations,
similar to PDFs

can follow evolution of specific resonance (region) with
in pQCD framework!

Q2

dMn(∆x, Q2)

d log Q2
=

αs

2π

(
P ′

(n) ⊗ Mn

)
(∆x, Q2)

suitable when complete moments not available

where modified splitting function is

P ′

(n)(z, αs) = zn PNS,S(z, αs)

Truncated moments



truncated moment evolution equations exist for singlet (S)
and nonsinglet (NS) separately

for analysis of data, do not know much of experimental
structure function is NS and how much is S

for higher moments, small-x region is further suppressed,
so that NS is a very good approximation to total

for lowest (n=2) truncated moment, assumption that
total     NS is good to few % for ≈ xmin > 0.2

Truncated moments
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Psaker, WM, Christy, Keppel (2007)
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is leading twist ? Psaker et al. (2007)



Parameterization of       dataF
p

2

Text

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.1

0.2

0.3

0.4

F2

1 GeV2 data
1 GeV2 MRST2004

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.1

0.2

0.3

0.4

0.5

F2

4 GeV2 data
4 GeV2 MRST2004

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F2

9 GeV2 data
9 GeV2 MRST2004

Q2
= 4 GeV

2

how much of this region
is leading twist ? Psaker et al. (2007)



Parameterization of       dataF
p

2

Text

how much of this region
is leading twist ?
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Analysis of JLab data

assume data at highest       (                    ) is entirely leading twistQ2
= 9 GeV

2Q2

evolve (as NS) fit to data at                      down to lower Q2
= 9 GeV

2 Q2

apply TMC, and compare with data at lower Q2

Psaker et al. (2007)
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consider individual resonance regions:

“F15(1680)”

“∆(1232)”

“S11(1535)”

W
2
thr < W

2
< 1.9 GeV

2

1.9 < W
2

< 2.5 GeV
2

2.5 < W
2

< 3.1 GeV
2

as well as total resonance region:

W
2

< 4 GeV
2
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higher moments
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for Q   > 2-3 GeV22

in resonance region



Summary

Observation of quark-hadron duality in structure functions  
2higher twists “small” down to low Q2 (~ 1 GeV  )

Truncated moments  

Local duality

firm foundation for study of local duality in QCD

global duality understood within QCD moments

duality exists in local regions of x (or W )

difficult to understand within QCD

higher twists < 10% for      > Q2
2 1 GeV   in resonance region 


