Two-photon exchange in elastic e scattering

Wally Melnitchouk
Jefferson Lab

+ J.Tjon (Utrecht/JLab), P. Blunden, S. Kondratyuk (Manitoba)

Outline

- Introduction
- Two-photon exchange and nucleon structure
- Extraction of proton G_{E} / G_{M} ratio
\Rightarrow Rosenbluth separation and polarization transfer
- Excited state contributions
$\Rightarrow \Delta, N^{*}\left(1 / 2^{+}\right), N^{*}\left(1 / 2^{-}\right)$contributions
- Effect on neutron form factors
- Summary

Introduction

Elastic $e N$ scattering

Elastic cross section

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\sigma_{\mathrm{Mott}} \frac{\tau}{\varepsilon(1+\tau)} \sigma_{R} \\
\tau & =Q^{2} / 4 M^{2} \\
\varepsilon & =\left(1+2(1+\tau) \tan ^{2}(\theta / 2)\right)^{-1}
\end{aligned}
$$

$$
\sigma_{\mathrm{Mott}}=\frac{\alpha^{2} E^{\prime} \cos ^{2} \frac{\theta}{2}}{4 E^{3} \sin ^{4} \frac{\theta}{2}} \longleftarrow \quad \begin{aligned}
& \text { cross section for scattering } \\
& \text { from point particle }
\end{aligned}
$$

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right) \longleftarrow \text { reduced cross section }
$$

$$
G_{E}, G_{M} \text { Sachs electric and magnetic form factors }
$$

Elastic $e N$ scattering

In Breit frame

$$
\nu=0, \quad Q^{2}=\vec{q}^{2}
$$

electromagnetic current is

$$
\begin{gathered}
\bar{u}\left(p^{\prime}, s^{\prime}\right) \Gamma^{\mu} u(p, s)=\chi_{s^{\prime}}^{\dagger}\left(G_{E}+\frac{i \vec{\sigma} \times \vec{q}}{2 M} G_{M}\right) \chi_{s} \\
\Gamma^{\mu}=\gamma^{\mu} F_{1}+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}
\end{gathered}
$$

Dirac form factor Pauli form factor

$$
\begin{aligned}
& G_{E}=F_{1}-\frac{Q^{2}}{4 M^{2}} F_{2} \\
& G_{M}=F_{1}+F_{2}
\end{aligned}
$$

Elastic $e N$ scattering

In Breit frame

$$
\nu=0, \quad Q^{2}=\vec{q}^{2}
$$

electromagnetic current is

$$
\bar{u}\left(p^{\prime}, s^{\prime}\right) \Gamma^{\mu} u(p, s)=\chi_{s^{\prime}}^{\dagger}\left(G_{E}+\frac{i \vec{\sigma} \times \vec{q}}{2 M} G_{M}\right) \chi_{s}
$$

$c f$. classical (Non-Relativistic) current density

$$
J^{\mathrm{NR}}=\left(e \rho_{E}^{\mathrm{NR}}, \mu \vec{\sigma} \times \vec{\nabla} \rho_{M}^{\mathrm{NR}}\right)
$$

$\Longrightarrow \quad \rho_{E}^{\mathrm{NR}}(r)=\frac{2}{\pi} \int_{0}^{\infty} d q \vec{q}^{2} j_{0}(q r) G_{E}\left(\vec{q}^{2}\right) \quad$ charge density

$$
\mu \rho_{M}^{\mathrm{NR}}(r)=\frac{2}{\pi} \int_{0}^{\infty} d q \vec{q}^{2} j_{0}(q r) G_{M}\left(\vec{q}^{2}\right) \quad \text { magnetisation density }
$$

Until recently...

proton

Latest data...

proton

neutron

J.Kelly, Phys. Rev. C 66 (2002) 065203
note neutron $\rho_{E}>0$ at small r, but <0 at larger r
same physics which gives $\bar{d}>\bar{u}$ also gives shape of neutron ρ_{E}
\Rightarrow pion cloud

Surprising result for G_{E}^{p} / G_{M}^{p}
\rightarrow expect $G_{E}^{p} / G_{M}^{p} \rightarrow$ constant at high Q^{2}
\rightarrow implies very different proton charge and magnetization densities at small r

Are the G_{E}^{p} / G_{M}^{p} data consistent?

Proton G_{E} / G_{M} Ratio

Rosenbluth (Longitudinal-Transverse) Separation

$$
\begin{aligned}
\sigma_{R}= & G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right) \\
& \tau=Q^{2} / 4 M^{2} \\
& \varepsilon=\left[1+2(1+\tau) \tan ^{2} \theta / 2\right]^{-1}
\end{aligned}
$$

G_{E} / G_{M} from slope in ε plot

Proton G_{E} / G_{M} Ratio

LT method

$$
\begin{aligned}
\sigma_{R}= & G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right) \\
& \tau=Q^{2} / 4 M^{2} \\
& \varepsilon=\left[1+2(1+\tau) \tan ^{2} \theta / 2\right]^{-1}
\end{aligned}
$$

PT method

$$
\frac{G_{E}}{G_{M}}=-\sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon}} \frac{P_{T}}{P_{L}}
$$

$P_{T, L}$ polarization of recoil proton
G_{E} / G_{M} from slope in ε plot

Proton G_{E} / G_{M} Ratio

$\underline{\text { LT method }}$
PT method

Why is there a discrepancy between the two methods?

Two-photon exchange \& nucleon structure

QED Radiative Corrections

cross section modified by 1γ loop effects

Box diagram

\Longrightarrow elastic contribution

$$
\mathcal{M}_{\gamma \gamma}=e^{4} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{N(k)}{D(k)}
$$

where

$$
\begin{aligned}
& N(k)=\bar{u}\left(p_{3}\right) \gamma_{\mu}\left(\not p_{1}-\not k+m_{e}\right) \gamma_{\nu} u\left(p_{1}\right) \\
& \quad \times \bar{u}\left(p_{4}\right) \Gamma^{\mu}(q-k)\left(\not p_{2}+\not \ell+M\right) \Gamma^{\nu}(k) u\left(p_{2}\right) \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& D(k)=\left(k^{2}-\lambda^{2}\right)\left((k-q)^{2}-\lambda^{2}\right) \\
& \quad \times\left(\left(p_{1}-k\right)^{2}-m^{2}\right)\left(\left(p_{2}+k\right)^{2}-M^{2}\right)
\end{aligned}
$$

with λ an IR regulator, and e.m. current is

$$
\Gamma^{\mu}(q)=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}\left(q^{2}\right)
$$

Various approximations to $\mathcal{M}_{\gamma \gamma}$ used

- Mo-Tsai: soft γ approximation
\longrightarrow integrand most singular when $k=0$ and $k=q$
\longrightarrow replace γ propagator which is not at pole by $1 / q^{2}$
\longrightarrow approximate numerator $N(k) \approx N(0)$
\longrightarrow neglect all structure effects
- Maximon-Tjon: improved loop calculation
\longrightarrow exact treatment of propagators
\longrightarrow still evaluate $N(k)$ at $k=0$
\longrightarrow first study of form factor effects
\longrightarrow additional ε dependence
- Blunden-WM-Tjon: exact Ioop calculation \longrightarrow no approximation in $N(k)$ or $D(k)$
\longrightarrow include form factors

Two-photon correction

Two-photon correction

Blunden, WM, Tjon
PRL 91 (2003) 142304;
PRC72 (2005) 034612

Two-photon correction

Blunden, WM, Tjon
PRL 91 (2003) 142304;
PRC72 (2005) 034612

* different form factors
$\left\{\begin{array}{l}\text { Mergell, Meissner, Drechsel (1996) } \\ \text { Brash et al. (2002) } \\ \text { Arrington LT G G } G_{E}^{p} \text { fit (2004) } \\ \text { Arrington PT G } G_{E}^{p} \text { fit (2004) }\end{array}\right.$

Effect on cross section

$\cdots \cdots$......... Born cross section with PT form factors
—— including TPE effects

* Super-Rosenbluth

Qattan et al.,
PRL 94, 142301 (2005)

e^{+} / e^{-}comparison

■ 1γ exchange changes sign under $e^{+} \leftrightarrow e^{-}$

- 2γ exchange invariant under $e^{+} \leftrightarrow e^{-}$

■ ratio of $e^{+} p / e^{-} p$ elastic cross sections sensitive to $\Delta\left(\varepsilon, Q^{2}\right)$

Generalized form factors

- Generalized electromagnetic current

$$
\begin{gathered}
\Gamma^{\mu}=\widetilde{F}_{1} \gamma^{\mu}+\widetilde{F}_{2} \frac{i \sigma^{\mu \nu} q_{v}}{2 M}+\widetilde{F}_{3} \frac{\gamma \cdot K P^{\mu}}{M^{2}} * \\
K=\left(p_{1}+p_{3}\right) / 2, \quad P=\left(p_{2}+p_{4}\right) / 2
\end{gathered}
$$

Goldberger et al. (1957)
Guichon, Vanderhaeghen (2003)
Chen et al. (2004)

- \widetilde{F}_{i} are complex functions of Q^{2} and ε
$\square \quad \ln 1 \gamma$ exchange limit $\quad \widetilde{F}_{1,2}\left(Q^{2}, \varepsilon\right) \rightarrow F_{1,2}\left(Q^{2}\right)$

$$
\widetilde{F}_{3}\left(Q^{2}, \varepsilon\right) \rightarrow 0
$$

* Note: decomposition not unique

Generalized form factors

- Generalized (complex) Sachs form factors

$$
\begin{aligned}
& \widetilde{G}_{E}=G_{E}+\delta G_{E}, \quad \widetilde{G}_{M}=G_{M}+\delta G_{M}, \quad Y_{2 \gamma}=\tilde{v} \frac{\widetilde{F}_{3}}{G_{M}} \\
& K \cdot P / M^{2}=\sqrt{\tau(1+\tau)(1+\varepsilon) /(1-\varepsilon)}
\end{aligned}
$$

$\Rightarrow \sigma_{R}=G_{M}^{2}+\frac{\varepsilon}{\tau} G_{E}^{2}+2 G_{M}^{2} \operatorname{Re}\left\{\frac{\delta G_{M}}{G_{M}}+Y_{2 \gamma}\right\}+\frac{2 \varepsilon}{\tau} G_{E}^{2} \operatorname{Re}\left\{\frac{\delta G_{E}}{G_{E}}+\frac{G_{M}}{G_{E}} Y_{2 \gamma}\right\}$

\Longrightarrow cannot assume all TPE effects reside in $Y_{2 \gamma}$

Extraction of

 proton G_{E} / G_{M} ratio
G_{E}^{p} / G_{M}^{p} ratio

- estimate effect of TPE on ε dependence
- approximate correction by linear function of ε

$$
1+\Delta \approx a+b \varepsilon
$$

\Rightarrow reduced cross section is then

$$
\sigma_{R} \approx a G_{M}^{2}\left[1+\frac{\varepsilon}{\mu^{2} \tau}\left(R^{2}(1+\varepsilon b / a)+\mu^{2} \tau b / a\right)\right]
$$

where "true" ratio is

G_{E}^{p} / G_{M}^{p} ratio

Phys. Rev. C72 (2005) 034612
\square how does TPE affect polarization transfer ratio?

$$
\Rightarrow \quad \widetilde{R}=R\left(\frac{1+\Delta_{T}}{1+\Delta_{L}}\right)
$$

where $\Delta_{L, T}=\delta_{L, T}^{\text {full }}-\delta_{I R}^{\text {Mo-Tsai }}$ is finite part of 2γ contribution relative to IR part of Mo-Tsai

- experimentally measure ratio of polarized to unpolarized cross sections

$$
\Rightarrow \frac{P_{L T}^{1 \gamma+2 \gamma}}{P_{L, T}^{1 \gamma}}=\frac{1+\Delta_{L, T}}{1+\Delta}
$$

Longitudinal \& transverse polarizations

* Note scales!

\Rightarrow small effect on P_{L}

\Rightarrow large effect on P_{T}

G_{E}^{p} / G_{M}^{p} ratio

\Rightarrow large Q^{2} data typically at large ε
$\Rightarrow \quad<3 \%$ suppression at large Q^{2}

Normal polarization

\Rightarrow vanishes in one-photon exchange approximation

Normal asymmetry

\Rightarrow vanishes in one-photon exchange approximation

Excited intermediate states

- Lowest mass excitation is $P_{33} \Delta$ resonance
\Rightarrow relativistic $\gamma^{*} N \Delta$ vertex

$$
\begin{aligned}
& \text { relativistic } \gamma^{\prime N} \text { N verm factor } \frac{\Lambda_{\Delta}}{\left(\Lambda_{\Delta}^{2}-q^{2}\right)^{2}} \\
& \begin{array}{l}
\Gamma_{\gamma \Delta \rightarrow N}^{\nu \alpha}(p, q) \equiv i V_{\Delta i n}^{\nu \alpha}(p, q)=i \frac{\left.e F_{\Delta} q^{2}\right)}{2 M_{\Delta}^{2}}\left\{g_{1}\left[g^{\nu \alpha} \not p q-p^{\nu} \gamma^{\alpha} q-\gamma^{\nu} \gamma^{\alpha} p \cdot q+\gamma^{\nu} \not p q^{\alpha}\right]\right. \\
\left.\quad+g_{2}\left[p^{\nu} q^{\alpha}-g^{\nu \alpha} p \cdot q\right]+\left(g_{3} / M_{\Delta}\right)\left[q^{2}\left(p^{\nu} \gamma^{\alpha}-g^{\nu \alpha} \not p\right)+q^{\nu}\left(q^{\alpha} \not p-\gamma^{\alpha} p \cdot q\right)\right]\right\} \gamma_{5} T_{3}
\end{array}
\end{aligned}
$$

\Rightarrow coupling constants

$$
\begin{aligned}
g_{1} \text { magnetic } & \Rightarrow 7 \\
g_{2}-g_{1} \text { electric } & \Rightarrow 9 \\
g_{3} & \text { Coulomb }
\end{aligned} \Rightarrow-2 \ldots 0 \quad \begin{aligned}
& \text { a }
\end{aligned}
$$

- Two-photon exchange amplitude with Δ intermediate state

numerators

$$
\begin{aligned}
N_{b o x}^{\Delta}(k) & =\bar{U}\left(p_{4}\right) V_{\Delta i n}^{\mu \alpha}\left(p_{2}+k, q-k\right)\left[\not p 2+\not b+M_{\Delta}\right] \mathcal{P}_{\alpha \beta}^{3 / 2}\left(p_{2}+k\right) V_{\Delta o u t}^{\beta \nu}\left(p_{2}+k, k\right) U\left(p_{2}\right) \\
& \times \bar{u}\left(p_{3}\right) \gamma_{\mu}\left[\not p_{1}-\not p+m_{e}\right] \gamma_{\nu} u\left(p_{1}\right) \\
N_{x-b o x}^{\Delta}(k) & =\bar{U}\left(p_{4}\right) V_{\Delta i n}^{\mu \alpha}\left(p_{2}+k, q-k\right)\left[\not p p_{2}+\not \nmid+M_{\Delta}\right] \mathcal{P}_{\alpha \beta}^{3 / 2}\left(p_{2}+k\right) V_{\Delta o u t}^{\beta \nu}\left(p_{2}+k, k\right) U\left(p_{2}\right) \\
& \times \bar{u}\left(p_{3}\right) \gamma_{\nu}\left[\not p p_{3}+\not \nmid+m_{e}\right] \gamma_{\mu} u\left(p_{1}\right)
\end{aligned}
$$

spin-3/2 projection operator

$$
\mathcal{P}_{\alpha \beta}^{3 / 2}(p)=g_{\alpha \beta}-\frac{1}{3} \gamma_{\alpha} \gamma_{\beta}-\frac{1}{3 p^{2}}\left(\not p \gamma_{\alpha} p_{\beta}+p_{\alpha} \gamma_{\beta} \not p\right)
$$

Kondratyuk, Blunden, WM, Tjon
Phys. Rev. Lett. 95 (2005)172503
$\Rightarrow \quad \Delta$ has opposite slope to N
\Rightarrow cancels some of TPE correction from N

Kondratyuk, Blunden, WM, Tjon
Phys. Rev. Lett. 95 (2005)172503
\Rightarrow weaker ε dependence than with N alone
\Rightarrow better fit to JLab data!

Tjon, WM (2005)
higher-mass excited states

Kondratyuk, Blunden
nucl-th/0701003

higher-mass excited states

Kondratyuk, Blunden
nucl-th/0701003
higher-mass excited states

Kondratyuk, Blunden nucl-th/0701003
\Rightarrow higher mass resonance contributions small
\Rightarrow enhance nucleon elastic contribution

Effect on neutron form factors

Neutron correction

\Longrightarrow since G_{E}^{n} is small, effect may be relatively large
\Rightarrow sign opposite to proton (since $\kappa_{n}<0$)

Effect on neutron LT form factors

Blunden, WM, Tjon
Phys. Rev. C72 (2005) 034612
\Rightarrow large effect at high Q^{2} for LT-separation method
\Rightarrow LT method unreliable for neutron

Effect on neutron PT form factors

Blunden, WM, Tjon
Phys. Rev. C72 (2005) 034612
\Rightarrow small correction for PT
$\Rightarrow 4 \%(3 \%)$ suppression at $\varepsilon=0.3(0.8)$ for $Q^{2}=3 \mathrm{GeV}^{2}$ $10 \%(5 \%)$ suppression at $\varepsilon=0.3(0.8)$ for $Q^{2}=6 \mathrm{GeV}^{2}$

Summary

- First explicit calculation of TPE taking into account nucleon structure
- Nucleon elastic intermediate states resolves most of LT/PT G_{E}^{p} / G_{M}^{p} discrepancy
- Δ excited state opposite sign cf. nucleon, but smaller $P_{11}(1440)$ and $S_{11}(1535)$ contributions small
- Effect on neutron form factors large for LT method, small for PT method
- Reanalysis of global data (with J.Arrington \& J.Tjon) with TPE included from the beginning

Next 5 years

proton

neutron

The End

