University of Virginia February 6, 2007

Two-photon exchange in elastic *e* scattering

Wally Melnitchouk Jefferson Lab

+ J.Tjon (Utrecht/JLab), P. Blunden, S. Kondratyuk (Manitoba)

Outline

- Introduction
- Two-photon exchange and nucleon structure
- **Extraction of proton** G_E/G_M ratio
 - Rosenbluth separation and polarization transfer
- Excited state contributions → Δ , $N^*(1/2^+)$, $N^*(1/2^-)$ contributions
- Effect on *neutron* form factors

Summary

Introduction

Elastic *eN* scattering

Elastic *eN* scattering

Elastic *eN* scattering

cf. classical (Non-Relativistic) current density

$$J^{\rm NR} = \left(e \ \rho_E^{\rm NR} \ , \ \mu \ \vec{\sigma} \times \vec{\nabla} \rho_M^{\rm NR} \right)$$

$$\rho_E^{\rm NR}(r) = \frac{2}{\pi} \int_0^\infty dq \ \vec{q}^2 \ j_0(qr) \ G_E(\vec{q}^2) \qquad \underline{charge\ density}$$
$$\mu \ \rho_M^{\rm NR}(r) = \frac{2}{\pi} \int_0^\infty dq \ \vec{q}^2 \ j_0(qr) \ G_M(\vec{q}^2) \qquad \underline{magnetisation\ density}$$

Until recently...

Latest data...

proton

neutron

J.Kelly, Phys. Rev. C 66 (2002) 065203

note neutron $\rho_E > 0$ at small r, but < 0 at larger r

same physics which gives $\bar{d} > \bar{u}$ also gives shape of neutron ρ_E

→ pion cloud

Surprising result for G_E^p/G_M^p

- \rightarrow expect $G_E^p/G_M^p \rightarrow$ constant at high Q^2
- \rightarrow implies very different proton charge and magnetization densities at small r

J.Kelly, Phys. Rev. C 66 (2002) 065203

Are the G_E^p/G_M^p data consistent ?

Proton G_E/G_M **Ratio**

$$\underline{LT} \text{ method}$$

$$\sigma_R = G_M^2(Q^2) + \frac{\varepsilon}{\tau} G_E^2(Q^2)$$

$$\tau = Q^2/4M^2$$

$$\varepsilon = \left[1 + 2(1+\tau)\tan^2\theta/2\right]^{-1}$$

 G_E/G_M from slope in ε plot

Proton G_E/G_M **Ratio**

$$\underline{LT} \text{ method}$$

$$\sigma_R = G_M^2(Q^2) + \frac{\varepsilon}{\tau} G_E^2(Q^2)$$

$$\tau = Q^2/4M^2$$

$$\varepsilon = \left[1 + 2(1+\tau)\tan^2\theta/2\right]^{-1}$$

 G_E/G_M from slope in ε plot

<u>PT</u> method

$$\frac{G_E}{G_M} = -\sqrt{\frac{\tau(1+\varepsilon)}{2\varepsilon}} \frac{P_T}{P_L}$$

 $P_{T,L}$ polarization of recoil proton

Proton G_E/G_M **Ratio**

Why is there a <u>discrepancy</u> between the two methods?

Two-photon exchange & nucleon structure

QED Radiative Corrections

cross section modified by 1γ loop effects

Box diagram

$$\mathcal{M}_{\gamma\gamma} = e^4 \int \frac{d^4k}{(2\pi)^4} \frac{N(k)}{D(k)}$$

where

$$N(k) = \bar{u}(p_3) \gamma_{\mu}(\not p_1 - \not k + m_e) \gamma_{\nu} u(p_1) \\ \times \bar{u}(p_4) \Gamma^{\mu}(q-k) (\not p_2 + \not k + M) \Gamma^{\nu}(k) u(p_2)$$

and

$$D(k) = (k^2 - \lambda^2) ((k - q)^2 - \lambda^2) \times ((p_1 - k)^2 - m^2) ((p_2 + k)^2 - M^2)$$

with λ an IR regulator, and e.m. current is

$$\Gamma^{\mu}(q) = \gamma^{\mu} F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_{2}(q^{2})$$

Various approximations to $\mathcal{M}_{\gamma\gamma}$ used

- Mo-Tsai: soft γ approximation
 - \rightarrow integrand most singular when k = 0and k = q
 - \longrightarrow replace γ propagator which is not at pole by $1/q^2$
 - \longrightarrow approximate numerator $N(k) \approx N(0)$
 - \longrightarrow neglect all structure effects
- <u>Maximon-Tjon</u>: improved loop calculation
 - \longrightarrow exact treatment of propagators
 - \longrightarrow still evaluate N(k) at k = 0
 - \longrightarrow first study of form factor effects
 - \longrightarrow additional ε dependence
- <u>Blunden-WM-Tjon</u>: exact loop calculation
 - \longrightarrow no approximation in N(k) or D(k)
 - \longrightarrow include form factors

Two-photon correction

PRL 91 (2003) 142304; PRC72 (2005) 034612

non-linearity in ε

Two-photon correction

Two-photon correction

Blunden, WM, Tjon PRL 91 (2003) 142304; PRC72 (2005) 034612

* different form factors Mergell, Meissner, Drechsel (1996) Brash et al. (2002) Arrington LT G_E^p fit (2004) Arrington PT G_E^p fit (2004)

Effect on cross section

Born cross section with PT form factors
 including TPE effects

* Super-Rosenbluth

Qattan et al., PRL 94, 142301 (2005)

e^+/e^- comparison

- 1γ exchange changes sign under $e^+ \leftrightarrow e^-$
- 2γ exchange invariant under $e^+ \leftrightarrow e^-$
- ratio of e^+p / e^-p elastic cross sections sensitive to $\Delta(\epsilon, Q^2)$

simultaneous e^-p/e^+p measurement using <u>tertiary</u> e^+/e^- beam in Hall B (to $Q^2 \sim 1 \text{ GeV}^2$)

Generalized form factors

Generalized electromagnetic current

$$\Gamma^{\mu} = \widetilde{F}_1 \gamma^{\mu} + \widetilde{F}_2 \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} + \widetilde{F}_3 \frac{\gamma \cdot K P^{\mu}}{M^2} *$$

$$K = (p_1 + p_3)/2$$
, $P = (p_2 + p_4)/2$

Goldberger et al. (1957) Guichon, Vanderhaeghen (2003) Chen et al. (2004)

\square \widetilde{F}_i are complex functions of Q^2 and ε

■ In 1γ exchange limit $\widetilde{F}_{1,2}(Q^2, \varepsilon) \to F_{1,2}(Q^2)$ $\widetilde{F}_3(Q^2, \varepsilon) \to 0$

* Note: decomposition <u>not</u> unique

Generalized form factors

Generalized (complex) Sachs form factors

$$\widetilde{G}_E = G_E + \delta G_E , \qquad \widetilde{G}_M = G_M + \delta G_M , \qquad Y_{2\gamma} = \widetilde{\nu} \frac{\widetilde{F}_3}{G_M}$$
$$\swarrow K \cdot P/M^2 = \sqrt{\tau(1+\tau)(1+\varepsilon)/(1-\varepsilon)}$$

 \Rightarrow cannot assume all TPE effects reside in $Y_{2\gamma}$

Extraction of proton G_E/G_M ratio

G_E^p / G_M^p ratio

- **estimate effect of TPE on** ϵ dependence
 - approximate correction by linear function of ε

 $1 + \Delta \approx a + b\varepsilon$

reduced cross section is then

$$\sigma_R \approx a \ G_M^2 \left[1 + \frac{\varepsilon}{\mu^2 \tau} \left(R^2 (1 + \varepsilon \ b/a) + \mu^2 \tau \ b/a \right) \right]$$

where "true" ratio is

G_E^p / G_M^p ratio

resolves much of the form factor discrepancy

how does TPE affect polarization transfer ratio?

$$\implies \widetilde{R} = R\left(\frac{1+\Delta_T}{1+\Delta_L}\right)$$

where $\Delta_{L,T} = \delta_{L,T}^{\text{full}} - \delta_{\text{IR}}^{\text{Mo-Tsai}}$ is finite part of 2γ contribution relative to IR part of Mo-Tsai

experimentally measure ratio of polarized to unpolarized cross sections

$$\rightarrow \frac{P_{L,T}^{1\gamma+2\gamma}}{P_{L,T}^{1\gamma}} = \frac{1 + \Delta_{L,T}}{1 + \Delta}$$

Longitudinal & transverse polarizations

G_E^p / G_M^p ratio

→ large Q^2 data typically at large ε → < 3% suppression at large Q^2

Normal polarization

vanishes in one-photon exchange approximation

Normal asymmetry

vanishes in one-photon exchange approximation

Excited intermediate states

Lowest mass excitation is P_{33} Δ resonance

$$\Rightarrow \text{ relativistic } \gamma^* N\Delta \text{ vertex} \text{ form factor } \frac{\Lambda_{\Delta}^4}{(\Lambda_{\Delta}^2 - q^2)^2}$$

$$\Gamma_{\gamma\Delta\to N}^{\nu\alpha}(p,q) \equiv iV_{\Delta in}^{\nu\alpha}(p,q) = i\frac{eF_{\Delta}(q^2)}{2M_{\Delta}^2} \Big\{ g_1 \big[g^{\nu\alpha} \not\!\!\!/ g \not\!\!/ g - p^{\nu}\gamma^{\alpha} \not\!\!/ g - \gamma^{\nu}\gamma^{\alpha} p \cdot q + \gamma^{\nu} \not\!\!/ g q^{\alpha} \big]$$

$$+ g_2 \big[p^{\nu}q^{\alpha} - g^{\nu\alpha}p \cdot q \big] + (g_3/M_{\Delta}) \big[q^2(p^{\nu}\gamma^{\alpha} - g^{\nu\alpha} \not\!\!/ g) + q^{\nu}(q^{\alpha} \not\!\!/ g - \gamma^{\alpha}p \cdot q) \big] \Big\} \gamma_5 T_3$$

coupling constants

- g_1 magnetic \rightarrow 7
- $g_2 g_1$ electric \rightarrow 9
 - g_3 Coulomb $\rightarrow -2 \dots 0$

Two-photon exchange amplitude with Δ intermediate state

$$\mathcal{M}^{\gamma\gamma}_{\Delta} = -e^4 \int \frac{d^4k}{(2\pi)^4} \frac{N^{\Delta}_{box}(k)}{D^{\Delta}_{box}(k)} - e^4 \int \frac{d^4k}{(2\pi)^4} \frac{N^{\Delta}_{x-box}(k)}{D^{\Delta}_{x-box}(k)}$$

numerators

$$N_{box}^{\Delta}(k) = \overline{U}(p_4) V_{\Delta in}^{\mu\alpha}(p_2 + k, q - k) \left[\not p_2 + \not k + M_{\Delta} \right] \mathcal{P}_{\alpha\beta}^{3/2}(p_2 + k) V_{\Delta out}^{\beta\nu}(p_2 + k, k) U(p_2) \\ \times \overline{u}(p_3) \gamma_{\mu} \left[\not p_1 - \not k + m_e \right] \gamma_{\nu} u(p_1)$$

 $N_{x-box}^{\Delta}(k) = \overline{U}(p_4) V_{\Delta in}^{\mu\alpha}(p_2 + k, q - k) \left[\not p_2 + \not k + M_{\Delta} \right] \mathcal{P}_{\alpha\beta}^{3/2}(p_2 + k) V_{\Delta out}^{\beta\nu}(p_2 + k, k) U(p_2) \\ \times \overline{u}(p_3) \gamma_{\nu} \left[\not p_3 + \not k + m_e \right] \gamma_{\mu} u(p_1)$ $spin-3/2 \text{ projection operator} \\ \mathcal{P}_{\alpha\beta}^{3/2}(p) = g_{\alpha\beta} - \frac{1}{3} \gamma_{\alpha} \gamma_{\beta} - \frac{1}{3p^2} \left(\not p \gamma_{\alpha} p_{\beta} + p_{\alpha} \gamma_{\beta} \not p \right)$

Kondratyuk, Blunden, WM, Tjon Phys. Rev. Lett. 95 (2005)172503

- → Δ has <u>opposite</u> slope to N
- \blacktriangleright cancels some of TPE correction from N

Kondratyuk, Blunden, WM, Tjon Phys. Rev. Lett. 95 (2005)172503

→ weaker ɛ dependence than with N alone
→ better fit to JLab data!

Tjon, WM (2005)

higher-mass excited states

Kondratyuk, Blunden nucl-th/0701003

higher-mass excited states

Kondratyuk, Blunden nucl-th/0701003

higher-mass excited states

Kondratyuk, Blunden nucl-th/0701003

Effect on neutron form factors

Neutron correction

 \blacktriangleright since G_E^n is small, effect may be relatively large

→ sign opposite to proton (since $\kappa_n < 0$)

Effect on neutron LT form factors

 \rightarrow large effect at high Q^2 for LT-separation method

→ LT method unreliable for neutron

Effect on neutron PT form factors

small correction for PT

→ 4% (3%) suppression at $\varepsilon = 0.3~(0.8)$ for $Q^2 = 3~{\rm GeV}^2$ 10% (5%) suppression at $\varepsilon = 0.3~(0.8)$ for $Q^2 = 6~{\rm GeV}^2$

Summary

- First explicit calculation of TPE taking into account nucleon structure
- Nucleon elastic intermediate states resolves most of LT/PT G_E^p/G_M^p discrepancy
- Δ excited state opposite sign cf. nucleon, but smaller $P_{11}(1440)$ and $S_{11}(1535)$ contributions small
- Effect on neutron form factors large for LT method, small for PT method
- Reanalysis of global data (with J.Arrington & J.Tjon) with TPE included from the beginning

Next 5 years

neutron

The End