New understanding of nucleon resonances: Results from the Excited Baryon Analysis Center

Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab)

in collaboration with B. Julia-Diaz, T.-S. H. Lee, A. Matsuyama, S. Nakamura, T. Sato, N. Suzuki

Argonne Physics Division Seminar, March 15, 2010

1. Motivation and research program for the N* study at EBAC

2. Extraction of resonances and their dynamical origins

Motivation and research program for the N* study at EBAC (1 of 2)

N* states - Δ (1232) and others -

- ✓ The Delta (1232) resonance stands as a clear peak.
- ✓ The region $s^{1/2} = 1.4 2$ GeV hosts ~ 20 resonances.

N* states and PDG *s

Particle	$L_{2I\cdot 2}$	$_J$ status	$N\pi$	$N\eta$	ΛK	ΣK	$\Delta \pi$	N ho	$N\gamma$
N(939)	<i>P</i> ₁₁	****							
N(1440)	$P_{11}^{}$	****	****	*			***	*	***
N(1520)	D_{13}	****	****	***			****	****	****
N(1535)	S_{11}	****	****	****			*	**	***
N(1650)	S_{11}	****	****	*	***	**	***	**	***
N(1675)	D_{15}	****	****	*	*		****	*	****
N(1680)	F_{15}	****	****	*			****	****	****
N(1700)	D_{13}^{-1}	***	***	*	**	*	**	*	**
N(1710)	P_{11}^{-1}	***	***	**	**	*	**	*	***
N(1720)	$P_{13}^{}$	****	****	*	**	*	*	**	**
N(1900)	$P_{13}^{}$	**	**					*	
N(1990)	F_{17}	**	**	*	*	*			*
$\Delta(1232)$	P_{33}	****	****	F					****
$\Delta(1600)$	P_{33}	***	***	0			***	*	**
$\Delta(1620)$	S_{31}	****	****	r			****	****	***
$\Delta(1700)$	D_{33}	****	****	b		*	***	**	***
$\Delta(1750)$	P_{31}	*	*	i					
$\Delta(1900)$	S_{31}	**	**	I	d	*	*	**	*
$\Delta(1905)$	F_{35}	****	****		d	*	**	**	***
Δ (1910)	P_{31}	****	****		e	*	*	*	*
$\Delta(1920)$	P_{33}	***	***		n	*	**		*
$\Delta(1930)$	D_{35}	***	***			*			**
$\Delta(1940)$	D_{33}	*	*	F					
$\Delta(1950)$	F_{37}	****	****	0		*	****	*	****

N* states and PDG *s

N* states and PDG *s

Excited Baryon Analysis Center (EBAC) of Jefferson Lab

Founded in January 2006

http://ebac-theory.jlab.org/

Objectives and goals:

Through the comprehensive analysis of world data of πN , γN , N(e,e') reactions,

- Determine N* spectrum (masses, widths)
- Extract N* form factors
- Provide information about reaction mechanism necessary to interpret the N* properties

Basic reaction model

Dynamical coupled-channels model @ EBAC

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

✓ Partial wave (LSJ) amplitude of a \rightarrow b reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels effect

Reaction channels:

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K\Delta, K\Sigma, \omega N)$$

 $\pi \pi N$

Potential:

$$V_{a,b} = v_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

exchange potential
of ground state
mesons and baryons

Dynamical coupled-channels model @ EBAC

Dynamical coupled-channels model @ EBAC

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

✓ Partial wave (LSJ) amplitude of a \rightarrow b reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$
coupled-channels effect
$$\Gamma_{N^*,a(LS)}(p) = \frac{1}{(2\pi)^{3/2}} \frac{1}{\sqrt{m_N}} \left[\frac{p}{m_\pi} \right]^L C_{N^*,a} \left[\frac{\Lambda_{N^*,a(LS)}^2}{\Lambda_{N^*,a(LS)}^2 + p^2} \right]^{(2+L)}$$
Potential:
$$V_{a,b} = v_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$
Exchange potential of ground state mesons and baryons
$$T = V_{a,b} = V_{a,b} + V_{a,b} = V_{a,b} = V_{a,b} + V_{a,b} = V_{a,b} = V_{a,b} + V_{a,b} = V_{a,b} + V_{a,b} = V_{a,b} = V_{a,b} + V_{a,b} = V_{a,b} = V_{a,b} + V_{a,b} = V_{$$

Strategy for the N* study @ EBAC

Current status of the EBAC-DCC analysis

Hadronic part

✓ π N → π N	: fitted to the data up to $W = 2 GeV$.		
	Julia-Diaz, Lee, Matsuyama, Sato, PRC76 065201 (2007)		
✓ π N → π π N	: cross sections calculated with the πN model; fit is ongoing.		
	Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC79 025206 (2009)		
✓ π Ν → η Ν	: fitted to the data up to W = 2 GeV		
	Durand, Julia-Diaz, Lee, Saghai, Sato, PRC78 025204 (2008)		

Electromagnetic part

 ✓ γ^(*) N → π N : fitted to the data up to W = 1.6 GeV (and up to Q² = 1.5 GeV²) (photoproduction) Julia-Diaz, Lee, Matsuyama, Sato, Smith, PRC77 045205 (2008) (electroproduction) Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, PRC80 025207 (2009)
 ✓ γ N → π π N : cross sections calculated with the γN & πN model; fit is ongoing. Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC80 065203 (2009)
 ✓ γ^(*) N → η N : in progress

✓ γ N → K Λ : *in progress* (Sandorfi, Hoblit, Kamano, Lee, arXiv:0912.3505)

Pion-nucleon elastic scattering

Julia-Diaz, Lee, Matsuyama, Sato, PRC76 065201 (2007)

 $MB = \pi N, \eta N, \pi \pi N (\ni \pi \Delta, \sigma N, \rho N)$ coupled channels are considered.

Pion-nucleon elastic scattering

Julia-Diaz, Lee, Matsuyama, Sato, PRC76 065201 (2007)

 $MB = \pi N, \eta N, \pi \pi N (\ni \pi \Delta, \sigma N, \rho N)$ coupled channels are considered.

pi N \rightarrow pi pi N reaction

Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC79 025206 (2009)

Parameters used in the calculation are from $\pi N \rightarrow \pi N$ analysis.

Single pion photoproduction

Julia-Diaz, Lee, Matsuyama, Sato, Smith, PRC77 045205 (2008)

- **Comparison to data**
 - Total cross section

Single pion photoproduction

- **Comparison to data**
 - Total cross section
 - Differential cross section

Single pion photoproduction

- **Comparison to data**
 - Total cross section
 - Differential cross section
 - Photon asymmetry

$$\gamma p \to \pi^+ n$$

Double pion photoproduction

Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC80 065203 (2009)

Parameters used in the calculation are from $\pi N \rightarrow \pi N \& \gamma N \rightarrow \pi N$ analyses.

- Good description near threshold
- Reasonable shape of invariant mass distributions
- ✓ Above 1.5 GeV, the total cross sections of $p\pi^0\pi^0$ and $p\pi^+\pi^-$ overestimate the data.

Plan for EBAC-DCC analysis in 2010

EBAC second generation model

Full combined analysis (global fit) of:

~ End of	$\succ \pi N \rightarrow \pi N$	(W < 2 GeV)
2010	> πN → ηN	(W < 2 GeV)
	$\succ \gamma N \rightarrow \pi N$	(W < 1.6 GeV → <mark>2 GeV</mark>)
	γN → ηN	(W < 2 GeV)
	$\succ \gamma N \rightarrow KY$	(W < 2 GeV) New N* states may be found !!
2010 ~ 2011	$\succ \pi N \rightarrow \pi \pi N$	(W < 2 GeV)
	$\succ \gamma N \rightarrow \pi \pi N$	(W < 1.5 GeV <mark>→ 2 GeV</mark>)

Extraction of resonances and their dynamical origins (2 of 2)

How can we extract N* information?

PROPER definition of

- N* mass and width
- \checkmark N* \rightarrow MB, γ N decay vertices \rightarrow Residue of the pole
- → Pole position of the amplitudes

How can we extract N* information?

PROPER definition of

- N* mass and width
- \checkmark N* \rightarrow MB, γ N decay vertices \rightarrow Residue of the pole
- → Pole position of the amplitudes

Need analytic continuation of the amplitudes !!

→ Suzuki, Sato, Lee, PRC79 025205 (2009); arXiv:0910.1742

e.g.) single-channel meson-baryon scattering

$$T(p, p'; E) = V(p, p') + \int q^2 dq V(p, q) G(q; E) T(q, p'; E)$$

Scattering amplitude is a double-valued function of E !!

e.g.) single-channel meson-baryon scattering

$$T(p, p'; E) = V(p, p') + \int q^2 dq V(p, q) G(q; E) T(q, p'; E)$$

Scattering amplitude is a double-valued function of E !!

e.g.) single-channel meson-baryon scattering

$$T(p, p'; E) = V(p, p') + \int q^2 dq V(p, q) G(q; E) T(q, p'; E)$$

Scattering amplitude is a double-valued function of E !!

Jefferson Lab

🙆 📢

e.g.) single-channel meson-baryon scattering

$$T(p, p'; E) = V(p, p') + \int q^2 dq V(p, q) G(q; E) T(q, p'; E)$$

Scattering amplitude is a double-valued function of E !!

Jefferson Lab

e.g.) single-channel meson-baryon scattering

$$T(p, p'; E) = V(p, p') + \int q^2 dq V(p, q) G(q; E) T(q, p'; E)$$

Scattering amplitude is a double-valued function of E !!

Momentum-integral path to avoid singularities

Suzuki, Sato, Lee, arXiv:0910.1742

of complex energy plane.

of complex energy plane.

N* poles from EBAC-DCC analysis

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 042302 (2010)

	EBAC	PDG			
└ 2 2J	(MeV)	(MeV)			
<i>S</i> ₁₁	1540 – 191 <i>i</i>	$(1490 \sim 1530) - (45 \sim 125)i$			
	1642 - 41i	$(1640 \sim 1670) - (75 \sim 90)i$			
<i>S</i> ₃₁	1563 – 95 <i>i</i>	$(1590 \sim 1610) - (57 \sim 60)i$			
<i>P</i> ₁₁	1356 – 76 <i>i</i>	$(1350 \sim 1380) - (80 \sim 110)i$			
	1364 – 105 <i>i</i>				
	1820 - 248i	$(1670 \sim 1770) - (40 \sim 190)i$			
<i>P</i> ₁₃	Not found	$(1660 \sim 1690) - (57 \sim 138)i$			
P ₃₁	Not found	$(1830 \sim 1880) - (100 \sim 250)i$			
P ₃₃	1211 – 50 <i>i</i>	$(1209 \sim 1211) - (49 \sim 51)i$			
<i>D</i> ₁₃	1521 – 58 <i>i</i>	$(1505 \sim 1515) - (52 \sim 60)i$			
<i>D</i> ₁₅	1654 – 77 <i>i</i>	$(1655 \sim 1665) - (62 \sim 75)i$			
D ₃₃	1604 – 106 <i>i</i>	$(1620 \sim 1680) - (80 \sim 120)i$			
F ₃₅	1738 – 110 <i>i</i>	$(1825 \sim 1835) - (132 \sim 150)i$			
<i>F</i> ₃₇	1858 - 100i	$(1870 \sim 1890) - (110 \sim 130)i$			

N* poles from EBAC-DCC analysis

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 042302 (2010)

	EBAC	PDG
└ 2 2J	(MeV)	(Me Two resonance poles
<i>S</i> ₁₁	1540 – 191 <i>i</i>	$(1490 \sim 1530)$ in the Roper resonance
	1642 – 41 <i>i</i>	(1640 ~ 1670)
<i>S</i> ₃₁	1563 – 95 <i>i</i>	$(1590 \sim 1610) = 00)i$
<i>P</i> ₁₁	1356 – 76 <i>i</i>	(1350 1380) – (80 ~ 110) <i>i</i>
	1364 – 105 <i>i</i>	
	1820 - 248i	$(1670 \sim 1770) - (40 \sim 190)i$
<i>P</i> ₁₃	Not found	$(1660 \sim 1690) - (57 \sim 138)i$
P ₃₁	Not found	$(1830 \sim 1880) - (100 \sim 250)i$
P ₃₃	1211 – 50 <i>i</i>	$(1209 \sim 1211) - (49 \sim 51)i$
D_{13}	1521 – 58 <i>i</i>	$(1505 \sim 1515) - (52 \sim 60)i$
D_{15}	1654 – 77 <i>i</i>	$(1655 \sim 1665) - (62 \sim 75)i$
D ₃₃	1604 – 106 <i>i</i>	$(1620 \sim 1680) - (80 \sim 120)i$
F ₃₅	1738 – 110 <i>i</i>	$(1825 \sim 1835) - (132 \sim 150)i$
<i>F</i> ₃₇	1858 - 100i	$(1870 \sim 1890) - (110 \sim 130)i$

N* poles from EBAC-DCC analysis

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 042302 (2010)

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 042302 (2010)

Thomas Jefferson National Accelerator Facility

Jefferson Lab

Two-pole structure of the Roper P11(1440)

Two-pole structure of the Roper P11(1440)

Jefferson Lab

Two-pole structure of the Roper P11(1440)

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 042302 (2010)

All three P11 poles below 2 GeV are generated from a same, single bare state!

Multi-channel reactions can generate many resonance poles from a single bare state

Eden, Taylor, Phys. Rev. 133 B1575 (1964)

e.g.) Two poles for $J^{\pi} = 3/2^+$ resonance in He⁵ Hale, Brown, Jarmie, PRL59 763 (1987)

Summary

- Continuous effort for exploring the N* states is being made at EBAC of Jefferson Lab.
- Resonance poles have been successfully extracted from the EBAC-DCC analysis.
- ✓ Dynamical origin of the P11 nucleon resonances:
 - > The Roper resonance is associated with *two* resonance poles.
 - (Two) Roper and N(1710) originate from a same, single bare state.

 $N^* \rightarrow \gamma N$ transition form factors have also been extracted.

Treatment of *multi*-reaction channels is key to understanding the N* spectrum !!

