Dynamical coupled-channels study of photo- and electro-production reactions

Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab)

in collaboration with B. Julia-Diaz, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki

Outline

1. Excited Baryon Analysis Center (EBAC) @JLab

2. Recent results from EBAC-DCC analysis of ep \rightarrow e' π N reactions

3. Current work on "Complete Experiment" of pseudoscalar meson photoproduction reactions

Excited Baryon Analysis Center @ Jefferson Lab

Founded in January 2006

http://ebac-theory.jlab.org/

Objectives and goals:

Through the comprehensive analysis of world data of πN , γN , N(e,e') reactions,

- Determine N* spectrum (masses, widths)
- Extract N* form factors, in particular the N-N* electromagnetic transition form factors
- Develop a method to connect with hadron structure calculations and deduce the structure of N* states

Dynamical coupled-channels model @ EBAC

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

✓ Partial wave (LSJ) amplitude of a \rightarrow b reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels effect

Reaction channels:

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K\Delta, K\Sigma, \omega N)$$

 $\pi \pi N$

✓ Potential:

$$V_{a,b} = v_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

ground
meson-baryon
exchange bare N* state

2. Single pion electroproduction (Q^2 > 0)

gamma^{*} N → Delta(1232) form factors

• Full results

- **A** × Other analysis
- ---- Meson cloud

"Complete Experiment" of pseudoscalar meson photoproduction reactions

single spin

 \rightarrow P, Σ , T

beam-target

 \rightarrow E, F, G, H

beam-recoil

$$\rightarrow C_{\chi'}, C_{\zeta'}, O_{\chi'}, O_{\zeta'}$$

target-recoil

Jefferson Lab

 $\rightarrow T_{\chi'}, T_{Z'}, L_{\chi'}, L_{\chi'}$

- ✓ Measurement of $\gamma N \rightarrow KY$ pol. obs. is very active.
- ✓ OVER-COMPLETE experiment planned by CLAS for γ p → K⁺ Y, γ n → KY.

Provides critical information on $N^* \rightarrow KY$ decays !!

"Complete Experiment" of pseudoscalar meson photoproduction reactions

Comparison of all $\gamma N \rightarrow \pi N$ observables

Hoblit, Kamano, Lee, Sandorfi, in preparation

$$\gamma p \to \pi^0 p$$

 $W = 1232 \; (MeV)$

 $W = 1481 \; (MeV)$

Polarization observables of K⁺ Lambda photoproduction

Sandorfi, Hoblit, Kamano, Lee, in preparation

Polarization observables of K⁺ Lambda photoproduction

Sandorfi, Hoblit, Kamano, Lee, in preparation

- The $\pi N, \gamma N \rightarrow KY$ data before 2006 are used for the model construction
- **Necessity of new N* states** for explaining the data: D13, S11, P13 with mass 1800-1950 MeV

CM

СМ

Summary

- ✓ Presented our recent analysis of ep \rightarrow e' π N reaction.
 - > Our model successfully describes the reaction at $Q^2 < 1.5$ (GeV/c)².
 - N-N* e.m. transition form factors are extracted for the N* states up to the second resonance region.
- Examined significance of the polarization observables for construction of reaction models and extraction of N* parameters.
 - > $\gamma p \rightarrow \pi N$ reaction: Provides useful information on constraining reaction models beyond the $\Delta(1232)$.
 - > $\gamma p \rightarrow KY$ reaction:

Will be crucial for extracting $N^* \rightarrow KY$ information including recently suggested new N^{*} states around 1.9 GeV.

