Dynamical coupled-channel analysis of $\pi N \rightarrow \pi \pi N$ reaction

Hiroyuki Kamano Excited Baryon Analysis Center (EBAC), Jefferson Lab

In collaboration with B. Julia-Diaz, T.-S.H. Lee, A. Matsuyama, T. Sato

Outline of the talk

- ✓ Brief introduction of activities in EBAC @ JLab
- ✓ Motivation for the analysis of π N → π π N reaction
- Dynamical coupled-channel model
- Results (very preliminary!)

Summary

Introduction : activities in EBAC (1)

Excited Baryon Analysis Center (EBAC) @ Jefferson Lab

http://ebac-theory.jlab.org/

Explore nature of nucleon resonances from analyzing world data of meson production reactions on the nucleon : $\pi N, \gamma N, \gamma^* N \rightarrow \pi N, \pi \pi N, \eta N, \omega N, \phi N, KY, ...$

- ✓ Transition form factors of N*states
- ✓ Pole position of N* states on the complex energy plane
- ✓ Search for new N* states

Related to the quark-gluon substructure of N* states

- - -

Introduction : activities in EBAC (2)

Introduction : activities in EBAC (3)

First stage of model construction has been completed.

Julia-Diaz, Lee, Matsuyama, Sato, PRC76 065201 (2007)

Fix all parameters by fitting to the empirical πN partial wave amp. from SAID analysis

Describe well up to W ~ 2 GeV!

Introduction : activities in EBAC (3)

Jefferson Lab

Motivation : why pi pi N reaction?

Above W = 1.5 GeV, cross sections of π N elastic and $\pi \pi$ N reactions can be comparable with each other :

$$\sigma(\pi N \to \pi N) \sim \sigma(\pi N \to \pi \pi N)$$

Expect that

✓ large coupled-channel effect can occur between the π N and $\pi \pi$ N channels.

 additional constraints (which may be even severe) on N* parameters could be obtained.

 $N^* \to \pi N, \ \pi \Delta, \ \sigma N, \ \rho N$

Particularly for

Dynamical coupled-channel model for meson production reactions (1)

Matsuyama, Sato, Lee Phys. Rep. 439 (2007) 193

Dynamical coupled-channel model for meson production reactions (2)

$$T_{\pi N \to \pi \pi N}(E) = T^{\pi N}(E) + T^{\pi \Delta}(E) + T^{\sigma N}(E) + T^{\rho N}(E) + T^{\text{direct}}(E)$$

Attach appropriate Green functions () and vertex functions () to πN (on-shell) $\rightarrow MB$ (off-shell) amplitude

Dynamical coupled-channel model for meson production reactions (3)

Treatment of resonance states

All 4-star and most 3-star resonances below 2 GeV are included **assuming** them as **CDD poles** (genuine 3-quark states).

	I	1 = 1/2	_	I = 3/2				
	# of CDD poles	Resonances listed in PDG			# of CDD poles	Resonances listed in PDG		
S11	2	N(1535) N(1650)		S31	1	∆ <mark>(1620)</mark>		
P11	2	N(1440) N(1710)		P31	1	∆(1910)		
P13	1	N(1720)		P33	2	$\Delta(1232) \Delta(1600)$		
D13	1	N(1520)		D33	1	Δ (1700)		
D15	1	N(1675)		D35	0			
F15	1	N(1680)		F35	1	∆ (1905)		
F17	0			F37	1	Δ (1950)		

(N, Δ = **** -resonance, N, Δ = *** -resonance)

Procedures

✓ Varying only parameters of the bare vertex functions associated with $N^* \rightarrow \pi N, \pi \Delta, \sigma N, \rho N$ decays

Bare vertex for $N^* \rightarrow MB$ with orbital angular momentum *L* and total spin *S*

$$\Gamma_{N^*,(MB)_{LS}}(k) = \frac{1}{(2\pi)^{3/2}} \frac{1}{\sqrt{m_N}} C_{N^*,(MB)_{LS}} \begin{bmatrix} \Lambda_{N^*,(MB)_{LS}}^2 \\ \Lambda_{N^*,(MB)_{LS}}^2 + k^2 \end{bmatrix}^{2+L} \left(\frac{k}{m_\pi}\right)^L$$
Coupling
Coupling
Constant
Cutoff
parameters

Predicted $\pi N \rightarrow \pi \pi N$ **total cross sections**

First trial of fit

Current results (preliminary)

Change in parameters (preliminary)

Resonance parameters in P33 wave

$C_{P_{33}1\text{st},(\pi N)_{L=1,S=1/2}}$	$1.31 \rightarrow$	1.28	$C_{P_{33}2nd,(\pi N)_{L=1,S=1/2}}$	1.32	\rightarrow	1.44
$C_{P_{33}1\text{st},(\pi\Delta)_{L=0,S=3/2}}$	$1.08 \rightarrow$	1.25	$C_{P_{33}2nd,(\pi\Delta)_{L=0,S=3/2}}$	2.04	\rightarrow	4.76
$C_{P_{33}1\text{st},(\pi\Delta)_{L=1,S=3/2}}$	1.52 →	2.316	$C_{P_{33}2nd,(\pi\Delta)_{L=1,S=3/2}}$	9.54	\rightarrow	10.16
$C_{P_{33}1\text{st},(\rho N)_{L=1,S=1/2}}$	$2.01 \rightarrow$	2.14	$C_{P_{33}2nd,(\rho N)_{L=1,S=1/2}}$	-0.32	\rightarrow	-0.13
$C_{P_{33}1\text{st},(\rho N)_{L=1,S=3/2}}$	$-1.25 \rightarrow$	-1.14	$C_{P_{33}2nd,(\rho N)_{L=1,S=3/2}}$	1.0358	\rightarrow	1.0551
$C_{P_{33}1\text{st},(\rho N)_{L=3,S=3/2}}$	0.38 →	0.49	$C_{P_{33}2nd,(\rho N)_{L=3,S=3/2}}$	0.77	\rightarrow	1.96
P_{33} 1st, $(\pi N)_{L=1,S=1/2}$	746.20 →	817.80	P_{33} 2nd, $(\pi N)_{L=1,S=1/2}$	880.72	\rightarrow	885.82
$\Lambda_{P_{33}1\text{st},(\pi\Delta)_{L=0,S=3/2}}$	846.38 →	758.57	$\Lambda_{P_{33}2\mathrm{nd},(\pi\Delta)_{L=0,S=3/2}}$	507.29	\rightarrow	519.04
$\Lambda_{P_{33}1\text{st},(\pi\Delta)_{L=1,S=3/2}}$	780.96 →	684.58	$\Lambda_{P_{33}2\mathrm{nd},(\pi\Delta)_{L=1,S=3/2}}$	501.74	\rightarrow	524.9
$\Lambda_{P_{33}1\text{st},(\rho N)_{L=1,S=1/2}}$	584.98 →	559.30	$\Lambda_{P_{33}2nd,(\rho N)_{L=1,S=1/2}}$	606.79	\rightarrow	613.48
$\Lambda_{P_{33}1\text{st},(\rho N)_{L=1,S=3/2}}$	500.24 →	558.49	$\Lambda_{P_{33}2nd,(\rho N)_{L=1,S=3/2}}$	1043.40	\rightarrow	1046.90
$\Lambda_{P_{33}1\text{st},(\rho N)_{L=3,S=3/2}}$	1369.13 →	1074.10	$\Lambda_{P_{33}2nd,(\rho N)_{L=3,S=3/2}}$	528.27	\rightarrow	538.18
			1			

→ : 20-100 % change

 \rightarrow : > 100 % change

Current results (very preliminary)

Summary

- ✓ Have performed simultaneous fit of the model to the π N and $\pi \pi$ N channels.
- ✓ Allowing 20-50% variation of parameters results in a little improvement of π N → $\pi \pi$ N total cross sections.
- ✓ Inclusion of $\pi \pi N$ channel to fitting could cause significant rearrangements of the N* parameters
- ✓ Simultaneous consideration of π N and $\pi \pi$ N channel seems inevitable to construct any reliable hadron reaction model below 2 GeV

