

Strange Baryon Physics in Full Lattice QCD

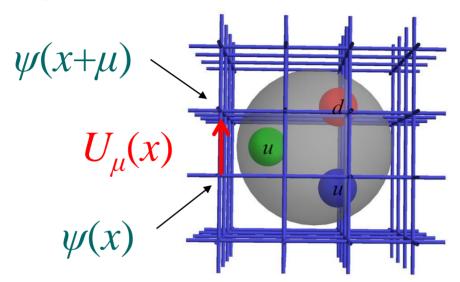
Huey-Wen Lin

INT Seminar INT & University of Washington 2008 Jan. 14

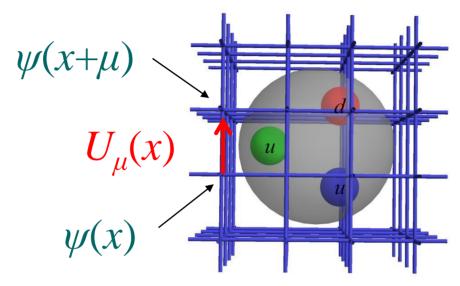
Outline

- ◆ Lattice QCD
 - ♦ Background, actions, observables, ...
- Two-point Green functions
 - Group theory, operator design, spectroscopy results
- Three-point Green functions
 - Hyperon axial coupling constants
 - Strangeness in nucleon magnetic and electric moments
 - Hyperon semi-leptonic decays

◆ Lattice QCD is a discrete version of continuum QCD theory



◆ Lattice QCD is a discrete version of continuum QCD theory



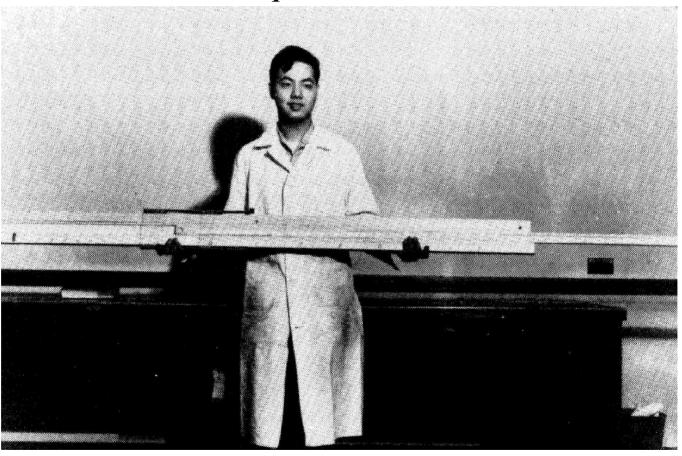
Physical observables are calculated from the path integral

$$\langle 0|O(\overline{\psi},\psi,A)|0\rangle = \frac{1}{Z} \int [dA][d\overline{\psi}][d\psi] O(\overline{\psi},\psi,A) e^{i\int d^4x \mathcal{L}^{QCD}(\overline{\psi},\psi,A)}$$

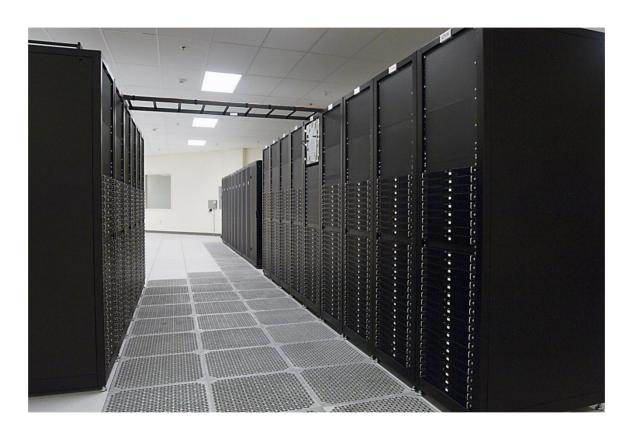
- Use Monte Carlo integration combined with the "importance sampling" technique to calculate the path integral.
- **♦** Take $a \to 0$ and $V \to \infty$ in the continuum limit

- ♦ A wide variety of first-principles QCD calculations can be done: In1970, Wilson started off by writing down the first actions
- Progress is limited by computational resources
 - But assisted by advances in algorithms

T.D. Lee uses an "analog computer" to calculate stellar radiative transfer equations



2007: The 13 Tflops cluster at Jefferson Lab



Other joint lattice resources within the US: Fermilab, BNL.

Non-lattice resources open to USQCD: ORNL, LLNL, ANL.

Lattice QCD is computationally intensive

$$\operatorname{Cost} \approx \left(\frac{L}{\operatorname{fm}}\right)^{5} L_{s} \left(\frac{\operatorname{MeV}}{M_{\pi}}\right) \left(\frac{\operatorname{fm}}{a}\right)^{6} \left(C_{0} + C_{1} \left(\frac{\operatorname{fm}}{a}\right) \left(\frac{\operatorname{MeV}}{M_{K}}\right)^{2} + C_{2} \left(\frac{a}{\operatorname{fm}}\right)^{2} \left(\frac{\operatorname{MeV}}{M_{\pi}}\right)^{2}\right)$$

Norman Christ, LAT2007

- Current major US 2+1-flavor gauge ensemble generation:
 - ightharpoonup MILC: staggered, $a \sim 0.06$ fm, $L \sim 3$ fm, $M_{\pi} \sim 250$ MeV
 - ♦ RBC+UKQCD: DWF, $a \sim 0.09$ fm, $L \sim 3$ fm, $M_{\pi} \sim 330$ MeV
- Chiral domain-wall fermions (DWF) at large volume (6 fm) at physical pion mass may be expected in 2011
- But for now....

 need a pion mass extrapolation $M_{\pi} \to (M_{\pi})_{\text{phys}}$ (use chiral perturbation theory, if available)

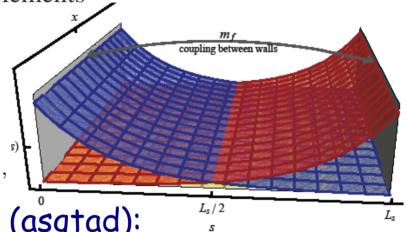
Lattice Fermion Actions

Chiral fermions (e.g., Domain-Wall/Overlap):

- \bullet Automatically O(a) improved, good for spin physics and weak matrix elements
- Expensive

$$D_{x,s;x',s'} = \delta_{x,x'} D_{s,s'}^{\perp} + \delta_{s,s'} D_{x,x'}^{\parallel}$$

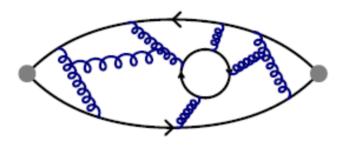
$$D_{s,s'}^{\perp} = rac{1}{2}[(1-\gamma_5)\delta_{s+1,s'} + (1+\gamma_5)\delta_{s-1,s'} - 2\delta_{s,s'}] - rac{m_f}{2}[(1-\gamma_5)\delta_{s,L_s-1}\delta_{0,s'} + (1+\gamma_5)\delta_{s,0}\delta_{L_s-1,s'}],$$

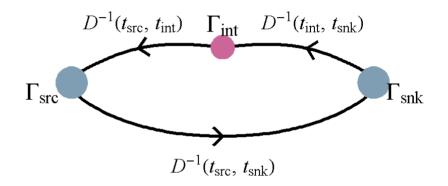


- (Improved) Staggered fermions (asqtad):
 - Relatively cheap for dynamical fermions (good)
 - Mixing among parities and flavors or "tastes"
 - Baryonic operators a nightmare not suitable
- Mixed action:
 - Staggered sea (cheap) with domain-wall valence (chiral)
 - Match the sea Goldstone pion mass to the DWF pion
 - Only mixes with the "scalar" taste of sea pion
 - Free light quark propagators (LHPC & NPLQCD)

Lattice QCD: Observables

- Two-point Green functione.g. spectroscopy
 - Three-point Green function
 e.g. form factors, structure functions, ...



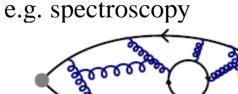


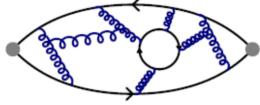
$$\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) J(X_{\rm src}) \rangle_{\alpha,\beta}$$

$$\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) O(X_{\rm int}) J(X_{\rm src}) \rangle_{\alpha,\beta}$$

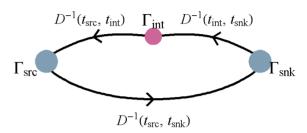
Lattice QCD: Observables

- Two-point Green function
- Three-point Green function
 - e.g. form factors. structure functions, ...





$$\sum \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) J(X_{\rm src}) \rangle_{\alpha,\beta}$$



$$\sum_{lpha,eta} \Gamma^{lpha,eta} \langle J(X_{
m snk}) O(X_{
m int}) J(X_{
m src})
angle_{lpha,eta}$$

After taking spin and momentum projection

(ignore the variety of boundary condition choices)

Two-point correlator

$$\sum_{n} Z_{n,B} e^{-E_n(\overrightarrow{P})t}$$

Three-point correlator

$$\sum_{n} \sum_{n'} Z_{n',B}(p_f) Z_{n,A}(p_i)$$

$$\times FF's \times e^{-(t_f - t)E'_n(\overrightarrow{p}_f)} e^{-(t - t_i)E_n(\overrightarrow{p}_i)}$$

At large enough t, the ground-state signal dominates

Two-Point Green Functions

work with

Lattice Hadron Physics Collaboration (LHPC)

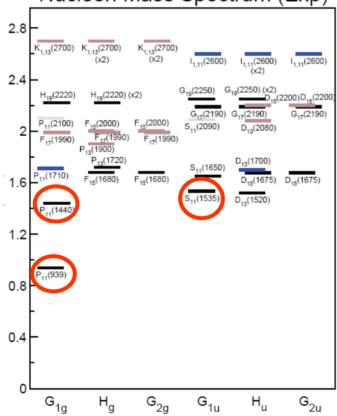
Strange quark propagators from NPLQCD

Why Baryons?

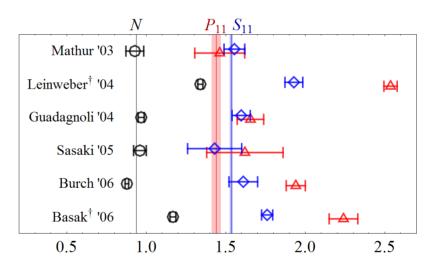
Lattice QCD spectrum

- ♦ Successfully calculates many ground states (Nature, ...)
- ♦ Nucleon spectrum, on the other hand... not quite

Nucleon Mass Spectrum (Exp)



Example: N, P_{11}, S_{11} spectrum



Strange Baryons

- Strange baryons are of special interest; challenging even to experiment
- Example from PDG Live:

```
EBARYONS (S = -2, I = 1/2)
                                                      \Xi^0 = u s s, \Xi^- = d s s
                                                                                                                 1/2(??) •**
                                            \Xi(1820) D_{13}
                                                                                      \Xi(2370)
                         1/2(1/2<sup>+</sup>) ****
                                                                     1/2(3/2-)
                                                                                                                 1/2(??) •*
                        1/2(1/2^{+})
                                                                       1/2(??) ***
                                                                                      \Xi(2500)
                                            \Xi(1950)
\Xi(1530) P_{13}
                        1/2(3/2<sup>+</sup>) ****
                                            \Xi(2030)
                                                                                       - OMITTED FROM SUMMARY
                           1/2(??) •*
\Xi(1620)
                                            Ξ(2120)
                                                                                    TABLE
                           1/2(??) ***
\Xi(1690)
                                            \Xi(2250)
                                                                       1/2(??) •**
```

```
\Omega BARYONS (S = -3, I = 0)

\Omega^- = s s s

\Omega^- = 0(3/2^+) ****

\Omega(2250)^- = 0(?^?) ***

\Omega(2380)^- = ***

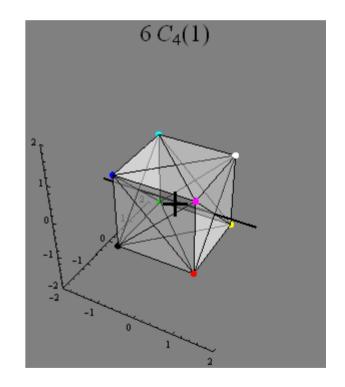
\Omega(2470)^- = ***
```

- ightharpoonup All baryon spin states wanted: $j = 1/2, 3/2, 5/2, \dots$
- ♦ Rotation symmetry is reduced due to discretization rotation $O(3) \Rightarrow$ octahedral O_h group

	Ι		_	_	-	-		12 C ₄
A_1	1	1	1	1	1	1 -1	1	1
\mathbf{A}_2	1	3	-2	1	0	-1	1	0
E	2	1	1	1	-1	-1 -2	-1	0
G_1	2	0	1	-1	1	-2	1	0
G_2	2	-4	0	1	0	0	1	-1
т.	3	2	0	0	1	1	_1	_1
T_2	3	3	0	-1	-1	1	1	0
H	4	-3	-1	0	0	1	-1	1

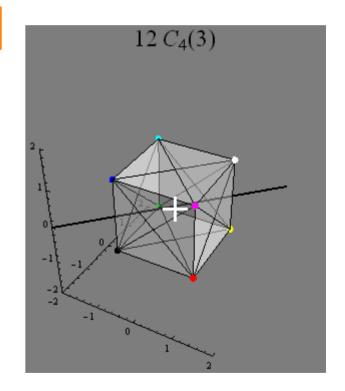
- ightharpoonup All baryon spin states wanted: $j = 1/2, 3/2, 5/2, \dots$
- ♦ Rotation symmetry is reduced due to discretization rotation $O(3) \Rightarrow$ octahedral O_h group

	Ι	J	6 C ₄	8 C6	8 C ₃	6 C ₉	6 C′8	12 C ₄
A_1	1	1	1	1	1	1	1	1
\mathbf{A}_2	1	3	-2	1	0	-1	1	0
E	2	1	1	1	-1	-1	-1	0
G_1	2	0	1	-1	1	-2	1	0
G_2	2	-4	0	1	0	0	1	-1
T_1	3	2	0	0	1	1	-1	-1
T_2	3	3	0	-1	-1	1	1	0
H	4	-3	-1	0	0	0	-1	1



- All baryon spin states wanted: j = 1/2, 3/2, 5/2, ...
- ♦ Rotation symmetry is reduced due to discretization rotation $O(3) \Rightarrow$ octahedral O_h group

	I	J	6 C ₄	8 C ₆	8 C ₃	6 C ₉	6 C′g	12 C ₄
A_1			1				1	1.
						-1		0
			1					0
G_1						-2		0
G_2						0	1	-1
T_1			0			1	-1	-1
T_2			0			1		0
H	4	-3	-1	0	0	0	-1	1



- ightharpoonup All baryon spin states wanted: $j = 1/2, 3/2, 5/2, \dots$
- Rotation symmetry is reduced due to discretization

rotation $O(3) \Rightarrow$ octahedral O_h group

	I	J	6 C ₄	- -		6 Cg	6 C' ₈	12 C ₄
A_1	1	1	1	1	1	1	1	1
A_2	1	3	-2	1	0	-1	1	0
Ε	2	1	1	1	-1	-1	-1	0
G_1	2	0	1	-1	1	-2	1	0
G_2	2	-4	0	1	0	0	1	-1
T_1	3	2	0	0	1	1	-1	-1
T_2	3	3	0	-1	-1	1	1	0
Н	4	- 3	-1	0	0	0	-1	1

Baryons

j	Irreps
$\frac{1}{2}$	G_1
$\frac{3}{2}$	Н
$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{7}{2}$ $\frac{9}{2}$	$G_2 \oplus H$
$\frac{7}{2}$	$G_1 \oplus G_2 \oplus H$
	$G_1 \oplus 2 H$
$\frac{11}{2}$	$G_1 \oplus G_2 \oplus 2 H$
$\frac{13}{2}$	$G_1 \oplus 2 \ G_2 \oplus 2 \ H$
$\frac{15}{2}$	$G_1 \oplus G_2 \oplus 3 H$
$\frac{17}{2}$	$2~G_1 \oplus G_2 \oplus 3~H$
<u>19</u> 2	$2 \; G_1 \oplus 2 \; G_2 \oplus 3 \; H$
$\frac{21}{2}$	$G_1 \oplus 2 G_2 \oplus 4 H$
$\frac{23}{2}$	$2 \; G_1 \oplus 2 \; G_2 \oplus 4 \; H$

ightharpoonup All baryon spin states wanted: j = 1/2, 3/2, 5/2, ...

Rotation symmetry is reduced due to discretization

rotation $O(3) \Rightarrow$ octahedral O_h group

	I	J	6 C ₄	8 C ₆	8 C ₃	6 C ₉	6 C′g	12 C ₄
A_1	1	1	1	1	1	1	1	1
A_2	1	3	-2	1	0	-1	1	0
E	2	1	1	1	-1	-1	-1	0
G_1	2	0	1	-1	1	-2	1	0
G_2	2	-4	0	1	0	0	1	-1
T_1	3	2	0	0	1	1	-1	-1
T_2	3	3	0	-1	-1	1	1	0
H	4	- 3	-1	0	0	0	-1	1

i	Irreps	
$\frac{1}{2}$	G_1	
$\frac{3}{2}$	Н	
-5		

This calculation:

Three quarks in a baryon located at a single site

Baryons

For more details and extended-link operators:

5. Basak et al., Phys. Rev. D72, 094506 (2005)

$\frac{19}{2}$	$2 G_1 \oplus 2 G_2 \oplus 3 H$
$\frac{21}{2}$	$G_1 \oplus 2 \ G_2 \oplus 4 \ H$
$\frac{23}{2}$	$2 \; G_1 \oplus 2 \; G_2 \oplus 4 \; H$

Variational Method

Construct the correlator matrix

$$C_{\Lambda}^{m,n}(t) = \sum_{\vec{x}} \sum_{\lambda} \langle 0 \mid B_{\lambda}^{\Lambda,m}(\vec{x},t) \bar{B}_{\lambda}^{\Lambda,n}(0) \mid 0 \rangle$$

Construct the matrix

$$C_{ij}(t) = \langle 0 \mid \mathcal{O}_i(t)^{\dagger} \mathcal{O}_j(0) \mid 0 \rangle$$

 Flavor
 $G_{1g/u}(2)$ $H_{g/u}(4)$

 N
 3
 1

 Δ
 1
 2

 Λ
 4
 1

 Σ
 4
 3

 Ξ
 4
 3

 Ω
 1
 2

Solve for the generalized eigensystem of

$$C(t)\psi = \lambda(t, t_0)C(t_0)\psi$$

with eigenvalues

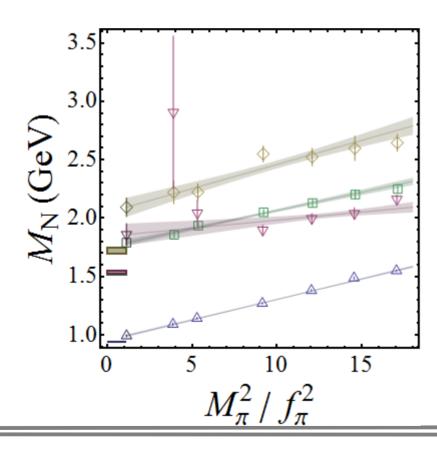
$$\lambda_n(t, t_0) = e^{-(t - t_0)E_n} (1 + \mathcal{O}(e^{-|\delta E|(t - t_0)}))$$

C. Michael, Nucl. Phys. B 259, 58 (1985)

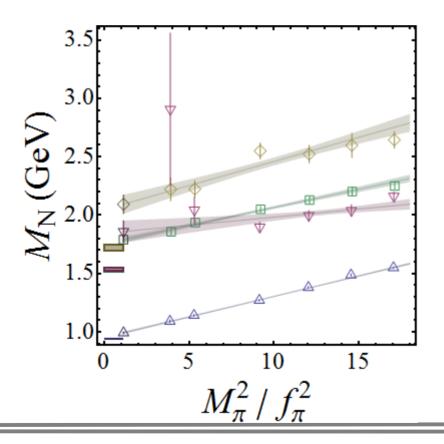
M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)

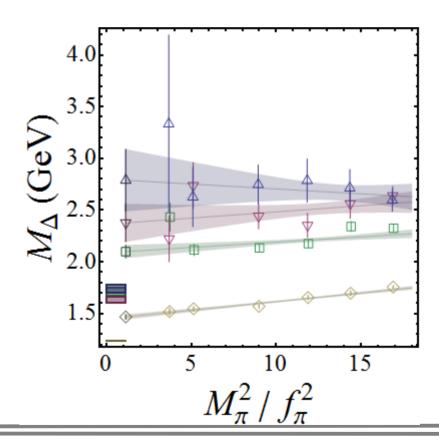
- ightharpoonup At large t, the signal of the desired state dominates.
- Unfortunately, we cannot see a clear radial excited state with the smeared propagators we got for free.

- ightharpoonup The non-strange baryons (N
- ◆ Symbols: $J^P = 1/2^+ \triangle$, $1/2^- \nabla$, $3/2^+ \diamondsuit$, $3/2^- □$ N N(1535) N(1720) N(1520)

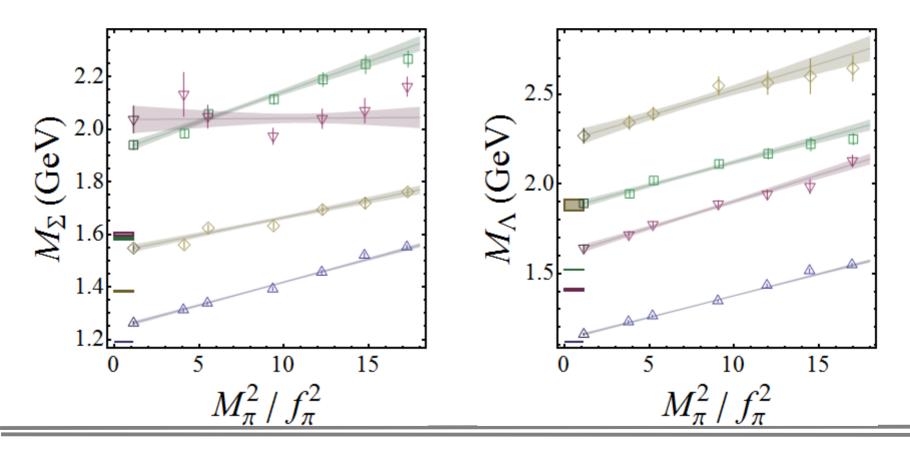


- ightharpoonup The non-strange baryons (N and Δ)
- ♦ Symbols: $J^P = 1/2^+$ Δ, $1/2^ \nabla$, $3/2^+$ \diamondsuit , $3/2^ \square$ N(1520) Δ Δ(1700)

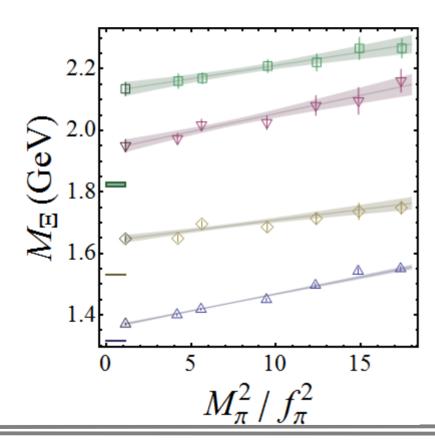




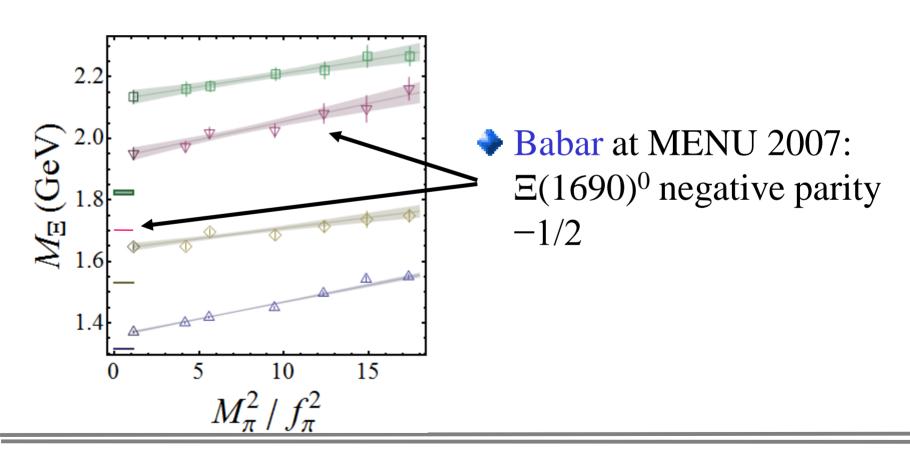
- ightharpoonup The singly strange baryons: (Σ and Λ)
- **Symbols:** $J^P = 1/2^+$ Δ, $1/2^ \nabla$, $3/2^+$ \bigcirc , $3/2^-$ □ Σ Σ(1620) Σ* Σ(1580) Λ Λ(1405) Λ(1890) Λ(1520)



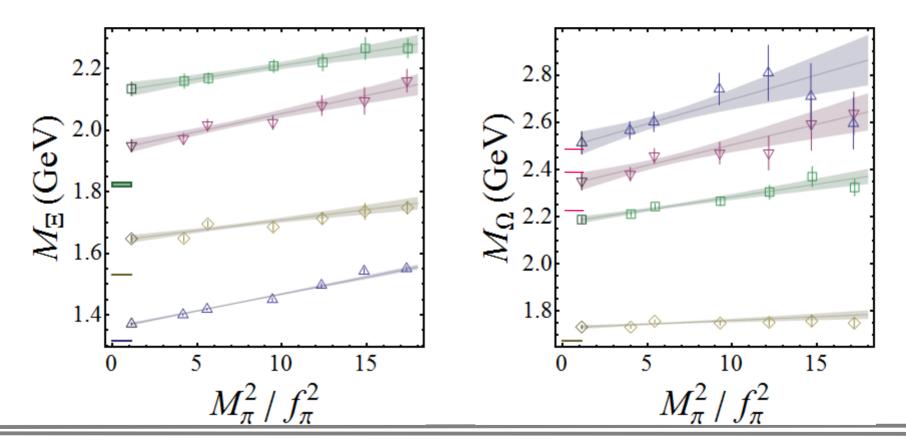
- ightharpoonup The less known baryons (Ξ
- ◆ Symbols: $J^P = 1/2^+ \triangle$, $1/2^- \nabla$, $3/2^+ \diamondsuit$, $3/2^- □$ ≡ $\Xi(1690)$? $\Xi(1530)$ $\Xi(1820)$



- ightharpoonup The less known baryons (Ξ
- ◆ Symbols: $J^P = 1/2^+ \triangle$, $1/2^- \nabla$, $3/2^+ \diamondsuit$, $3/2^- □$ ≡ ≡(1690)? ≡(1530) ≡(1820)



- ightharpoonup The less known baryons (Ξ and Ω)
- ♦ Symbols: $J^P = 1/2^+$ \triangle , $1/2^ \nabla$, $3/2^+$ \diamondsuit , $3/2^ \square$ \equiv \equiv (1690)? \equiv (1530) \equiv (1820) Could they be Ω(2250), Ω(2380), Ω(2470)?



Multiplet Mass Relations

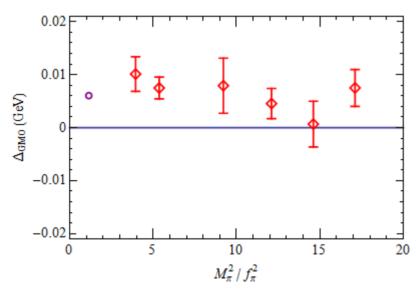
- SU(3) flavor symmetry breaking
 - Gell-Mann-Okubo relation

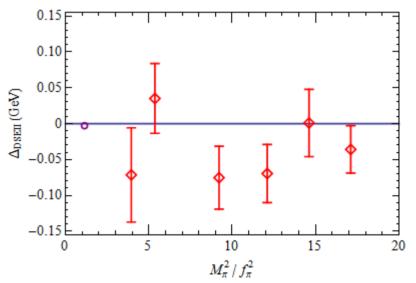
$$\Delta_{GMO} = \frac{3}{4}M_{\Lambda} + \frac{1}{4}M_{\Sigma} - \frac{1}{2}M_{N} - \frac{1}{2}M_{\Xi}$$

Decuplet Equal Spacing relation

$$\Delta_{DESII} = \frac{1}{2}(M_{\Sigma^*} - M_{\Delta}) + \frac{1}{2}(M_{\Omega} - M_{\Xi^*}) - M_{\Xi^*} + M_{\Sigma^*}$$

Mass differences are close to experimental numbers





Summary/Outlook — I

- What we have done:
 - ◆ 2+1-flavor calculations with volume around 2.6 fm
 - ightharpoonup Ground states of $G_{1g/u}$ and $H_{g/u}$ for each flavor
 - Preliminary study with lightest pion mass 300 MeV
 - Correct mass-ordering pattern is seen
- Currently in progress:
 - Mixed action chiral extrapolation for octet and decuplet
 - Open-minded for extrapolation to physical pion mass for other states
- In the future:
 - Lower pion masses to confirm chiral logarithm drops
 - Finer lattice spacing for excited states

Three-Point Green Functions

in collaboration with

Kostas Orginos

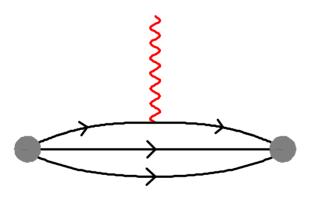
- Hyperon axial coupling constants
- Strangeness in nucleon magnetic and electric moments
- Semi-leptonic decays

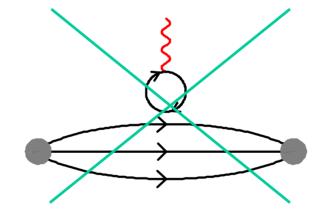
Green Functions

Three-point function with connected piece only

$$C_{\mathrm{3pt}}^{\Gamma,\mathcal{O}}\left(\overrightarrow{p},t,\tau\right) = \sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J_{\beta}\left(\overrightarrow{p},t\right) \mathcal{O}(\tau) \overline{J}_{\alpha}\left(\overrightarrow{p},0\right) \rangle$$

Two constructions:





- Isovector quantities
- Use ratios to cancel out the unwanted factors

$$\frac{\Gamma^{BB}_{\mu,GG}(t_i,t,t_f,\overrightarrow{p}_i,\overrightarrow{p}_f\,;\,T)}{\Gamma^{BB}_{GG}(t_i,t_f,\overrightarrow{p}_f\,;\,T)}\sqrt{\frac{\Gamma^{BB}_{PG}(t,t_f,\overrightarrow{p}_i\,;\,T)}{\Gamma^{BB}_{PG}(t,t_f,\overrightarrow{p}_f\,;\,T)}} \ \sqrt{\frac{\Gamma^{BB}_{GG}(t_i,t,\overrightarrow{p}_f\,;\,T)}{\Gamma^{BB}_{GG}(t_i,t,\overrightarrow{p}_i\,;\,T)}}\sqrt{\frac{\Gamma^{BB}_{PG}(t_i,t_f,\overrightarrow{p}_f\,;\,T)}{\Gamma^{BB}_{PG}(t_i,t_f,\overrightarrow{p}_i\,;\,T)}}$$

Axial Coupling Constants: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

- Has applications such as hyperon scattering, non-leptonic decays, ...
- Cannot be determined by experiment
- Existing theoretical predictions:
 - Chiral perturbation theory

$$0.35 \le g_{\Sigma\Sigma} \le 0.55$$
 $0.18 \le -g_{\Xi\Xi} \le 0.36$

M. J. Savage et al., Phys. Rev. D55, 5376 (1997);

ightharpoonup Large- N_c

$$0.30 \le g_{\Sigma\Sigma} \le 0.36 \qquad 0.26 \le -g_{\Xi\Xi} \le 0.30$$

R. Flores-Mendieta et al., Phys. Rev. D58, 094028 (1998);

- Loose bounds on the values
- Lattice QCD can provide substantial improvement

Axial Coupling Constants: g_{\equiv} and $g_{\Sigma\Sigma}$

Pion mass: 350–750 MeV

HWL and K. Orginos, arXiv:0712.1214

First lattice calculation of these quantities; mixed-action full-QCD

	m010	m020	m030	m040	m050
$m_{\pi} \; (\mathrm{MeV})$	354.2(8)	493.6(6)	594.2(8)	685.4(19)	754.3(16)
m_π/f_π	2.316(7)	3.035(7)	3.478(8)	3.822(23)	4.136(20)
m_K/f_π	3.951(14)	3.969(10)	4.018(11)	4.060(26)	4.107(21)
confs	612	345	561	320	342
$g_{A,N}$	1.22(8)	1.21(5)	1.195(17)	1.150(17)	1.167(11)
$g_{\Sigma\Sigma}$	0.418(23)	0.450(15)	0.451(7)	0.444(8)	0.453(5)
gee	-0.262(13)	-0.270(10)	-0.269(7)	-0.257(9)	-0.261(7)

- ightharpoonup Combine with g_A for study of
 - SU(3) symmetry breaking
 - ◆ SU(3) simultaneous fits among three coupling constants
 - \longrightarrow D, F, and other low-energy constants

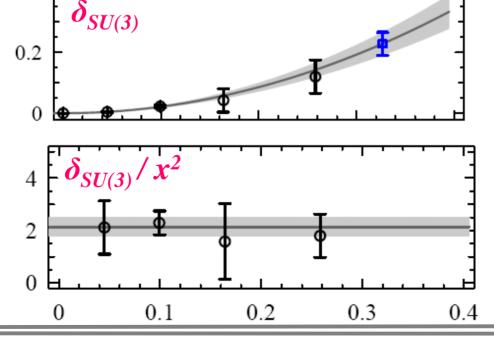
Axial Coupling Constants: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

→ SU(3) symmetry breaking

$$\delta_{\mathrm{SU}(3)} = g_{\mathrm{A}} - 2.0 \times g_{\Sigma\Sigma} + g_{\Xi\Xi}$$

$$= \sum_{n} c_n x^n \quad \text{with} \quad x = (m_K^2 - m_\pi^2)/(4\pi f_\pi^2)$$

Quadratic behaviour is observed



- Not predicted by any theorem nor chiral perturbation theory
 - → coincidence?
- 20% breaking at physical point

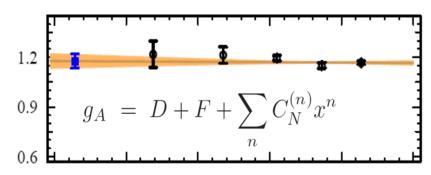
Axial Coupling Constants: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

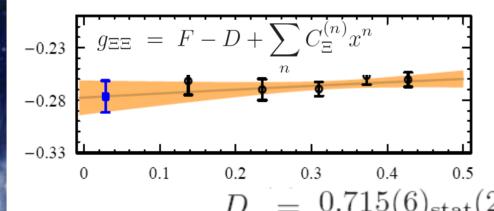
- Simultaneous SU(3) fit
 - ◆ SU(3) chiral perturbation theory (with 8 parameters)

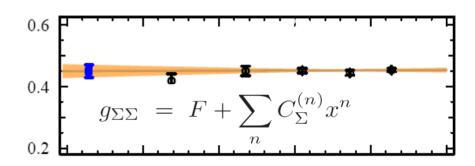
W. Detmold and C. J. D. Lin, Phys. Rev. D71, 054510 (2005)

which fails to describe the data

Simple chiral form







Systematic errors:
finite volume + finite a

$$g_A = 1.18(4)_{\text{stat}}(6)_{\text{syst}}$$

 $g_{\Sigma\Sigma} = 0.450(21)_{\text{stat}}(27)_{\text{syst}}$
 $g_{\Xi\Xi} = -0.277(15)_{\text{stat}}(19)_{\text{syst}}$

$$= 0.715(6)_{\text{stat}}(29)_{\text{syst}} F = 0.453(5)_{\text{stat}}(19)_{\text{syst}}$$

Strange Magnetic Moment of Nucleon

- Purely sea-quark effect
- ♦ First strange magnetic moment was measured by SAMPLE

$$G_M^s(Q^2 = 0.1 \ GeV^2) = 0.23(37)(25)(29)$$

B. Mueller et al. (SAMPLE) Phys. Rev. Lett. 78, 3824 (1997)

More data is being collected today

HAPPEX and G0 collaborations at Jefferson Lab, SAMPLE at MIT-BATES, and A4 at Mainz

Lattice calculations

$$\langle B | V_{\mu} | B \rangle(q) = \overline{u}_B(p') \left[\gamma_{\mu} F_1(q^2) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{2M_B} \right] u_B(p) e^{-iq \cdot x}$$

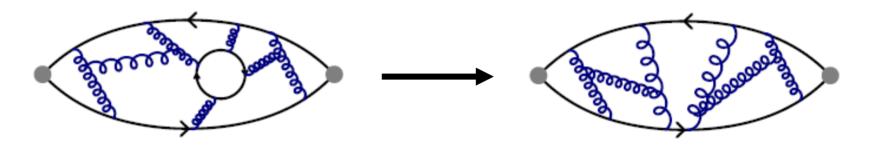
the disconnected diagram is a must

- Noisy estimator Kentucky Field Theory group (1997–2001) -0.28(10) to +0.05(6)
- → Help with chiral perturbation theory Adelaide-JLab group (2006)
 −0.046(19)

in quenched approximation

Quenched Approximation

- ▶ Full QCD: $\langle O \rangle = \frac{1}{Z} \int [dU][d\psi][d\overline{\psi}]e^{-S_F(U,\psi,\overline{\psi})-S_G(U)}O(U,\psi,\overline{\psi})$ = $\frac{1}{Z} \int [dU] \det M e^{-S_G(U)}O(U)$
- ightharpoonup Quenched: Take det M = constant.



- Historically used due to the lack of computation power
- Bad: Uncontrollable systematic error
- Good? Cheap exploratory studies to develop new methods

- Disconnected diagrams are challenging
- Much effort has been put into resolving this difficulty
- Alternative approach:

D. B. Leinweber, Phys. Rev. D 53, 5115 (1996).

Assume charge symmetry:

$$p = e_{u}u^{p} + e_{d}d^{p} + O_{N}; \qquad n = e_{d}u^{p} + e_{u}d^{p} + O_{N},$$

$$\Sigma^{+} = e_{u}u^{\Sigma} + e_{s}s^{\Sigma} + O_{\Sigma}; \qquad \Sigma^{-} = e_{d}u^{\Sigma} + e_{s}s^{\Sigma} + O_{\Sigma},$$

$$\Xi^{0} = e_{s}s^{\Xi} + e_{u}u^{\Xi} + O_{\Xi}; \qquad \Xi^{-} = e_{s}s^{\Xi} + e_{d}u^{\Xi} + O_{\Xi}.$$

- The disconnected piece for the proton is $O_N = \frac{2}{3} {}^l G_M^u \frac{1}{3} {}^l G_M^d \frac{1}{3} {}^l G_M^s$
- The strangeness contribution is

$$G_M^s = \left(\frac{{}^l R_d^s}{1 - {}^l R_d^s}\right) \left[2p + n - \frac{u^p}{u^{\Sigma}} (\Sigma^+ - \Sigma^-)\right]$$

$$G_M^s = \left(\frac{{}^l R_d^s}{1 - {}^l R_d^s}\right) \left[p + 2n - \frac{u^n}{u^{\Xi}} (\Xi^0 - \Xi^-)\right] \text{ with } {}^l R_d^s \equiv {}^l G_M^s / {}^l G_M^d$$

- Disconnected diagrams are challenging
- Much effort has been put into resolving this difficulty
- Alternative approach:

D. B. Leinweber, Phys. Rev. D 53, 5115 (1996).

Assume charge symmetry:

$$p = e_{u}u^{p} + e_{d}d^{p} + O_{N}; \qquad n = e_{d}u^{p} + e_{u}d^{p} + O_{N},$$

$$\Sigma^{+} = e_{u}u^{\Sigma} + e_{s}s^{\Sigma} + O_{\Sigma}; \qquad \Sigma^{-} = e_{d}u^{\Sigma} + e_{s}s^{\Sigma} + O_{\Sigma},$$

$$\Xi^{0} = e_{s}s^{\Xi} + e_{u}u^{\Xi} + O_{\Xi}; \qquad \Xi^{-} = e_{s}s^{\Xi} + e_{d}u^{\Xi} + O_{\Xi}.$$

- The disconnected piece for the proton is $O_N = \frac{2}{3} {}^l G_M^u \frac{1}{3} {}^l G_M^d \frac{1}{3} {}^l G_M^s$
- The strangeness contribution is

$$G_M^s = \left(\frac{{}^l R_d^s}{1 - {}^l R_d^s}\right) \left[3.673 - \frac{u^p}{u^{\Sigma}} (3.618) \right] \mu_N$$

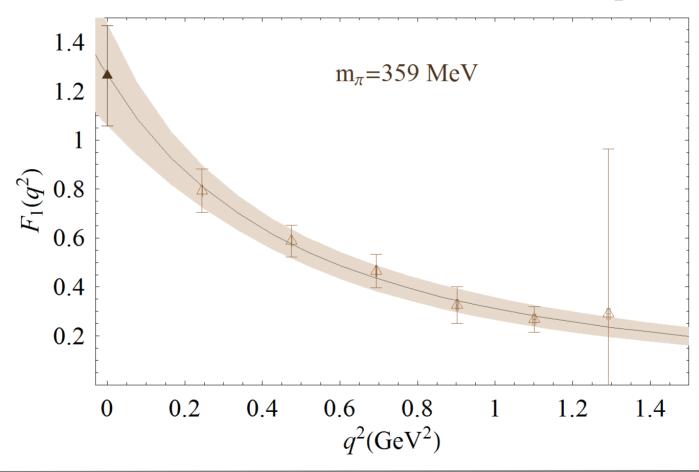
Needs better statistics

$$G_M^s = \left(\frac{{}^l R_d^s}{1 - {}^l R_d^s}\right) \left[-1.033 - \frac{u^n}{u^{\Xi}}(-0.599)\right] \mu_N$$

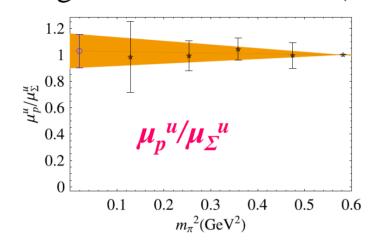
with
$${}^{l}R_{d}^{s} \equiv {}^{l}G_{M}^{s}/{}^{l}G_{M}^{d}$$

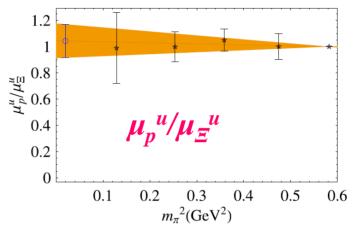
- Magnetic moment $\mu_B = F_2(q^2=0)$
- ♦ Dipole-form extrapolation to $q^2 = 0$

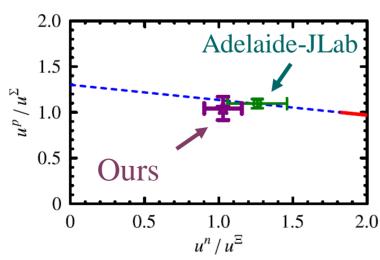
Example: *u*-quark contribution in Σ form factor $F_2(q^2)$



- ightharpoonup Dipole-form extrapolation to $q^2 = 0$
- Magnetic-moment ratios (linear extrapolation, for now)



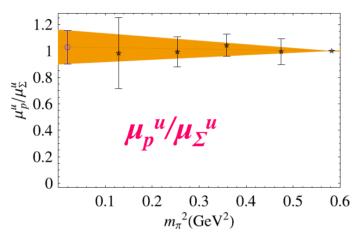


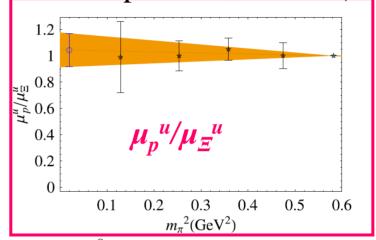


D. B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2004).

• Dipole-form extrapolation to $q^2 = 0$

Magnetic-moment ratios (linear extrapolation, for now)

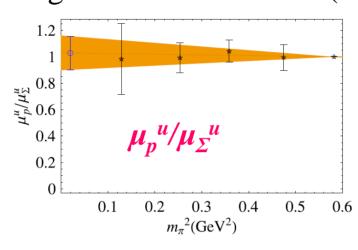


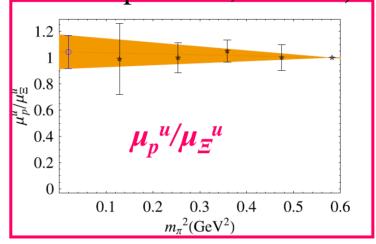




• Dipole-form extrapolation to $q^2 = 0$

Magnetic-moment ratios (linear extrapolation, for now)





$$R_d^s = 0.139(42)$$

D. B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2004). $\stackrel{\frown}{\mathbb{Z}}_{-0.4}$



We find

$$G_M^s = -0.066(12)_{\text{stat}}(23)_{R^s}$$

HWL, arXiv:0707.3844 [hep-lat]

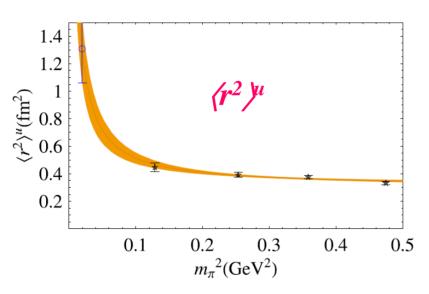
Strange Electric Moment of Nucleon

- G_E^s is proportional to $Q^2\langle r^2\rangle^s$
- Charge symmetry: D. B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2004).

$$\langle r^2 \rangle^s = \frac{r_d^s}{1 - r_d^s} \left[2 \langle r^2 \rangle^p + \langle r^2 \rangle^n - \langle r^2 \rangle^u \right] \qquad r_d^s = 0.16(4)$$

u-quark form contribution of vector form factors

HWL, arXiv:0707.3844[hep-lat]



- Need more literature research on chiral extrapolation
- Using an extrapolation of the form

$$\frac{1}{0.4} \int_{0.5}^{0.4} \langle r^2 \rangle^u = a_0 - \frac{1 + 5g_A^2}{(4\pi f_\pi)^2} \log \left(\frac{m_\pi^2}{m_\pi^2 + \Lambda^2} \right)$$

We find

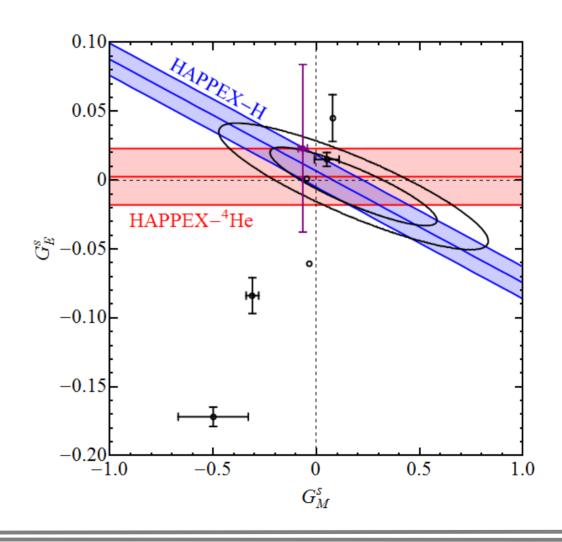
 $G_E^s(Q^2 = 0.1 \text{ GeV}) = 0.022(61)$

Preliminary

Strangeness

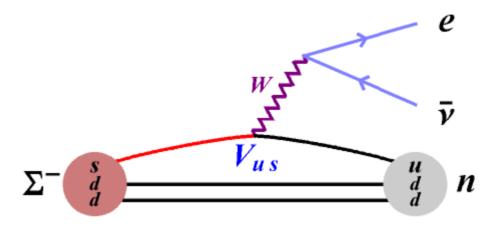
 $ightharpoonup G_E^s$ - G_M^s plots

A. Acha et al., Happex Collaboration, Phys.Rev.Lett.98:032301, 2007



Hyperon Decays

• Matrix element of the hyperon β -decay process $B_1 \to B_2 e^{-\overline{\nu}}$



$$\mathcal{M} = \frac{G_s}{\sqrt{2}} \overline{u}_{B_2} (O_{\alpha}^{V} + O_{\alpha}^{A}) u_{B_1} \overline{u}_e \gamma^{\alpha} (1 + \gamma_5) v_{\nu}$$

with

$$O_{\alpha}^{V} = f_{1}(q^{2})\gamma^{\alpha} + \frac{f_{2}(q^{2})}{M_{B_{1}}}\sigma_{\alpha\beta}q^{\beta} + \frac{f_{3}(q^{2})}{M_{B_{2}}}q_{\alpha}$$

$$O_{\alpha}^{A} = \left(g_{1}(q^{2})\gamma^{\alpha} + \frac{g_{2}(q^{2})}{M_{B_{1}}}\sigma_{\alpha\beta}q^{\beta} + \frac{g_{3}(q^{2})}{M_{B_{2}}}q_{\alpha}\right)\gamma_{5}$$

Hyperon Decay Experiments

- ♦ Experiments: CERN WA2, Fermilab E715, BNL AGS, Fermilab KTeV, CERN NA48
- Summary N. Cabibbo et al. 2003 with f_2/f_1 and f_1 at the SU(3) limit

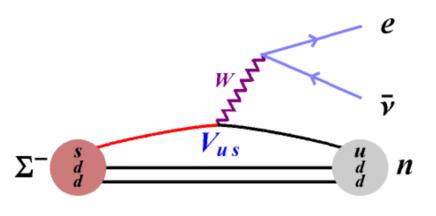
Decay	Rate (µs-1)	g_1/f_1	V_{us}
$\Lambda \to p e^- \overline{\nu}$	3.161(58)	0.718(15)	0.2224 ± 0.0034
$\Sigma^- \to n e^- \overline{\nu}$	6.88(24)	-0.340(17)	0.2282 ± 0.0049
$\Xi^- \to \Lambda e^- \overline{\nu}$	3.44(19)	0.25(5)	0.2367 ± 0.0099
$\Xi^0 \to \Sigma^+ e^- \overline{\nu}$	0.876(71)	1.32(+.22/18)	0.209 ± 0.027
Combined	_		0.2250 ± 0.0027

PDG 2006 number

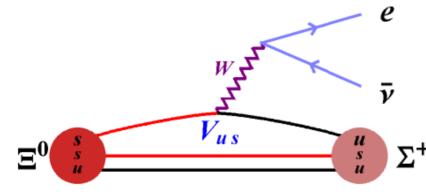
ightharpoonup Better g_1/f_1 from lattice calculations?

$|V_{us}|$ from Hyperons Decays

Two quenched calculations, different channels



- Pion mass > 700 MeV
- $f_1(0) = -0.988(29)_{\text{stat.}}$
- $|V_{us}| = 0.230(5)_{exp}(7)_{lat}$ Guadagnoli et al.



- ♦ Pion mass $\approx 530-650$ MeV
- $f_1(0) = 0.953(24)_{\text{stat}}$
- $|V_{us}| = 0.219(27)_{\text{exp}}(5)_{\text{lat}}$

 Σ + Sasaki et al.

No systematic error estimate from quenching effects!

Ademollo-Gatto Theorem

- Chiral extrapolation:
 - SU(3) symmetry-breaking Hamiltonian

$$H' = \frac{1}{\sqrt{3}} \left(m_s - \frac{m_d + m_u}{2} \right) \bar{q} \lambda^8 q$$

ightharpoonup There is no first-order correction O(H') to $f_1(0)$; thus

$$f_1(0) = f_1^{SU(3)}(0) + O(H'^2)$$

- Common choice of observable for $H': M_K^2 M_{\pi}^2$
- Step I: $R(M_K, M_\pi) = \frac{1 |f'(0)|}{a^4 (M_K^2 M_\pi^2)^2}$
- Step II: $R(M_K, M_\pi) = b_0 + b_1 a^2 (M_K^2 + M_\pi^2)$
- ightharpoonup Obtain $|V_{\mu s}|$ from

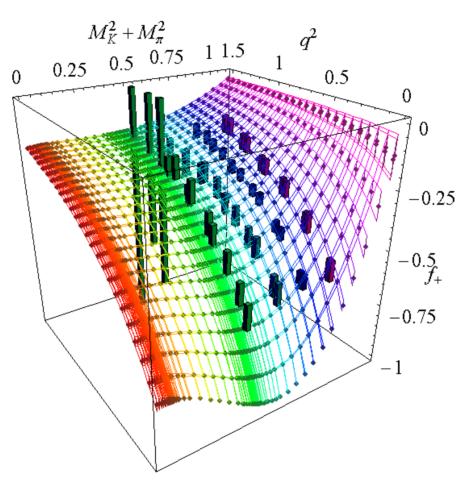
$$\Gamma \; = \; G_{F}^{2} \overline{\left| V_{us} \right|^{2}} \, \frac{\Delta m^{5}}{60 \pi^{3}} \, (1 + \delta_{\rm rad})$$

$$\times \left[\left(1 - \frac{3}{2} \beta \right) \left(|f_1|^2 + |g_1|^2 \right) + \frac{6}{7} \beta^2 \left(|f_1|^2 + 2|g_1|^2 + \text{Re}(f_1 f_2^*) + \frac{2}{3} |f_2^2| \right) + \delta_{q^2} \right]$$

with g_1/f_1 (exp) and f_2/f_1 (SU(3) value)

Simultaneous Fit

Combined momentum and mass dependence



 $f_1(0) = -0.88(15)$ (Preliminary)

Summary/Outlook — II

- From hyperon analysis
 - Predictions for $g_{\Sigma\Sigma} = 0.450(21)(27)$ and $g_{\Xi\Xi} = -0.277(15)(19)$
 - ◆ Preliminary proton strange magnetic and electric moments directly from full QCD: −0.066(12)(23) and −0.022(61)
 - ightharpoonup Looking for improvements in G_{E^s}
- More work to be done in hyperon semi-leptonic decay
 - First dynamical calculation
 - ◆ Preliminary result from Lin-Orginos is consistent with the previous calculation
 - We need much higher statistics for a lighter-pion mass calculation (compared with the quenched one)
 - ♦ Higher precision g_1/f_1 :
 Will make the $|V_{us}|$ equivalent to or better than the one from K_{l3} channel