

Nucleon Physics from Lattice QCD (2)

Huey-Wen Lin Jefferson Lab Thomas Jefferson National Accelerator Facility

23rd Annual Hampton University Graduate Studies Program 2008 June 10

Outline

Lecture #1

Lattice QCD overview

Background, actions, observables

Baryon spectroscopy

Group theory, operator design, spectroscopy results

Nucleon Structure Functions

Lecture #2

- Axial charge couplings and form factors
- Generalized Parton Distributions (GPDs)
- Strangeness in the nucleon

Chiral Perturbation Theory

- Effective field theory for the low-energy regime of QCD
 - Parameterized in terms of low-energy constants (LECs)
 - Lattice QCD can make calculations at different pion masses to get these constants accurately
- Meson SU(3) case: straightforward
 - Dynamical variables

$$U(x) = \exp\left(i\frac{\phi(x)}{F_0}\right),$$

$$\phi(x) = \sum_{a=1}^{8} \lambda_a \phi_a(x) \equiv \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\overline{K}^0 & -\frac{2}{\sqrt{3}}\eta \end{pmatrix}$$

Lagrangian

$$\mathcal{L}_{\text{eff}} = \frac{F_0^2}{4} \text{Tr} \left(\partial_\mu U \partial^\mu U^\dagger\right) + \cdots$$

• Scale from dimension counting $\Lambda_{XSB} \sim 4\pi F_0 \sim 1 \text{ GeV}$

Chiral Perturbation Theory

Baryon case

Can write down the variables; octet field

$$B = \sum_{a=1}^{8} \lambda_a B_a = \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda & \Sigma^+ & p \\ \Sigma^- & -\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda & n \\ \Xi^- & \Xi^0 & -\frac{2}{\sqrt{6}} \Lambda \end{pmatrix}$$

Tree-level, gives nice mass relation $\Delta_{GMO} = \frac{3}{4} M_\Lambda + \frac{1}{4} M_\Sigma - \frac{1}{2} M_N - \frac{1}{2} M_\Xi$
At loop level, $M_B / 4\pi F_0 \sim 1 \rightarrow$ non-convergence problem

Solutions (SU(2)): expand in different parameters, different power count

♦ $\Delta(1232)$ freedom: $\Delta = M_{\Delta} - M_N \sim 300 \text{ MeV} \sim O(M_{\pi})$

Scales
$$\varepsilon \equiv m_{\pi} / \Lambda_{\chi SB}$$
 $\delta \equiv \Delta / \Lambda_{\chi SB}$

- Small-scale expansion (SSE)
- Heavy-baryon ChPT (HBChPT)
- Finite-range regularization (FRR): Λ_{FRR} in self-energy

Form Factors

Green Functions

Three-point function with connected piece only

$$C_{3pt}^{\Gamma,\mathcal{O}}\left(\vec{p},t,\tau\right) = \sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J_{\beta}\left(\vec{p},t\right) \mathcal{O}(\tau) \overline{J}_{\alpha}\left(\vec{p},0\right) \rangle$$
$$O: V_{\mu} = q^{-} \gamma_{\mu} q, \ A_{\mu} = q^{-} \gamma_{\mu} \gamma_{5} q$$

Isovector quantities O^{u-d}: disconnected diagram cancelled

Axial Couplings and Form Factors

 Elastic scattering process
 Axial couplings
 Vector and Axial form factors
 Magnetic moments
 Charge radii

• For octet baryons

$$\langle B | V_{\mu} | B \rangle(q) = \overline{u}_{B}(p') \left[\gamma_{\mu} F_{1}(q^{2}) + \sigma_{\mu\nu} q_{\nu} \frac{F_{2}(q^{2})}{2M_{B}} \right] u_{B}(p)$$

$$\langle B | A_{\mu}(q) | B \rangle = \overline{u}_{B}(p') \left[\gamma_{\mu} \gamma_{5} G_{A}(q^{2}) + \gamma_{5} q_{\nu} \frac{G_{P}(q^{2})}{2M_{B}} \right] u_{B}(p)$$

Axial-vector current matrix element $\langle B | A_{\mu}(q) | B \rangle = \overline{u}_{B}(p') \left[\gamma_{\mu} \gamma_{5} G_{A}(q^{2}) + \gamma_{5} q_{\nu} \frac{G_{P}(q^{2})}{2M_{B}} \right] u_{B}(p)$

and axial charge coupling $g_A = G_A^{u-d} (Q^2 = 0)$

- Well-measured experimentally from neutron beta decay
- No disconnected-diagram contribution
- Should be able to reproduce the experimental number and understand the systematic effects

Finite-Volume Effect

Pion-mass dependence and XPT extrapolation

Axial Charge Coupling: Global View

World data: statistical error-bars only

HWL et al., 0802.0863[hep-lat]; M. Guertler et al., PoS(LAT2006)107;

D. Pleiter et al., PoS(LAT2006)120 ; K. Orginos et al., Phys.Rev.D73:094507, 2005;
D. Renner et al., PoS(LAT2006)121; D. Dolgov et al., Phys. Rev. D66, 034506 (2002)

Axial Coupling Constants: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

 Pion mass: 350–750 MeV HWL and K. Orginos, arXiv:0712.1214
 First lattice calculation of these quantities; mixed-action full-QCD

	m010	m020	m030	m040	m050
m_{π} (MeV)	354.2(8)	493.6(6)	594.2(8)	685.4(19)	754.3(16)
m_{π}/f_{π}	2.316(7)	3.035(7)	3.478(8)	3.822(23)	4.136(20)
m_K/f_{π}	3.951(14)	3.969(10)	4.018(11)	4.060(26)	4.107(21)
confs	612	345	561	320	342
$g_{A,N}$	1.22(8)	1.21(5)	1.195(17)	1.150(17)	1.167(11)
$g_{\Sigma\Sigma}$	0.418(23)	0.450(15)	0.451(7)	0.444(8)	0.453(5)
$g_{\Xi\Xi}$	-0.262(13)	-0.270(10)	-0.269(7)	-0.257(9)	-0.261(7)

- Combine with g_A for study of
 - SU(3) symmetry breaking
 - SU(3) simultaneous fits among three coupling constants
 - \implies *D*, *F*, and other low-energy constants

 q_A 's SU(3) Partners: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

- Has applications such as hyperon scattering, non-leptonic decays, ...
- Cannot be determined by experiment
- Existing theoretical predictions:
 - Chiral perturbation theory

 $0.35 \leq g_{\Sigma\Sigma} \leq 0.55$ $0.18 \leq -g_{\Xi\Xi} \leq 0.36$

M. J. Savage et al., Phys. Rev. D55, 5376 (1997);

 \Rightarrow Large- N_c

 $0.30 \leq g_{\Sigma\Sigma} \leq 0.36 \qquad 0.26 \leq -g_{\Xi\Xi} \leq 0.30$

R. Flores-Mendieta et al., Phys. Rev. D58, 094028 (1998);

- Loose bounds on the values
- Lattice QCD can provide substantial improvement

g_A 's SU(3) Partners: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

- Simultaneous SU(3) fit
 - ◆ SU(3) HBXPT (with 8 parameters)
 - W. Detmold and C. J. D. Lin, Phys. Rev. D71, 054510 (2005)

Huey-Wen Lin — 23rd HUGS

 g_A 's SU(3) Partners: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

SU(3) symmetry breaking $\delta_{\rm SU(3)} = g_{\rm A} - 2.0 \times g_{\Sigma\Sigma} + g_{\Xi\Xi}$ $=\sum c_n x^n$ with $x = (m_K^2 - m_\pi^2)/(4\pi f_\pi^2)$ Quadratic behaviour is observed 0.4 $\delta_{\mathrm{SU}(3)}$ Not predicted by 0.2 any theorem nor chiral perturbation theory 0 \rightarrow coincidence? $_4 \left[\delta_{\mathrm{SU}(3)} / x^2 \right]$ 20% breaking at 2 physical point 0 0.20.30.40.1

Electromagnetic Form Factors

Two definitions Two definitions Dirac and Pauli form factors F_1, F_2 $\langle N | V_\mu | N \rangle(q) = \overline{u}_N(p') \left[\gamma_\mu F_1(q^2) + \sigma_{\mu\nu} q_\nu \frac{F_2(q^2)}{2m} \right] u_N(p)$

at Q²=0 $F_{1p}(0) = 1, F_{2p}(0) = \kappa_p, F_{1n}(0) = 0, F_{2n}(0) = \kappa_n$

• Sachs form factors
$$G_E$$
, G_M
 $G_E(q^2) = F_1(q^2) + \frac{q^2}{(2M_N)^2}F_2(q^2)$
 $G_M(q^2) = F_1(q^2) + F_2(q^2)$.
at $Q^2=0$
 $G_{Ep}(0) = 1, G_{Mp}(0) = \mu_p, G_{En}(0) = 0, G_{Mn}(0) = \mu_n$

EM Form Factors: F_1 vs Q^2

Charge Radii

EM Form Factors: F_2 vs Q^2

Magnetic Moment

• Definition:
$$\kappa_p = \mu_p - 1 = F_{p,2}(0), \ \kappa_n = \mu_n = F_{n,2}(0)$$

 $\kappa_{iso} = \kappa_{p-n} = \mu_p - \mu_n - 1$

Examples:

• QCDSF: 2f clover $M_{\pi} \sim 350-950$ MeV, tripole-fits

Huey-Wen Lin — 23rd HUGS

Magnetic Moment

• Definition:
$$\kappa_p = \mu_p - 1 = F_{p,2}(0), \ \kappa_n = \mu_n = F_{n,2}(0)$$

 $\kappa_{iso} = \kappa_{p-n} = \mu_p - \mu_n - 1$

Examples:

QCDSF: 2f clover M_π ~ 350–950 MeV, tripole fit, SSE extrapolation
 RBC DWF, M_π ~ 320–620 MeV, dipole

EM Form Factors: G_E/G_M vs Q^2

- Of & 2f example:
 - MIT/Cyprus, Wilson action, $M_{\pi} \sim 380-690$ MeV
 - Take experimental $G_E^{p,n}$ and $G_M^{p,n}$ to construct isovector form factor

Axial Form Factors: GA

2+1f examples:

- LHPC mixed action, $M_{\pi} \sim 350-760$ MeV
- RBC DWF, $M_{\pi} \sim 320-620$ MeV

Axial Form Factors: G_P

Huey-Wen Lin — 23rd HUGS

Goldberger-Treiman Relation

The Goldberger-Treiman (GT) relation states

$$G_A(q^2) + \frac{q^2}{4m_N^2}G_p(q^2) = \frac{1}{2m_N}\frac{2G_{\pi NN}(q^2)f_{\pi}m_{\pi}^2}{m_{\pi}^2 - q^2}$$

If pion-pole dominance

$$\frac{1}{2m_N}G_p(q^2) \sim \frac{2G_{\pi NN}(q^2)f_{\pi}}{m_{\pi}^2 - q^2}$$

• Replacing $G_{\pi NN}$

 $G_{A} \sim (m_{\pi}^{2} - q^{2})G_{P}/4m_{N}^{2}$

 \blacklozenge Replacing G_P

$$G_{\pi NN} f_{\pi} \sim m_N G_A$$

Goldberger-Treiman Relation

Huey-Wen Lin — 23rd HUGS

πNN Coupling

- Structure function/distribution functions
 - deep inelastic scattering
 - $\blacklozenge \langle x^n \rangle_q, \langle x^n \rangle_{\Delta q}, \langle x^n \rangle_{\delta q}$

- Structure function/distribution functions
 deep inelastic scattering
 - $\blacklozenge \langle x^n \rangle_q, \langle x^n \rangle_{\Delta q}, \langle x^n \rangle_{\delta q}$
- Form factors
 - elastic scattering
 - ◆ $F_1(Q^2), F_2(Q^2), G_A(Q^2), G_P(Q^2)$

- Structure function/distribution functions
 deep inelastic scattering
 - $\blacklozenge \langle x^n \rangle_q, \langle x^n \rangle_{\Delta q}, \langle x^n \rangle_{\delta q}$
- Form factors
 - elastic scattering
 - ♦ $F_1(Q^2), F_2(Q^2), G_A(Q^2), G_P(Q^2)$
- Generalized Parton Distribution
 DVCS
 - $\langle x^{n-1} \rangle_q = A_{n0}(0), \langle x^{n-1} \rangle_{\Delta q} = \tilde{A}_{n0}(0),$ $\langle x^n \rangle_{\delta q} = A_{Tn0}(0),$
 - ◆ $F_1(Q^2) = A_{10}(Q^2), F_2(Q^2) = B_{20}(Q^2),$ $G_A(Q^2) = \tilde{A}_{10}(Q^2), G_P(Q^2) = \tilde{B}_{10}(Q^2)$
 - Nucleon spin and transverse structure

Graphics from G. Fleming

• GPD gives off-forward light-cone operator of the form $\mathcal{O}_{\Gamma}(x) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda} \overline{q}(-\lambda n/2) \Gamma \mathcal{P} e^{-ig \int_{\lambda n/2}^{-\lambda n/2} dz} n A(z) q(\lambda n/2)$

Momentum fraction

 $n_{\mu}\gamma^{\mu}, n_{\mu}\gamma^{\mu}\gamma^{5}, n_{\mu}\sigma^{\mu
u}$

Light-like vector

◆ Cannot directly calculate the matrix element ⟨P', S'|O_Γ(x)|P, S⟩
 ◆ LQCD: Use operator production expansion (OPE)

$$O_q^{\mu_1\cdots\mu_n} = \overline{q} \, i D^{(\mu_1}\cdots i D^{\mu_{n-1}} \, \gamma^{\mu_n)} \, q$$
$$\tilde{O}_q^{\mu_1\cdots\mu_n} = \overline{q} \, i D^{(\mu_1}\cdots i D^{\mu_{n-1}} \gamma^{\mu_n)} \, \gamma^5 \, q$$

 $O_{Tq}^{\mu_1\cdots\mu_n\alpha} = \overline{q} \, i D^{(\mu_1}\cdots i D^{\mu_{n-1}} \, \sigma^{\mu_n)\alpha} \, q$ and obtain GFF $A_{ni}(0), B_{ni}(0), C_n(0), \tilde{A}_{ni}(0), \tilde{B}_{ni}(0)$ $A_{Tni}(0), B_{Tni}(0), \tilde{A}_{Tni}(0), \tilde{B}_{Tni}(0)$

◆ Cannot directly calculate the matrix element ⟨P', S'|O_Γ(x)|P, S⟩
◆ Use operator production expansion (OPE)
◆ Definition of GFF:

$$P'|\mathcal{O}^{\mu_1}|P\rangle = \langle\!\langle \gamma^{\mu_1} \rangle\!\rangle A_{10}(t) + \frac{i}{2m} \langle\!\langle \sigma^{\mu_1 \alpha} \rangle\!\rangle \Delta_{\alpha} B_{10}(t) , \qquad \text{Only even } n$$

$$\langle P' | \mathcal{O}^{\{\mu_1 \mu_2\}} | P \rangle = \bar{P}^{\{\mu_1} \langle\!\langle \gamma^{\mu_2\}} \rangle\!\rangle A_{20}(t) + \frac{i}{2m} \bar{P}^{\{\mu_1} \langle\!\langle \sigma^{\mu_2\}^\alpha} \rangle\!\rangle \Delta_\alpha B_{20}(t) + \frac{1}{m} \Delta^{\{\mu_1} \Delta^{\mu_2\}} C_{20}(t),$$

$$P'|\mathcal{O}^{\{\mu_{1}\mu_{2}\mu_{3}\}}|P\rangle = \bar{P}^{\{\mu_{1}}\bar{P}^{\mu_{2}}\langle\!\langle\gamma^{\mu_{3}}\rangle\!\rangle}A_{30}(t) + \frac{i}{2m}\bar{P}^{\{\mu_{1}}\bar{P}^{\mu_{2}}\langle\!\langle\sigma^{\mu_{3}}\rangle\!\rangle}\Delta_{\alpha}B_{30}(t) + \Delta^{\{\mu_{1}}\Delta^{\mu_{2}}\langle\!\langle\sigma^{\mu_{3}}\rangle\!\rangle}A_{32}(t) + \frac{i}{2m}\Delta^{\{\mu_{1}}\Delta^{\mu_{2}}\langle\!\langle\sigma^{\mu_{3}}\rangle\!\rangle}\Delta_{\alpha}B_{32}(t),$$

with $\bar{P} = (P' + P)/2 \qquad \Delta = P' - P \qquad t = \Delta^{2}$

with $\overline{P} = (P' + P)/2$ $\Delta = P' - P$ $t = \Delta^2$ \Rightarrow List of GFF:

- Polarized: $\tilde{A}_{ni}(0), \tilde{B}_{ni}(0)$
- Unpolarized: $A_{ni}(0), B_{ni}(0), C_n(0)$
- Transverse (+ pol.): $A_{Tni}(0)$, $B_{Tni}(0)$ ($\tilde{A}_{Tni}(0)$, $\tilde{B}_{Tni}(0)$)

List of GFF:

- Polarized: $\tilde{A}_{ni}(0), \tilde{B}_{ni}(0)$
- Unpolarized: $A_{ni}(0), B_{ni}(0), C_n(0)$
- Transverse (+ pol.): $A_{Tni}(0)$, $B_{Tni}(0)$ ($\tilde{A}_{Tni}(0)$, $\tilde{B}_{Tni}(0)$)
- Link to Mellin moments
 Example: unpolarized case

$$\int_{-1}^{1} dx x^{n-1} \begin{bmatrix} H(x,\xi,t) \\ E(x,\xi,t) \end{bmatrix} = \sum_{k=0}^{[(n-1)/2]} (2\xi)^{2k} \begin{bmatrix} A_{n,2k}(t) \\ B_{n,2k}(t) \end{bmatrix} \pm \delta_{n,\text{even}} (2\xi)^n C_n(t)$$
$$\xi = -n \cdot \Delta/2$$

Transverse Quark Distribution

Slopes of *A*'s are related to the transverse size of nucleon

$$q(x,\vec{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\vec{b}_{\perp}\cdot\Delta_{\perp}} H^q(x,0,-\vec{\Delta}_{\perp}^2)$$

Huey-Wen Lin — 23rd HUGS

 m_{π}^2 [GeV²]

-0.5

The Proton Spin Crisis

- Long, long ago in a kingdom far, far away...
 - \Rightarrow Naïve parton model: proton = 2 up + down
 - Successful in explaining and predicting hadron spectroscopy
 - ♦ Proton spin comes from quark spin: $2 \times \frac{1}{2} + \frac{(-1)}{2} = \frac{1}{2}$.
- Then in the late 80's...
 - European Muon Collaboration (EMC) performed polarized muon-nucleon scattering experiments: Only a small fraction (12±16%) of proton spin is quark spin!
 - The proton spin crisis begins!!
- What we know now:
 - Quark orbital angular momentum
 - Gluonic contributions
 - Other interactions?

Decomposition according to spin and orbital angular momentum:
 LHPC: N_f = 2+1 mixed action, M_π ~ 350–760 MeV

Ph. Hagler, 0705.4295 et. al,; M. Ohtani et al, PoS Lat2007(2007)

Decomposition according to quark flavor:
 LHPC: N_f = 2+1 mixed action, M_π ~ 350–760 MeV
 QCDSF: N_f = 2 clover action, M_π ~ 340–950 MeV

Strangeness in Nucleon

Overview

Momentum	$\int x(\overline{s}+s) \mathrm{d}x$	DIS v,μ,e	2–4%
Mass	$m_s \langle N \bar{s}s N \rangle$	πN -scatt.	220 MeV
		$\Sigma_{\pi N}$ -Term	
🔷 Spin	$\langle N/\bar{s}\gamma_{\mu}\gamma_{5}s N\rangle$	pol. DIS	10%
🔶 EM FF	$\langle N \bar{s} \gamma_{\mu} s N \rangle$	PV electron scattering	0??
G_{E}^{s}, G_{M}^{s}			

Purely sea-quark effect

First strange magnetic moment was measured by SAMPLE $G_M^s(Q^2 = 0.1 \ GeV^2) = 0.23(37)(25)(29)$

B. Mueller et al. (SAMPLE) Phys. Rev. Lett. 78, 3824 (1997)

New data, still being collected, suggests the value is non-zero.

HAPPEX and G0 collaborations at Jefferson Lab, SAMPLE at MIT-BATES, and A4 at Mainz

Lattice calculations

$$\langle B | V_{\mu} | B \rangle(q) = \overline{u}_B(p') \left[\gamma_{\mu} F_1(q^2) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{2M_B} \right] u_B(p)$$

the disconnected diagram is a must

- Done in quenched approximation
 - Direct: Noisy (Z_2) estimator -0.28(10) to +0.05(6)
 - Indirect: Charge symmetry -0.046(19)

Kentucky Field Theory group (1997–2001)

Adelaide-JLab group (2006)

- Disconnected diagrams are challenging
- Much effort has been put into resolving this difficulty
- Alternative approach:

D. B. Leinweber, Phys. Rev. D 53, 5115 (1996).

Assume charge symmetry (for example, $d^n = u^p$):

 $p = e_u u^p + e_d d^p + O_N; \qquad n = e_d u^p + e_u d^p + O_N,$ $\Sigma^+ = e_u u^{\Sigma} + e_s s^{\Sigma} + O_{\Sigma}; \qquad \Sigma^- = e_d u^{\Sigma} + e_s s^{\Sigma} + O_{\Sigma},$ $\Xi^0 = e_s s^{\Xi} + e_u u^{\Xi} + O_{\Xi}; \qquad \Xi^- = e_s s^{\Xi} + e_d u^{\Xi} + O_{\Xi}.$

The disconnected piece for the proton is $O_N = \frac{2}{3}{}^l G_M^u - \frac{1}{3}{}^l G_M^d - \frac{1}{3}{}^l G_M^s$

The strangeness contribution is

$$G_M^s = \left(\frac{{}^l R_d^s}{1 - {}^l R_d^s}\right) \left[2p + n - \frac{u^p}{u^{\Sigma}}(\Sigma^+ - \Sigma^-)\right]$$

$$G_M^s = \left(\frac{{}^l R_d^s}{1 - {}^l R_d^s}\right) \left[p + 2n - \frac{u^n}{u^{\Xi}} (\Xi^0 - \Xi^-)\right] \quad \text{with} \quad {}^l R_d^s \equiv {}^l G_M^s / {}^l G_M^d$$

- Dipole-form extrapolation to $q^2 = 0$
- Magnetic-moment ratios (linear extrapolation, for now)

- Dipole-form extrapolation to $q^2 = 0$
- Magnetic-moment ratios (linear extrapolation, for now)

Huey-Wen Lin — 23rd HUGS

- Dipole-form extrapolation to $q^2 = 0$
- Magnetic-moment ratios (linear extrapolation, for now)

Strange Electric Moment of Nucleon

• G_E^s is proportional to $Q^2 \langle r^2 \rangle^s$

Charge symmetry: D. B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2004). $\langle r^2 \rangle^s = \frac{r_d^s}{1 - r_d^s} \left[2 \langle r^2 \rangle^p + \langle r^2 \rangle^n - \langle r^2 \rangle^u \right] \qquad r_d^s = 0.16(4)$

• u-quark form contribution of vector form factors

HWL, arXiv:0707.3844[hep-lat]

- Need more literature research on chiral extrapolation
- Using an extrapolation of the form

$$\langle r^2 \rangle^u = a_0 - \frac{1 + 5g_A^2}{(4\pi f_\pi)^2} \log\left(\frac{m_\pi^2}{m_\pi^2 + \Lambda^2}\right)$$

Preliminary

 $G_E^s(Q^2=0.1 \text{ GeV}^2) = -0.022(23)$

World Plot at $Q^2 \sim 0.1 \text{ GeV}^2$

Not enough time to mention...

- Meson (π) form factors and structure functions
- Polarizabilities:
 - Electric polarizabilities of neutral hadrons
 - Magnetic polarizabilities of hadrons
 - Spin polarizabilities and electric polarizabilities of charged particles
- Vector meson (ρ , K^*) quadrupole moments
- Transition form factors
 - $\checkmark \gamma^* N \to \Delta; \gamma^* N \to R$
- \mathbf{P} , *K*, *K*^{*} distribution amplitudes
- Transverse spin densities
- Neutron electric dipole moment
- Hadron interactions (π - π , π -K, N-N, N-Y scattering lengths)
- On-going efforts: Direct calculation of disconnected contributions and gluonic matrix elements