Nucleon Physics from Lattice QCD (1)

Huey-Wen Lin
Jefferson Lab
OThomas Jefferson National Accelerator Facility

$23^{\text {rd }}$ Annual Hampton University
Graduate Studies Program
2008 June 06

Outline

-Lecture \#1

- Lattice QCD overview

Background, actions, observables
\rightarrow Baryon spectroscopy
Group theory, operator design, spectroscopy results
\rightarrow Nucleon Structure Functions

- Lecture \#2
\rightarrow Axial charge couplings and form factors
\rightarrow Generalized Parton Distributions (GPDs)
\rightarrow Strangeness in the nucleon

Lattice 101

\rightarrow Book (if you have to pick just one)

- Degrand and De Tar

Lattice Methods for Quantum Chromodynamics (World Scientific, 2006)
\rightarrow arXiv article

- Gupta
"Introduction to Lattice QCD"
arXiv:hep-1at/9807028

Lattice QCD

\star Lattice QCD is a discrete version of continuum QCD theory

Lec. by Mike Peardon

- Physical observables are calculated from the path integral

$$
\langle 0| O(\bar{\psi}, \psi, A)|0\rangle=\frac{1}{Z} \int[d A][d \bar{\psi}][d \psi] O(\bar{\psi}, \psi, A) e^{i \int d^{4} x \mathcal{L}^{\alpha c o}(\bar{\psi}, \psi, A)}
$$

Lattice QCD

Physical observables are calculated from the path integral

$$
\langle\mathrm{O}| O(\bar{\psi}, \psi, A)|\mathrm{O}\rangle=\frac{1}{Z} \int[d A][d \bar{\psi}][d \psi] O(\bar{\psi}, \psi, A) e^{i \int d^{4} x \mathcal{L}^{\operatorname{QcD}}(\bar{\psi}, \psi, A)}
$$

* Use Monte Carlo integration combined with the
"importance sampling" technique to calculate the path integral.
- Simple example:

\rightarrow Take $a \rightarrow 0$ and $V \rightarrow \infty$ in the continuum limit

Lattice Gauge Actions

\rightarrow General form for improvement up to $O\left(a^{2}\right)$

$$
\begin{aligned}
S_{g}= & \frac{\beta}{3} \operatorname{Re} \operatorname{Tr}\left(c_{0}\langle\mathbb{1}-\square)\right. \\
& \left.+c_{1}\langle\mathbb{1}-\square\rangle+c_{2}\langle\mathbb{Q}-\underset{\square}{\square}\rangle\right)
\end{aligned}
$$

Commonly used:

- Wilson
- Iwasaki
- Symanzik-improved
- doubly blocked Wilson 2 (DBW2)
\rightarrow Most gauge actions used today are $O\left(a^{2}\right)$ improved
\rightarrow Small discretization effects $\left(\sim O\left(\Lambda_{\mathrm{QCD}}{ }^{3} a^{3}\right)\right)$ due to gauge choices
\rightarrow Most fermion actions are only $O(a)$ improved $\left(O\left(\Lambda_{\mathrm{QCD}}{ }^{2} a^{2}\right)\right)$

Lattice Fermion Actions

* (Improved) Staggered fermions (asqtad):
\rightarrow Relatively cheap for dynamical fermions (good)
\rightarrow Mixing among parities and flavors or "tastes"
* Baryonic operators a nightmare - not suitable
\rightarrow Wilson/Clover action:
* Moderate cost; explicit chiral symmetry breaking
- Twisted Wilson action:
\rightarrow Moderate cost; isospin mixing

Lattice Fermion Actions

* (Improved) Staggered fermions (asqtad):
\rightarrow Relatively cheap for dynamical fermions (good)
* Mixing among parities and flavors or "tastes"
\rightarrow Baryonic operators a nightmare - not suitable
\rightarrow Wilson/Clover action:
\rightarrow Moderate cost; explicit chiral symmetry breaking
- Twisted Wilson action:

Moderate cost; isospin mixing
\rightarrow Chiral fermions
Domain-Wall/Overlap
\rightarrow Automatically $O(a)$ improved, good for spin physics and weak matrix elements

\Rightarrow Expensive $D_{x, s ; x^{\prime}, s^{\prime}}=\delta_{x, x^{\prime}} D_{s, s^{\prime}}^{\perp}+\delta_{s, s^{\prime}} D_{x . x^{\prime}}^{\|}$

$$
\begin{aligned}
D_{s, s^{\prime}}^{\perp} & =\frac{1}{2}\left[\left(1-\gamma_{5}\right) \delta_{s+1, s^{\prime}}+\left(1+\gamma_{5}\right) \delta_{s-1, s^{\prime}}-2 \delta_{s, s^{\prime}}\right] \\
& -\frac{m_{f}}{2}\left[\left(1-\gamma_{5}\right) \delta_{s, L_{s}-1} \delta_{0, s^{\prime}}+\left(1+\gamma_{5}\right) \delta_{s, 0} \delta_{L_{s}-1, s^{\prime}}\right]
\end{aligned}
$$

Lattice Fermion Actions

\rightarrow Mixed Action
\rightarrow Staggered sea (cheap) with domain-wall valence (chiral)

- Match the sea Goldstone pion mass to the DWF pion
\rightarrow Only mixes with the "scalar" taste of sea pion
\rightarrow Anisotropic Wilson/Clover
\rightarrow Wilson/Clover fermions with broken space/time symmetry
\rightarrow Lattice spacing $a_{t}<a_{x, y, z}$

More details in Mike Peardon's Lecture

Computational Requirement

\rightarrow A wide variety of first-principles QCD calculations can be done: In 1970, Wilson started off by writing down the first actions
\rightarrow Progress is limited by computational resources
\rightarrow But assisted by advances in algorithms

- Computer power available for gaming in 1980's:

Poor Man's QCD: Quenched Approximation

\rightarrow Full QCD: $\quad\langle O\rangle=\frac{1}{Z} \int[d U][d \psi][d \bar{\psi}] e^{-S_{F}(U, \psi, \bar{\psi})-S_{G}(U)} O(U, \psi, \bar{\psi})$

$$
=\frac{1}{Z} \int[d U] \operatorname{det} M e^{-S_{G}(U)} O(U)
$$

\rightarrow Quenched: Take $\operatorname{det} M=$ constant.

* "Almost extinct" in recent work
- Bad: Uncontrollable systematic error
- Good? Cheap exploratory studies to develop new methods

Computational Requirements

\star A wide variety of first-principles QCD calculations can be done: In 1970, Wilson started off by writing down the first actions
\rightarrow Progress is limited by computational resources

- But assisted by advances in algorithms
\rightarrow Computer power available today:

\rightarrow Exciting progress during the last decade

Computational Requirements

2007: The 13 Tflops cluster at Jefferson Lab

Other joint lattice resources within the US: Fermilab, BNL Non-lattice resources open to USQCD: ORNL, LLNL, ANL

Computational Requirements

\star Gauge generation estimate with latest algorithms scales like Cost factor: $a^{-6}, L^{5}, M_{\pi}^{-3}$
\rightarrow Chiral domain-wall fermions (DWF) at large volume (6 fm) at physical pion mass may be expected in 2011
\star But for now....
need a pion mass extrapolation $M_{\pi} \rightarrow\left(M_{\pi}\right)_{\text {phys }}$ (use chiral perturbation theory, if available)

Systematic Errors

\star Currently, not at the physical pion-mass point XPT uncertainty (parameters used in XPT, etc.)
\rightarrow Finite lattice spacing
\rightarrow Exact: Do multiple lattice-spacing calculations and extrapolate to $a=0$
\rightarrow Otherwise, estimate according to the level of improvement for the gluon and fermion action and operators
\rightarrow Finite-volume effect
\rightarrow Exact: Do multiple volume calculations and extrapolate to $V=\infty$
\rightarrow Otherwise, estimate according to previous work
\rightarrow Or apply finite-volume XPT to try to correct FVE
\rightarrow Other Systematics
\rightarrow For example: if fitting is involved, what is the dependence on the fit range?

Baryon Resonances

Spectroscopy on Lattice

- Calculate two-point Green function

$$
\begin{aligned}
\langle O\rangle & =\frac{1}{Z} \int[d U][d \psi][d \bar{\psi}] e^{-S_{F}(U, \psi, \bar{\psi})-S_{G}(U)} O(U, \psi, \bar{\psi}) \\
& =\frac{1}{Z} \int[d U] \operatorname{det} M e^{-S_{G}(U)} O(U)
\end{aligned}
$$

\rightarrow Spin projection

$$
\sum_{\alpha, \beta} \Gamma^{\alpha, \beta}\left\langle J\left(X_{\text {snk }}\right) J\left(X_{\text {src }}\right)\right\rangle_{\alpha, \beta}
$$

\rightarrow Momentum projection
Two-point correlator
Exp decay

$$
\Gamma_{A B}^{(2), T}(t ; \vec{p})=\sum_{n} \frac{E_{n}+M_{n}}{2 E_{n}} Z_{n, A} Z_{n, B} e^{-E_{n}(\vec{P}) t}
$$

At large enough t, the ground-state signal dominates

Why Baryons?

Lattice QCD spectrum

\rightarrow Successfully calculates many ground states (Nature, ...) HPQCD

\rightarrow Predictions: B_{c} mass, D and D_{s} decay constants, $D \rightarrow K l v$ form factors

Why Baryons?

Lattice QCD spectrum

- Successfully calculates many ground states (Nature, ...)
- Nucleon spectrum, on the other hand... not quite

Example: Quenched N, P_{11}, S_{11}

\rightarrow Systematic errors not included:
Finite volume and lattice spacing;
possible higher excited-state contamination

Strange Baryons

\rightarrow Strange baryons are of special interest; challenging even to experiment
\rightarrow Example from PDG Live:

```
EBARYONS ( }S=-2,I=1/2
```

${ }^{0}=u s s, \quad \Xi^{-}=d s s$

Ω BARYONS ($S=-3, l=0$)

Ω^{-}	$0\left(3 / 2^{+}\right)$	
$\Omega(\mathbf{2 2 5 0})^{-}$	$0\left(?^{?}\right)$	
$\Omega(\mathbf{2 3 8 0})^{-}$		
$\Omega(\mathbf{2 4 7 0})^{-}$		

Operator Design

\rightarrow All baryon spin states wanted: $j=1 / 2,3 / 2,5 / 2, \ldots$
\rightarrow Rotation symmetry is reduced due to discretization rotation $\mathrm{SO}(3) \Rightarrow$ octahedral O_{h} group

	I	J	$6 \mathrm{C}_{4}$	$8 \mathrm{C}_{6}$	$8 \mathrm{C}_{3}$	$6 \mathrm{C}_{9}$	$6 \mathrm{C}_{9}$	$12 \mathrm{C}_{4}$
$\mathrm{~A}_{1}$	1	1	1	1	1	1	1	1
$\mathrm{~A}_{2}$	1	3	-2	1	0	-1	1	0
E	2	1	1	1	-1	-1	-1	0
G_{1}	2	0	1	-1	1	-2	1	0
G_{2}	2	-4	0	1	0	0	1	-1
$\mathrm{~T}_{1}$	3	2	0	0	1	1	-1	-1
$\mathrm{~T}_{2}$	3	3	0	-1	-1	1	1	0
H	4	-3	-1	0	0	0	-1	1

Operator Design

\rightarrow All baryon spin states wanted: $j=1 / 2,3 / 2,5 / 2, \ldots$
\rightarrow Rotation symmetry is reduced due to discretization rotation $\mathrm{SO}(3) \Rightarrow$ octahedral O_{h} group

		J	$6 \mathrm{C}_{4}$	$8 \mathrm{C}_{6}$	$8 \mathrm{C}_{3}$	$6 \mathrm{C}_{9}$	$6 \mathrm{C}_{9}$	$12 \mathrm{C}_{4}$
$\mathrm{~A}_{1}$	1	1	1	1	1	1	1	1
$\mathrm{~A}_{2}$	1	3	-2	1	0	-1	1	0
E	2	1	1	1	-1	-1	-1	0
C_{1}	2	0	1	-1	1	-2	1	0
G_{2}	2	-4	0	1	0	0	1	-1
$\mathrm{~T}_{1}$	3	2	0	0	1	1	-1	-1
$\mathrm{~T}_{2}$	3	3	0	-1	-1	1	1	0
H	4	-3	-1	0	0	0	-1	1

Operator Design

\rightarrow All baryon spin states wanted: $j=1 / 2,3 / 2,5 / 2, \ldots$
\rightarrow Rotation symmetry is reduced due to discretization rotation $\mathrm{SO}(3) \Rightarrow$ octahedral O_{h} group

	I	J	$6 \mathrm{C}_{4}$	$8 \mathrm{C}_{6}$	$8 \mathrm{C}_{3}$	$6 \mathrm{C}_{9}$	$6 \mathrm{C}_{9}$	$12 \mathrm{C}_{4}$
$\mathrm{~A}_{1}$	1	1	1	1	1	1	1	1
$\mathrm{~A}_{2}$	1	3	-2	1	0	-1	1	0
E	2	1	1	1	-1	-1	-1	0
C_{1}	2	0	1	-1	1	-2	1	0
C_{2}	2	-4	0	1	0	0	1	-1
$\mathrm{~T}_{1}$	3	2	0	0	1	1	-1	-1
$\mathrm{~T}_{2}$	3	3	0	-1	-1	1	1	0
H	4	-3	-1	0	0	0	-1	1

Operator Design

\rightarrow All baryon spin states wanted: $j=1 / 2,3 / 2,5 / 2, \ldots$
\rightarrow Rotation symmetry is reduced due to discretization rotation $\mathrm{SO}(3) \Rightarrow$ octahedral O_{h} group

j	Irreps
$\frac{1}{2}$	G_{1}
$\frac{3}{2}$	H
$\frac{5}{2}$	$\mathrm{G}_{2} \oplus \mathrm{H}$
$\frac{7}{2}$	$\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus \mathrm{H}$
$\frac{9}{2}$	$\mathrm{G}_{1} \oplus 2 \mathrm{H}$
$\frac{11}{2}$	$\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus 2 \mathrm{H}$
$\frac{13}{2}$	$\mathrm{G}_{1} \oplus 2 \mathrm{G}_{2} \oplus 2 \mathrm{H}$
$\frac{15}{2}$	$\mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus 3 \mathrm{H}$
$\frac{17}{2}$	$2 \mathrm{G}_{1} \oplus \mathrm{G}_{2} \oplus 3 \mathrm{H}$
$\frac{19}{2}$	$2 \mathrm{G}_{1} \oplus 2 \mathrm{G}_{2} \oplus 3 \mathrm{H}$
$\frac{21}{2}$	$\mathrm{G}_{1} \oplus 2 \mathrm{G}_{2} \oplus 4 \mathrm{H}$
$\frac{23}{2}$	$2 \mathrm{G}_{1} \oplus 2 \mathrm{G}_{2} \oplus 4 \mathrm{H}$

Operator Design

\rightarrow Baryon field $\quad \Phi_{\alpha \beta \gamma, i j k}^{A B C}(x)=\epsilon_{a b c}\left[\tilde{D}_{i}^{(3)} \tilde{\psi}_{A a \alpha}(x)\left[\tilde{D}_{j}^{(3)} \tilde{\psi}_{B b \beta}(x)\left[\tilde{D}_{k}^{(3)} \tilde{\psi}_{C c \gamma}(x)\right.\right.\right.$

\rightarrow Classify states according to symmetry properties

- Projection onto irreducible representations of finite groups
\rightarrow Number of operator

N^{+}Operator type	$G_{1 g}$	H_{g}	$G_{2 g}$
Single-Site	3	1	0
Singly-Displaced	24	32	8
Doubly-Displaced-I	24	32	8
Doubly-Displaced-L	64	128	64
Triply-Displaced-T	64	128	64
Total	$\mathbf{1 7 9}$	$\mathbf{3 2 1}$	$\mathbf{1 4 4}$

S. Basak et al., Phys. Rev. D72, 094506 (2005)

Variational Method

\rightarrow Construct the correlator matrix

$$
C_{\Lambda}^{m, n}(t)=\sum_{\vec{x}} \sum_{\lambda}\langle 0| B_{\lambda}^{\Lambda, m}(\vec{x}, t) \bar{B}_{\lambda}^{\Lambda, n}(0)|0\rangle
$$

\rightarrow Construct the matrix

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t)^{\dagger} \mathcal{O}_{j}(0)|0\rangle
$$

\rightarrow Solve for the generalized eigensystem of

$$
C(t) \psi=\lambda\left(t, t_{0}\right) C\left(t_{0}\right) \psi
$$

with eigenvalues

$$
\lambda_{n}\left(t, t_{0}\right)=e^{-\left(t-t_{0}\right) E_{n}}\left(1+\mathcal{O}\left(e^{-|\delta E|\left(t-t_{0}\right)}\right)\right)
$$

C. Michael, Nucl. Phys. B 259, 58 (1985)
M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)
\rightarrow At large t, the signal of the desired state dominates.

$N_{f}=0$ Study: Nucleon

- Anisotropic Wilson action,
hep-lat/0609019
$V=12^{3} \times 48, a_{\mathrm{s}} \sim 0.1 \mathrm{fm}, a_{\mathrm{s}} / a_{\mathrm{t}} \sim 3, M_{\pi} \sim 700 \mathrm{MeV}$

Pion-Mass Dependences

\rightarrow Examples of a $N_{f}=2+1$ study

- Isotropic mixed action: DWF on staggered sea,
$\rightarrow M_{\pi} \sim 300-750 \mathrm{MeV}, L \sim 2.5 \mathrm{fm}$
\rightarrow Number of operator:

Flavor	$G_{1 g / u}(2)$	$H_{g / u}(4)$
N	3	1
Δ	1	2
Λ	4	1
Σ	4	3
Ξ	4	3
Ω	1	2

- Naïve chiral extrapolation

j	Irreps
$\frac{1}{2}$	G_{1}
$\frac{3}{2}$	H
5	GOU

This calculation:
Three quarks in a baryon located at a single site

2	u_{1}
$\frac{21}{2}$	$\mathrm{G}_{1} \oplus 2 \mathrm{G}_{2} \oplus 4 \mathrm{H}$
$\frac{23}{2}$	$2 \mathrm{G}_{1} \oplus 2 \mathrm{G}_{2} \oplus 4 \mathrm{H}$

Pion-Mass Dependences

2+1-flavor mixed action

\rightarrow SU(3) flavor symmetry breaking
\rightarrow Gell-Mann-Okubo relation

$$
\Delta_{G M O}=\frac{3}{4} M_{\Lambda}+\frac{1}{4} M_{\Sigma}-\frac{1}{2} M_{N}-\frac{1}{2} M_{\Xi}
$$

\rightarrow Mass differences are close to experimental numbers

Pion-Mass Dependences

2+1-flavor mixed action

\rightarrow SU(3) flavor symmetry breaking
\rightarrow Gell-Mann-Okubo relation

$$
\Delta_{G M O}=\frac{3}{4} M_{\Lambda}+\frac{1}{4} M_{\Sigma}-\frac{1}{2} M_{N}-\frac{1}{2} M_{\Xi}
$$

\rightarrow Decuplet Equal-Spacing Relation

$$
\Delta_{D E S I I}=\frac{1}{2}\left(M_{\Sigma^{*}}-M_{\Delta}\right)+\frac{1}{2}\left(M_{\Omega}-M_{\Xi^{*}}\right)-M_{\Xi^{*}}+M_{\Sigma^{*}}
$$

\rightarrow Mass differences are close to experimental numbers

Pion-Mass Dependences

\rightarrow The non-strange baryons (N
\rightarrow Symbols: $J^{P}=\underset{N}{1 / 2^{+}} \underset{N(1535)}{1 / 2^{-} \nabla}, \underset{N(1720)}{3 / 2^{+}} \underset{N(1520)}{3 / 2^{-}} \square$

Pion-Mass Dependences

\rightarrow The non-strange baryons (N and Δ)

Pion-Mass Dependences

$2+1$-flavor mixed action
\rightarrow The singly strange baryons: $(\Sigma$ and Λ)

Pion-Mass Dependences

\rightarrow The less known baryons (Ξ
2+1-flavor mixed action

Pion-Mass Dependences

\rightarrow The less known baryons (Ξ
2+1-flavor mixed action

Pion-Mass Dependences

$2+1$-flavor mixed action
\rightarrow The less known baryons (Ξ and Ω)
\rightarrow Symbols: $J^{P}=1 / 2^{+} \Delta, 1 / 2^{-} \nabla, 3 / 2^{+} \diamond, 3 / 2^{-} \square$

$$
\equiv \quad \equiv(1690) ? ~ \equiv(1530) \quad \equiv(1820)
$$

Could they be $\Omega(2250), \Omega(2380), \Omega(2470)$?

Roper in Full QCD

$\rightarrow N_{f}=2+1$ mixed action (DWF+asqtad) calculation ($L \sim 2.5 \mathrm{fm}$)
\rightarrow Symbols: J^{P}

Δ	$1 / 2^{+}$	N
∇	$1 / 2^{-}$	S_{11}
Δ	$1 / 2^{+}$	P_{11}

\rightarrow Finite-volume effects starting at 350 MeV pion
\rightarrow Prove or disprove Roper as the first radial excited state of nucleon?

Roper in Full QCD

$\rightarrow N_{f}=2+1$ mixed action (DWF+asqtad) calculation ($L \sim 2.5 \mathrm{fm}$)
\rightarrow Symbols: J^{P}

\rightarrow Finite-volume effects starting at 350 MeV pion.?
\rightarrow Prove or disprove Roper as the first radial excited state of nucleon?
\rightarrow Not a crazy possibility (see the hand-drawn extrapolation lines)
\rightarrow Stay tuned on future $N_{f}=2+1$ lattice calculations

Nucleon Structure

Deep Inelastic Scattering

\rightarrow Probing nucleon structure

$$
\sigma \sim L^{\mu \nu} W_{\mu \nu}
$$

$$
W_{\mu \nu}=i \int d^{4} x e^{i q x}\langle N| T\left\{J^{\mu}(x), J^{\nu}(0)\right\} \mid \stackrel{p}{N\rangle}
$$

The symmetric, unpolarized, spin-averaged

$$
W^{\{\mu \nu\}}\left(x, Q^{2}\right)=\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\left(p^{\mu}-\frac{\nu}{q^{2}} q^{4}\right)\left(p^{\nu}-\frac{\nu}{q^{2}} q^{\nu}\right) \frac{F_{2}\left(x, Q^{2}\right)}{\nu}
$$

The anti-symmetric, polarized

$$
W^{[\mu \nu]}\left(x, Q^{2}\right)=i \epsilon^{\mu \nu \rho \sigma} q_{\rho}\left(\frac{s_{\sigma}}{\nu}\left(g_{1}\left(x, Q^{2}\right)+g_{2}\left(x, Q^{2}\right)\right)-\frac{q \cdot s p_{\sigma}}{\nu^{2}} g_{2}\left(x, Q^{2}\right)\right)
$$

Moments of Structure Functions

\rightarrow No light-cone operator directly calculated on the lattice
\rightarrow Operator product expansion
\rightarrow Polarized

$$
\begin{aligned}
2 \int d x x^{n} g_{1}\left(x, Q^{2}\right) & =\sum_{q=u, d} e_{1, n}^{(q)}\left(\mu^{2} / Q^{2}, g(\mu)\right)\left\langle x^{n}\right\rangle_{\Delta q} \\
2 \int d x x^{n} g_{2}\left(x, Q^{2}\right) & =\frac{n}{(n+1)} \sum_{q=u, d}\left[2 e_{2, n}^{(q)}\left(\mu^{2} / Q^{2}, g(\mu)\right) d_{n}^{q}(\mu)\right. \\
& \left.+e_{1, n}^{(q)}\left(\mu^{2} / Q^{2}, g(\mu)\right)\left\langle x^{n}\right\rangle_{\Delta q}\right]
\end{aligned}
$$

\rightarrow Unpolarized

$$
\begin{aligned}
2 \int d x x^{n-1} F_{1}\left(x, Q^{2}\right) & =\sum_{q=u, d} c_{1, n}^{(q)}\left(\mu^{2} / Q^{2}, g(\mu)\right)\left\langle x^{n}\right\rangle_{q} \\
\int d x x^{n-2} F_{2}\left(x, Q^{2}\right) & =\sum_{q=u, d} c_{2, n}^{(q)}\left(\mu^{2} / Q^{2}, g(\mu)\right)\left\langle x^{n}\right\rangle_{q}
\end{aligned}
$$

$\rightarrow e_{1}, e_{2}, c_{1}, c_{2}$ are Wilson coefficients
$\bullet\left\langle x^{n}\right\rangle_{q},\left\langle x^{n}\right\rangle_{\Delta q}, d_{n}$ are the forward nucleon matrix elements

Nucleon Structure Functions

Matrix element $\langle P, S| O|P, S\rangle$
\rightarrow Unpolarized
$\mathscr{O}_{\mu_{1} \mu_{2} \cdots \mu_{n}}^{q}=\left(\frac{i}{2}\right)^{n-1}{ }_{\bar{q}}^{\mu_{\mu_{1}}} \overleftrightarrow{D}_{\mu_{2}} \cdots \overleftrightarrow{D}_{\mu_{n}} q-$ trace $\left.\xrightarrow{\longrightarrow}+\stackrel{x^{n}}{ }\right\rangle_{q}$
\rightarrow Polarized
$\mathscr{\sigma}_{\sigma \mu_{1} \mu_{2} \cdots \mu_{n}}^{5 q}=\left(\frac{i}{2}\right)^{n-1}{ }_{q} \gamma_{\sigma} \gamma_{5} \overleftrightarrow{D}_{\mu_{2}} \cdots \overleftrightarrow{D}_{\mu_{n}} q-$ trace $\longrightarrow \longrightarrow\left\langle\left\langle x^{n}\right\rangle_{\Delta q}\right.$
\rightarrow Transversity
$\sigma_{\rho v \mu_{1} \mu_{2} \cdots \mu_{n}}^{\sigma q}=\left(\frac{i}{2}\right)^{n} \bar{q} \sigma_{\rho v} \overleftrightarrow{D}_{\mu_{1}} \cdots \overleftrightarrow{D}_{\mu_{n}} q-$ trace

Implementation on the Lattice

\rightarrow Interpolating field

$$
J_{\alpha}(\vec{p}, t)=\sum_{\vec{x}, a, b, c} e^{i \vec{p} \cdot \vec{x}} \epsilon^{a b c}\left[u_{a}^{T}\left(y_{1}, t\right) C \gamma_{5} d_{b}\left(y_{2}, t\right)\right] u_{c, \alpha}\left(y_{3}, t\right) \phi\left(y_{1}-x\right) \phi\left(y_{2}-x\right) \phi\left(y_{3}-x\right)
$$

- Three-point Green function

$$
\sum_{\alpha, \beta} \Gamma^{\alpha, \beta}\left\langle J\left(X_{\mathrm{snk}}\right) O\left(X_{\mathrm{int}}\right) J\left(X_{\mathrm{src}}\right)\right\rangle_{\alpha, \beta}
$$

* Contractions: u insertion, connected

Implementation on the Lattice

\rightarrow Interpolating field

$$
J_{\alpha}(\vec{p}, t)=\sum_{\vec{x}, a, b, c} e^{i \vec{p} \cdot \vec{x}} \epsilon^{a b c}\left[u_{a}^{T}\left(y_{1}, t\right) C \gamma_{5} d_{b}\left(y_{2}, t\right)\right] u_{c, \alpha}\left(y_{3}, t\right) \phi\left(y_{1}-x\right) \phi\left(y_{2}-x\right) \phi\left(y_{3}-x\right)
$$

- Three-point Green function

$$
\sum_{\alpha, \beta} \Gamma^{\alpha, \beta}\left\langle J\left(X_{\text {snk }}\right) O\left(X_{\text {int }}\right) J\left(X_{\text {src }}\right)\right\rangle_{\alpha, \beta}
$$

\star Contractions: u insertion, disconnected

Implementation on the Lattice

\rightarrow Interpolating field

$$
J_{\alpha}(\vec{p}, t)=\sum_{\vec{x}, a, b, c} e^{i \vec{p} \cdot \vec{x}} \epsilon^{a b c}\left[u_{a}^{T}\left(y_{1}, t\right) C \gamma_{5} d_{b}\left(y_{2}, t\right)\right] u_{c, \alpha}\left(y_{3}, t\right) \phi\left(y_{1}-x\right) \phi\left(y_{2}-x\right) \phi\left(y_{3}-x\right)
$$

- Three-point Green function

$$
\sum_{\alpha, \beta} \Gamma^{\alpha, \beta}\left\langle J\left(X_{\text {snk }}\right) O\left(X_{\text {int }}\right) J\left(X_{\text {src }}\right)\right\rangle_{\alpha, \beta}
$$

\star Contractions: d insertion, connected

Implementation on the Lattice

\rightarrow Interpolating field

$$
J_{\alpha}(\vec{p}, t)=\sum_{\vec{x}, a, b, c} e^{i \vec{p} \cdot \vec{x}} \epsilon^{a b c}\left[u_{a}^{T}\left(y_{1}, t\right) C \gamma_{5} d_{b}\left(y_{2}, t\right)\right] u_{c, \alpha}\left(y_{3}, t\right) \phi\left(y_{1}-x\right) \phi\left(y_{2}-x\right) \phi\left(y_{3}-x\right)
$$

- Three-point Green function

$$
\sum_{\alpha, \beta} \Gamma^{\alpha, \beta}\left\langle J\left(X_{\text {snk }}\right) O\left(X_{\text {int }}\right) J\left(X_{\mathrm{src}}\right)\right\rangle_{\alpha, \beta}
$$

\rightarrow Contractions: d insertion, disconnected

Isospin Quantities

- Disconnected contractions are noisy; mostly ignored

\rightarrow Calculate isospin quantity where disconnected contribution cancelled
* Use ratios to cancel out the unwanted factors
$\frac{\Gamma_{\mu, G G}^{B B}\left(t_{i}, t, t_{f}, \vec{p}_{i}, \vec{p}_{f} ; T\right)}{\Gamma_{G G}^{B B}\left(t_{i}, t_{f}, \vec{p}_{f} ; T\right)} \sqrt{\frac{\Gamma_{P G}^{B B}\left(t, t_{f}, \bar{p}\right.}{\Gamma_{P G}^{B B}\left(t, t_{f}, \bar{p}\right.}} \sqrt{\frac{\Gamma_{G G}^{B B}\left(t_{i}, t, \vec{p}_{f} ; T\right)}{\Gamma_{G G}^{B B}\left(t_{i}, t, \vec{p}_{i} ; T\right)}} \sqrt{\frac{\Gamma_{P G}^{B B}\left(t_{i}, t_{f}, \vec{p}_{f} ; T\right)}{\Gamma_{P G}^{B B}\left(t_{i}, t_{f}, \vec{p}_{i} ; T\right)}}$

Plateaux

\rightarrow Example: 2f DWF, $M_{\pi} \sim 700 \mathrm{MeV}, a \sim 0.12 \mathrm{fm}, L \sim 2 \mathrm{fm}$

Nucleon Structure Functions

List of operators: lowest moments only
$\langle x\rangle_{q} \quad\langle x\rangle_{\Delta q}$
momentum fraction
helicity distribution

$$
\begin{aligned}
& \mathcal{P}_{44}^{q-1}=\gamma_{4} p_{4}-\frac{1}{3} \sum_{i=1,3} \gamma_{i} p_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{P}_{34}^{5 q^{-1}}=i \gamma_{5}\left(\gamma_{3} p_{4}+\gamma_{4} p_{3}\right) \\
& \mathcal{O}_{34}^{\sigma q}=\bar{q} \gamma_{5} \sigma_{34} q
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{P}_{34}^{\sigma q-1}=\gamma_{5} \sigma_{34} \\
& \mathcal{O}^{5} q_{[34]}=i \bar{q} \gamma_{5}\left[{ }_{6}\left[{ }_{3} \overleftrightarrow{D}_{4}-\gamma_{4} \overleftrightarrow{D}_{3}\right] q\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{P}_{[34]}^{5 q-1}=i \gamma_{5}\left(\gamma_{3} p_{4}-\gamma_{4} p_{3}\right)
\end{aligned}
$$

Nucleon Structure Functions

\rightarrow Chiral extrapolation formulae for each quantity
Chen et al., Nucl.Phys. A707, 452 (2002); Phys. Lett. B523, 107 (2001)
W. Detmold et al., Phys. Rev. D66, 054501 (2002); Phys. Rev. Lett. 87, 172001 (2001)

$$
\begin{aligned}
\langle x\rangle_{u-d} & =C\left[1-\frac{3 g_{A}^{2}+1}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right] & \langle x\rangle_{\Delta u-\Delta d} & =\tilde{C}\left[1-\frac{2 g_{A}^{2}+1}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right] \\
& +e\left(\mu^{2}\right) \frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} & & +\tilde{e}\left(\mu^{2}\right) \frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} .
\end{aligned}
$$

$$
\begin{gathered}
\langle x\rangle_{\delta u-\delta d}=\tilde{C}^{\prime}\left[1-\frac{4 g_{A}^{2}+1}{2\left(4 \pi f_{\pi}^{2}\right)^{2}} m_{\pi}^{2} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right] \\
+\tilde{e}^{\prime}\left(\mu^{2}\right) \frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}
\end{gathered}
$$

\rightarrow Renormalization

- Analytically: Lattice perturbation theory
* Numerically: RI/MOM-scheme nonperturbative renormalization

Nucleon Structure Functions

\rightarrow Example: 2+1 DWF, $M_{\pi} \sim 320-620 \mathrm{MeV}, a \sim 0.12 \mathrm{fm}, L \sim 3 \mathrm{fm}$
\rightarrow Chiral extrapolations: lowest moments only

Nucleon Structure Functions

\rightarrow World data: the first moment of the momentum fraction

HWL et al., 0802.0863[hep-lat]; M. Guertler et al., PoS(LAT2006)107;
D. Pleiter et al., PoS(LAT2006)120; K. Orginos et al., Phys.Rev.D73:094507, 2005;
D. Renner et al., PoS(LAT2006)121; D. Dolgov et al., Phys. Rev. D66, 034506 (2002)

Nucleon Structure Functions

\rightarrow World data: the first moment of the helicity distribution

HWL et al., 0802.0863[hep-lat]; M. Guertler et al., PoS(LAT2006)107;
D. Pleiter et al., PoS(LAT2006)120; K. Orginos et al., Phys.Rev.D73:094507, 2005;
D. Renner et al., PoS(LAT2006)121; D. Dolgov et al., Phys. Rev. D66, 034506 (2002)

Nucleon Structure Functions

\rightarrow World data: zeroth moment of the transversity

HWL et al., 0802.0863[hep-lat]; M. Guertler et al., PoS(LAT2006)107;
D. Pleiter et al., PoS(LAT2006)120 ; K. Orginos et al., Phys.Rev.D73:094507, 2005;
D. Renner et al., PoS(LAT2006)121; D. Dolgov et al., Phys. Rev. D66, 034506 (2002)

Nucleon Structure Functions: Higher moments

\rightarrow Example:
unpolarized moments
D. Dolgov et al., Phys. Rev. D66, 034506 (2002)

- Symbols:
\rightarrow Diamonds: Of LHPC-SESAM
Triangles: Of QCDSF
Squares: 2f LHPC-SESAM
$\rightarrow n \geq 4$: mixings with lower-dimension operators

