

Nucleon Physics from Lattice QCD (1)

Huey-Wen Lin Jefferson Lab Thomas Jefferson National Accelerator Facility

23rd Annual Hampton University Graduate Studies Program 2008 June 06

Outline

Lecture #1

Lattice QCD overview

Background, actions, observables

Baryon spectroscopy

Group theory, operator design, spectroscopy results

Nucleon Structure Functions

Lecture #2

- Axial charge couplings and form factors
- Generalized Parton Distributions (GPDs)
- Strangeness in the nucleon

Lattice 101

Book (if you have to pick just one)

 Degrand and De Tar
 Lattice Methods for Quantum Chromodynamics (World Scientific, 2006)

arXiv article

Gupta "Introduction to Lattice QCD" arXiv:hep-lat/9807028

Lattice QCD

Lattice QCD is a discrete version of continuum QCD theory Lec. by Mike Peardon $\psi(x+\mu)$ $U_u(x)$ $\psi(x)$ Physical observables are calculated from the path integral

 $\langle 0|O(\overline{\psi},\psi,A)|0\rangle = \frac{1}{Z} \int [dA][d\overline{\psi}][d\psi] O(\overline{\psi},\psi,A) e^{i\int d^4x \mathcal{L}^{\mathsf{QCD}}(\overline{\psi},\psi,A)}$

Lattice QCD

- Physical observables are calculated from the path integral $\langle 0|O(\overline{\psi},\psi,A)|0\rangle = \frac{1}{Z} \int [dA][d\overline{\psi}][d\psi] O(\overline{\psi},\psi,A) e^{i\int d^4x \mathcal{L}^{QCD}(\overline{\psi},\psi,A)}$
- Use Monte Carlo integration combined with the
 "importance sampling" technique to calculate the path integral.
 Simple example:

Take $a \to 0$ and $V \to \infty$ in the continuum limit

Lattice Gauge Actions

General form for improvement up to $O(a^2)$

$$S_g = \frac{\beta}{3} \operatorname{ReTr} \left(c_0 \left\langle \mathbb{1} - \prod \right\rangle \right) + c_2 \left\langle \mathbb{1} - \prod \right\rangle \right)$$

- Commonly used:
 - 🔷 Wilson
 - 🔷 Iwasaki
 - Symanzik-improved
 - doubly blocked Wilson 2 (DBW2)
- Most gauge actions used today are $O(a^2)$ improved
- Small discretization effects ($\sim O(\Lambda_{QCD}^3 a^3)$) due to gauge choices
- Most fermion actions are only O(a) improved $(O(\Lambda_{QCD}^2 a^2))$

Lattice Fermion Actions

(Improved) Staggered fermions (asqtad):

- Relatively cheap for dynamical fermions (good)
- Mixing among parities and flavors or "tastes"
- Baryonic operators a nightmare not suitable

Wilson/Clover action:

Moderate cost; explicit chiral symmetry breaking

• Twisted Wilson action:

Moderate cost; isospin mixing

Lattice Fermion Actions

(Improved) Staggered fermions (asqtad):

- Relatively cheap for dynamical fermions (good)
- Mixing among parities and flavors or "tastes"
- Baryonic operators a nightmare not suitable

Wilson/Clover action:

Moderate cost; explicit chiral symmetry breaking

• Twisted Wilson action:

Moderate cost; isospin mixing

Chiral fermions

- Domain-Wall/Overlap
- Automatically O(a) improved, good for spin physics and weak matrix elements

• Expensive
$$D_{x,s;x',s'} = \delta_{x,x'}D_{s,s'}^{\perp} + \delta_{s,s'}D_{x,x'}^{\parallel}$$

$$D_{s,s'}^{\perp} = rac{1}{2} [(1-\gamma_5)\delta_{s+1,s'} + (1+\gamma_5)\delta_{s-1,s'} - 2\delta_{s,s'}] \ - rac{m_f}{2} [(1-\gamma_5)\delta_{s,L_s-1}\delta_{0,s'} + (1+\gamma_5)\delta_{s,0}\delta_{L_s-1,s'}],$$

 $\psi(x, s)$

Lattice Fermion Actions

Mixed Action

- Staggered sea (cheap) with domain-wall valence (chiral)
- Match the sea Goldstone pion mass to the DWF pion
- Only mixes with the "scalar" taste of sea pion

Anisotropic Wilson/Clover

- Wilson/Clover fermions with broken space/time symmetry
- Lattice spacing $a_t < a_{x,y,z}$
- Complicated but useful for excited-state physics

More details in Mike Peardon's Lecture

Computational Requirement

- A wide variety of first-principles QCD calculations can be done: In 1970, Wilson started off by writing down the first actions
- Progress is limited by computational resources
 - But assisted by advances in algorithms
- Computer power available for gaming in 1980's:

Poor Man's QCD: Quenched Approximation

Full QCD:
$$\langle O \rangle = \frac{1}{Z} \int [dU] [d\psi] [d\overline{\psi}] e^{-S_F(U,\psi,\overline{\psi}) - S_G(U)} O(U,\psi,\overline{\psi})$$

$$= \frac{1}{Z} \int [dU] \det M e^{-S_G(U)} O(U)$$

Quenched: Take det M =constant.

"Almost extinct" in recent work

- Bad: Uncontrollable systematic error
- Good? Cheap exploratory studies to develop new methods

Computational Requirements

- A wide variety of first-principles QCD calculations can be done: In 1970, Wilson started off by writing down the first actions
- Progress is limited by computational resources
 - But assisted by advances in algorithms
- Computer power available today:

Computational Requirements

2007: The 13 Tflops cluster at Jefferson Lab

Other joint lattice resources within the US: Fermilab, BNL Non-lattice resources open to USQCD: ORNL, LLNL, ANL

Computational Requirements

- Gauge generation estimate with latest algorithms scales like Cost factor: a^{-6} , L^5 , M_{π}^{-3}
- Chiral domain-wall fermions (DWF) at large volume (6 fm) at physical pion mass may be expected in 2011
- But for now....
 - need a pion mass extrapolation $M_{\pi} \rightarrow (M_{\pi})_{\text{phys}}$ (use chiral perturbation theory, if available)

Systematic Errors

Currently, not at the physical pion-mass point XPT uncertainty (parameters used in XPT, etc.)

Finite lattice spacing

- Exact: Do multiple lattice-spacing calculations and extrapolate to a = 0
- Otherwise, estimate according to the level of improvement for the gluon and fermion action and operators

Finite-volume effect

- Exact: Do multiple volume calculations and extrapolate to $V = \infty$
- Otherwise, estimate according to previous work
- Or apply finite-volume XPT to try to correct FVE

Other Systematics

For example: if fitting is involved, what is the dependence on the fit range?

Baryon Resonances

Spectroscopy on Lattice

Calculate two-point Green function

$$\begin{array}{ll} \langle O \rangle &=& \frac{1}{Z} \int [dU] [d\psi] [d\overline{\psi}] e^{-S_F(U,\psi,\overline{\psi}) - S_G(U)} O(U,\psi,\overline{\psi}) \\ &=& \frac{1}{Z} \int [dU] \det M e^{-S_G(U)} O(U) \end{array}$$

- > Spin projection
 - $\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) J(X_{\rm src}) \rangle_{\alpha,\beta}$

Momentum projection

Two-point correlator

$$\Gamma_{AB}^{(2),T}(t;\vec{p}) = \sum_{n} \frac{E_n + M_n}{2E_n} Z_{n,A} Z_{n,B} e^{-E_n(\vec{P})t} \mathbf{Exp decay}$$

At large enough *t*, the ground-state signal dominates

Why Baryons?

Lattice QCD spectrum

Successfully calculates many ground states (Nature, ...)

HPQCD

Why Baryons?

Lattice QCD spectrum

- Successfully calculates many ground states (Nature, ...)
- Nucleon spectrum, on the other hand... not quite

Example: **Quenched** N, P_{11}, S_{11}

 Systematic errors not included:
 Finite volume and lattice spacing; possible higher excited-state contamination

Strange Baryons

- Strange baryons are of special interest; challenging even to experiment
- Example from PDG Live:

E BARYONS (S = -2, / = 1/2)								
$\Xi^0 = u s s, \Xi^- = d s s$								
≡ ⁰	1/2(1/2 ⁺) ****	<i>Ξ</i> (1820) <i>D</i> ₁₃	1/2(3/2 ⁻) ***	<i>Ξ</i> (2370)	1/2(? [?]) •**			
<u>=</u> -	1/2(1/2 ⁺) ****	<i>Ξ</i> (1950)	1/2(? [?]) ***	<i>Ξ</i> (2500)	1/2(? [?]) •*			
<i>Ξ</i> (1530) <i>Ρ</i> ₁₃	1/2(3/2 ⁺) ****	<i>Ξ</i> (2030)	1/2(≥ ⁵ / ₂ ?) ***					
<i>Ξ</i> (1620)	1/2(? [?]) •*	<i>Ξ</i> (2120)	1/2(??) •*	• — OMITTED	FROM SUMMARY			
<i>Ξ</i> (1690)	1/2(? [?]) ***	<i>Ξ</i> (2250)	1/2(? [?]) •**					

Ω BARYONS (S = - 3, / = 0)							
		$\Omega^- = s s s$					
Ω_	0(3/2 ⁺) ****						
<u>Ω(2250)</u> ⁻	0(? [?]) ***						
Ω(2380) ⁻	•**						
<u>Ω(2470)</u> ⁻	**						

All baryon spin states wanted: *j* = 1/2, 3/2, 5/2, ...
 Rotation symmetry is reduced due to discretization rotation SO(3) ⇒ octahedral O_h group

	Ι	J	6 C4	8 C6	8 C3	6 C ₈	6 C'g	12 C′ ₄
A_1	1	1	1	1	1	1	1	1
A_2	1	3	-2	1	0	-1	1	0
Е	2	1	1	1	-1	-1	-1	0
G_1	2	0	1	-1	1	- 2	1	0
G_2	2	-4	0	1	0	0	1	-1
T_1	З	2	0	0	1	1	-1	-1
T_2	3	3	0	-1	-1	1	1	0
н	4	- 3	-1	0	0	0	-1	1

All baryon spin states wanted: *j* = 1/2, 3/2, 5/2, …
 Rotation symmetry is reduced due to discretization rotation SO(3) ⇒ octahedral O_h group

	I	J	6 C4	8 C6	8 C3	6 C ₉	6 C' ₈	$12 C_4'$	$6 C_4(1)$
A_1	1	1	1	1	1	1	1	1	
\mathtt{A}_2	1	З	-2	1	0	-1	1	0	
Ε	2	1	1	1	-1	-1	-1	0	
G_1	2	0	1	-1	1	-2	1	0	
G_2	2	- 4	0	1	0	0	1	-1	
T_1	З	2	0	0	1	1	-1	-1	
T_2	З	3	0	-1	-1	1	1	0	
Η	4	- 3	-1	0	0	0	-1	1	
									-2 -1
									0 1
									2

All baryon spin states wanted: j = 1/2, 3/2, 5/2, ...
 Rotation symmetry is reduced due to discretization rotation SO(3) ⇒ octahedral O_h group

All baryon spin states wanted: *j* = 1/2, 3/2, 5/2, ...
 Rotation symmetry is reduced due to discretization rotation SO(3) ⇒ octahedral O_h group ____j

		Ι	J	$6 C_4$	8 C6	8 C3	6 Cg	6 C'g	$12 C'_4$
	A_1	1	1	1	1	1	1	1	1
	\mathtt{A}_2	1	3	-2	1	0	-1	1	0
	Е	2	1	1	1	-1	-1	-1	0
	G_1	2	0	1	-1	1	-2	1	0
	\mathbf{G}_{2}	2	- 4	0	1	0	0	1	-1
1	T_1	3	2	0	0	1	1	-1	-1
	T_2	3	3	0	-1	-1	1	1	0
	Н	4	- 3	-1	0	0	0	-1	1

Baryons

j	Irreps
$\frac{1}{2}$	G ₁
$\frac{3}{2}$	Н
$\frac{5}{2}$	$\mathbf{G}_2 \oplus \mathbf{H}$
$\frac{7}{2}$	$G_1 \oplus G_2 \oplus H$
$\frac{9}{2}$	$G_1\oplus 2\mathrm{H}$
$\frac{11}{2}$	$G_1\oplus G_2\oplus 2\mathrm{H}$
$\frac{13}{2}$	$G_1 \oplus 2 \ G_2 \oplus 2 \ H$
$\frac{15}{2}$	$G_1\oplus G_2\oplus 3~\mathrm{H}$
$\frac{17}{2}$	$2\ G_1\oplus G_2\oplus 3\ H$
$\frac{19}{2}$	$2 \operatorname{G}_1 \oplus 2 \operatorname{G}_2 \oplus 3 \operatorname{H}$
$\frac{21}{2}$	$G_1 \oplus 2 \ G_2 \oplus 4 \ H$
$\frac{23}{2}$	$2G_1\oplus 2G_2\oplus 4H$

Classify states according to symmetry properties Projection onto irreducible representations of finite groups

Number of operator

N^+ Operator type	G_{1g}	H_{g}	G_{2g}
Single-Site	3	1	0
Singly-Displaced	24	32	8
Doubly-Displaced-I	24	32	8
${\rm Doubly-Displaced-L}$	64	128	64
Triply-Displaced-T	64	128	64
Total	179	321	144

S. Basak et al., Phys. Rev. D72, 094506 (2005)

Variational Method

Construct the correlator matrix

$$C^{m,n}_{\Lambda}(t) = \sum_{\vec{x}} \sum_{\lambda} \langle 0 \mid B^{\Lambda,m}_{\lambda}(\vec{x},t) \bar{B}^{\Lambda,n}_{\lambda}(0) \mid 0 \rangle$$

Construct the matrix

 $C_{i j}(t) = \langle 0 \mid \mathcal{O}_i(t)^{\dagger} \mathcal{O}_j(0) \mid 0 \rangle$

Solve for the generalized eigensystem of

 $C(t)\psi = \lambda(t,t_0)C(t_0)\psi$

with eigenvalues

$$\lambda_n(t, t_0) = e^{-(t-t_0)E_n} (1 + \mathcal{O}(e^{-|\delta E|(t-t_0)}))$$

C. Michael, Nucl. Phys. B 259, 58 (1985) M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)

At large *t*, the signal of the desired state dominates.

$N_f = 0$ Study: Nucleon

Examples of a N_f = 2+1 study
 Isotropic mixed action: DWF on staggered sea,
 M_π ~ 300–750 MeV, L ~ 2.5 fm
 Number of operator:

Flavor	$G_{1g/u}(2)$	$H_{g/u}(4)$
N	3	1
Δ	1	2
Λ	4	1
\sum	4	3
[I]	4	3
Ω	1	2

Naïve chiral extrapolation

 $\begin{array}{c|c} j & Irreps \\ \hline \frac{1}{2} & G_1 \\ \hline \frac{3}{2} & H \\ \hline 5 & G_2 \oplus H \\ \hline \end{array}$

This calculation:

Three quarks in a baryon located at a single site

2+1-flavor mixed action

• SU(3) flavor symmetry breaking

Gell-Mann-Okubo relation

$$\Delta_{GMO} = \frac{3}{4}M_{\Lambda} + \frac{1}{4}M_{\Sigma} - \frac{1}{2}M_{N} - \frac{1}{2}M_{\Xi}$$

Mass differences are close to experimental numbers

2+1-flavor mixed action

SU(3) flavor symmetry breaking Gell-Mann-Okubo relation $\Delta_{GMO} = \frac{3}{4}M_{\Lambda} + \frac{1}{4}M_{\Sigma} - \frac{1}{2}M_{N} - \frac{1}{2}M_{\Xi}$ **Decuplet Equal-Spacing Relation** $\Delta_{DESII} = \frac{1}{2}(M_{\Sigma^*} - M_{\Delta}) + \frac{1}{2}(M_{\Omega} - M_{\Xi^*}) - M_{\Xi^*} + M_{\Sigma^*}$ Mass differences are close to experimental numbers 0.15 0.02 0.10 0.01 Ŷ∳ 0.05 ∆_{DSEII} (GeV) AgMo (GeV) -0.05 -0.01-0.10-0.02-0.1510 15 5 10 15 200 20 M_{π}^2 / f_{π}^2 M_{π}^2 / f_{π}^2

Huey-Wen Lin — 23rd HUGS

Huey-Wen Lin — 23rd HUGS

Huey-Wen Lin — 23rd HUGS

Roper in Full QCD

Prove or disprove Roper as the first radial excited state of nucleon?

Roper in Full QCD

- Not a crazy possibility (see the hand-drawn extrapolation lines)
- Stay tuned on future $N_f = 2+1$ lattice calculations

Nucleon Structure

Deep Inelastic Scattering

Moments of Structure Functions

- No light-cone operator directly calculated on the lattice Operator product expansion $2\int dx \, x^n g_1(x, Q^2) = \sum_{q=u,d} e_{1,n}^{(q)}(\mu^2/Q^2, g(\mu)) \langle x^n \rangle_{\Delta q}$ Polarized $2\int dx \, x^n g_2(x,Q^2) = \frac{n}{(n+1)} \sum_{q=u,d} \left[2e_{2,n}^{(q)}(\mu^2/Q^2,g(\mu)) d_n^q(\mu) \right]$ + $e_{1,n}^{(q)}(\mu^2/Q^2, g(\mu))\langle x^n\rangle_{\Delta q}$ Unpolarized $2\int dx \, x^{n-1} F_1(x, Q^2) = \sum_{q=u,d} c_{1,n}^{(q)}(\mu^2/Q^2, g(\mu)) \langle x^n \rangle_q$ $\int dx \, x^{n-2} F_2(x, Q^2) = \sum c_{2,n}^{(q)} (\mu^2/Q^2, g(\mu)) \langle x^n \rangle_q$
- ♦ e₁, e₂, c₁, c₂ are Wilson coefficients
 ♦ $\langle x^n \rangle_q$, $\langle x^n \rangle_{\Delta} q$, d_n are the forward nucleon matrix elements

Matrix element (P,S | O | P,S)
Unpolarized

$$\mathscr{O}^{q}_{\mu_{1}\mu_{2}\cdots\mu_{n}}=\left(\frac{i}{2}\right)^{n-1}\bar{q}\gamma_{\mu_{1}}\stackrel{\leftrightarrow}{D}_{\mu_{2}}\cdots\stackrel{\leftrightarrow}{D}_{\mu_{n}}q-trace$$

Polarized

$$\mathscr{O}_{\sigma\mu_{1}\mu_{2}\cdots\mu_{n}}^{5q} = \left(\frac{i}{2}\right)^{n-1} \bar{q} \gamma_{\sigma} \gamma_{5} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}} q - trace$$

Transversity

$$\mathscr{O}_{\rho\nu\mu_{1}\mu_{2}\cdots\mu_{n}}^{\sigma q} = \left(\frac{i}{2}\right)^{n} \bar{q} \sigma_{\rho\nu} \stackrel{\leftrightarrow}{D}_{\mu_{1}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}} q - trace$$

$$\frac{\langle x^n \rangle_{\Delta q}}{\langle x^n \rangle_{\delta q}}$$

 $\rightarrow + \rightarrow \langle x^n \rangle_q$

Interpolating field

 $J_{\alpha}\left(\vec{p},t\right) = \sum_{\vec{x},a,b,c} e^{i\vec{p}\cdot\vec{x}} \epsilon^{abc} \left[u_{a}^{T}(y_{1},t)C\gamma_{5}d_{b}(y_{2},t) \right] u_{c,\alpha}(y_{3},t)\phi(y_{1}-x)\phi(y_{2}-x)\phi(y_{3}-x)$

- Three-point Green function
 - $\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) O(X_{\rm int}) J(X_{\rm src}) \rangle_{\alpha,\beta}$

Contractions: *u* insertion, connected

Interpolating field

 $J_{\alpha}\left(\vec{p},t\right) = \sum_{\vec{x},a,b,c} e^{i\vec{p}\cdot\vec{x}} \epsilon^{abc} \left[u_{a}^{T}(y_{1},t)C\gamma_{5}d_{b}(y_{2},t) \right] u_{c,\alpha}(y_{3},t)\phi(y_{1}-x)\phi(y_{2}-x)\phi(y_{3}-x)$

- Three-point Green function
 - $\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) O(X_{\rm int}) J(X_{\rm src}) \rangle_{\alpha,\beta}$

Contractions: *u* insertion, *disconnected*

Interpolating field

 $J_{\alpha}\left(\vec{p},t\right) = \sum_{\vec{x},a,b,c} e^{i\vec{p}\cdot\vec{x}} \epsilon^{abc} \left[u_{a}^{T}(y_{1},t)C\gamma_{5}d_{b}(y_{2},t) \right] u_{c,\alpha}(y_{3},t)\phi(y_{1}-x)\phi(y_{2}-x)\phi(y_{3}-x)$

Three-point Green function

 $\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) O(X_{\rm int}) J(X_{\rm src}) \rangle_{\alpha,\beta}$

Contractions: *d* insertion, connected

Interpolating field

 $J_{\alpha}\left(\vec{p},t\right) = \sum_{\vec{x},a,b,c} e^{i\vec{p}\cdot\vec{x}} \epsilon^{abc} \left[u_{a}^{T}(y_{1},t)C\gamma_{5}d_{b}(y_{2},t) \right] u_{c,\alpha}(y_{3},t)\phi(y_{1}-x)\phi(y_{2}-x)\phi(y_{3}-x)$

- Three-point Green function
 - $\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) O(X_{\rm int}) J(X_{\rm src}) \rangle_{\alpha,\beta}$

Contractions: *d* insertion, *disconnected*

Isospin Quantities

Disconnected contractions are noisy; mostly ignored

- Calculate isospin quantity where disconnected contribution cancelled
- Use ratios to cancel out the unwanted factors

 $\frac{\Gamma^{BB}_{\mu,GG}(t_i,t,t_f,\overrightarrow{p}_i,\overrightarrow{p}_f;T)}{\Gamma^{BB}_{GG}(t_i,t_f,\overrightarrow{p}_f;T)}\sqrt{\frac{\Gamma^{BB}_{PG}(t,t_f,\overrightarrow{p}_f;T)}{\Gamma^{BB}_{PG}(t,t_f,\overrightarrow{p}_i;T)}}\sqrt{\frac{\Gamma^{BB}_{PG}(t,t_f,\overrightarrow{p}_f;T)}{\Gamma^{BB}_{PG}(t_i,t_f,\overrightarrow{p}_i;T)}}\sqrt{\frac{\Gamma^{BB}_{PG}(t_i,t_f,\overrightarrow{p}_f;T)}{\Gamma^{BB}_{PG}(t_i,t_f,\overrightarrow{p}_i;T)}}$

Plateaux

Huey-Wen Lin — 23rd HUGS

List of operators: lowest moments only

Chiral extrapolation formulae for each quantity

Chen et al., Nucl.Phys. A707, 452 (2002); Phys. Lett. B523, 107 (2001) W. Detmold et al., Phys. Rev. D66, 054501 (2002); Phys. Rev. Lett. 87, 172001 (2001)

$$\begin{aligned} \langle x \rangle_{\delta u - \delta d} &= \tilde{C}' \left[1 - \frac{4g_A^2 + 1}{2(4\pi f_\pi)^2} m_\pi^2 \ln\left(\frac{m_\pi^2}{\mu^2}\right) \right] \\ &+ \tilde{e}'(\mu^2) \frac{m_\pi^2}{(4\pi f_\pi)^2} \end{aligned}$$
 Linear ansatz

Renormalization

- Analytically: Lattice perturbation theory
- Numerically: RI/MOM-scheme nonperturbative renormalization

- Example: 2+1 DWF, $M_{\pi} \sim 320-620$ MeV, $a \sim 0.12$ fm, $L \sim 3$ fm
- Chiral extrapolations: lowest moments only

World data: the first moment of the momentum fraction

HWL et al., 0802.0863[hep-lat]; M. Guertler et al., PoS(LAT2006)107;
D. Pleiter et al., PoS(LAT2006)120 ; K. Orginos et al., Phys.Rev.D73:094507, 2005;
D. Renner et al., PoS(LAT2006)121; D. Dolgov et al., Phys. Rev. D66, 034506 (2002)

World data: the first moment of the helicity distribution

HWL et al., 0802.0863[hep-lat]; M. Guertler et al., PoS(LAT2006)107;
D. Pleiter et al., PoS(LAT2006)120 ; K. Orginos et al., Phys.Rev.D73:094507, 2005;
D. Renner et al., PoS(LAT2006)121; D. Dolgov et al., Phys. Rev. D66, 034506 (2002)

World data: zeroth moment of the transversity

HWL et al., 0802.0863[hep-lat]; M. Guertler et al., PoS(LAT2006)107;

D. Pleiter et al., PoS(LAT2006)120 ; K. Orginos et al., Phys.Rev.D73:094507, 2005;
D. Renner et al., PoS(LAT2006)121; D. Dolgov et al., Phys. Rev. D66, 034506 (2002)

Nucleon Structure Functions: Higher moments

 Example: unpolarized moments
 Dolgov et al., Phys. Rev. D66, 034506 (2002)

Symbols:

- Diamonds: 0f LHPC-SESAM
- Triangles: 0f QCDSF
- Squares: 2f LHPC-SESAM

