

Nucleon and Nucleon-Roper(?) Form Factors from Lattice QCD

Huey-Wen Lin

Hadron Electromagnetic Form Factors Workshop ECT, Trento, Italy May 13, 2008

Nucleon and Nucleon-Nucleon's-First-Radial-Excited-State Form Factors from Lattice QCD Huey-Wen Lin

Hadron Electromagnetic Form Factors Workshop ECT, Trento, Italy May 13, 2008

In collaboration with

Saul Cohen, Robert Edwards, and David Richards (JLab)

7n cluster @ JLab

Huey-Wen Lin — ECT Workshop, May 08

N-P₁₁ Form Factor

 Experiments at Jefferson Laboratory (CLAS), MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and Spring-8
 Helicity amplitudes are measured (in 10⁻³ GeV^{-1/2} units)
 Many models disagree (a selection are shown below)

In this work, we will consider the case when the Roper has overlap with the first radial excited state of the nucleon

Lattice QCD

Lattice QCD is a discrete version of continuum QCD theory

Lattice QCD

Lattice QCD is a discrete version of continuum QCD theory

Physical observables are calculated from the path integral
 ⟨0|O(ψ,ψ,A)|0⟩ = 1/Z ∫ [dA][dψ][dψ]O(ψ,ψ,A)e^{i∫d⁴x L^{QCD}(ψ,ψ,A)}
 Use Monte Carlo integration combined with the

"importance sampling" technique to calculate the path integral.

Take $a \to 0$ and $V \to \infty$ in the continuum limit

Lattice QCD

- ◆ Lattice QCD is computationally intensive $Cost \approx \left(\frac{L}{fm}\right)^5 L_s \left(\frac{MeV}{M_{\pi}}\right) \left(\frac{fm}{a}\right)^6 \left(C_0 + C_1 \left(\frac{fm}{a}\right) \left(\frac{MeV}{M_K}\right)^2 + C_2 \left(\frac{a}{fm}\right)^2 \left(\frac{MeV}{M_{\pi}}\right)^2\right)$ Norman Christ, LAT2007
 - Current major US 2+1-flavor gauge ensemble generation:
 - MILC: staggered, $a \sim 0.06$ fm, $L \sim 3$ fm, $M_{\pi} \sim 250$ MeV
 - ♦ RBC+UKQCD: DWF, $a \sim 0.09$ fm, $L \sim 3$ fm, $M_{\pi} < 300$ MeV
- Chiral domain-wall fermions (DWF) at large volume (6 fm) at physical pion mass <u>may</u> be expected in 2011
- But for now....
 - need a pion mass extrapolation $M_{\pi} \rightarrow (M_{\pi})_{\text{phys}}$ (use lattice/continuum chiral perturbation theory, if available)
- Soon be able to verify XPT directly in the chiral regime

Green Functions

Three-point function with interpolation operator J

$$C_{\text{3pt}}^{\Gamma,\mathcal{O}}\left(\overrightarrow{p},t,\tau\right) = \sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J_{\beta}\left(\overrightarrow{p},t\right) \mathcal{O}(\tau) \overline{J}_{\alpha}\left(\overrightarrow{p},0\right) \rangle$$

Two contraction categories:

- We use only the "connected" construction for this work
- Ongoing investigation into "disconnected" contribution
- Euclidean space: signal falls exponentially with time dominated by ground state at large enough time

Lattice Setup

Lattice Setup

Lattice Setup

Roper Resonance on the Lattice

• Mostly done in "quenched" approx. N, P_{11}, S_{11} spectrum

	Group	$N_{\mathbf{f}}$	$S_{\mathbf{f}}$	$a_t^{-1}~({\rm GeV})$	M_{π} (GeV)	$L~({\rm fm})$	Method	Extrapolation
	Basak et al. $[12]$	0	Wilson	6.05	0.49	2.35	VM	N/A
╞	Burch et al. $[11]$	0	CIDO	1.68, 1.35	0.35 - 1.1	2.4	VM	$a + bm_{\pi}^2$
	Sasaki et al. [9]	0	Wilson	2.1	0.61 - 1.22	1.5, 3.0	MEM	$\sqrt{a+bm_{\pi}^2}$
	Guadagnoli et al. $[7]$	0	Clover $[13]$	2.55	0.51 – 1.08	1.85	SBBM	$a+bm_\pi^2+cm_\pi^4$
	Leinweber et al. $\left[8\right]$	0	FLIC	1.6	0.50 - 0.91	2.0	VM	N/A
	\blacktriangleright Mathur et al. [6]	0	Overlap [14]	1.0	0.18 – 0.87	2.4, 3.2	CCF	$a + bm_{\pi} + cm_{\pi}^2$

Huey-Wen Lin — ECT Workshop, May 08

Roper Resonance on the Lattice

• Mostly done in "quenched" approx. N, P_{11}, S_{11} spectrum

Questions

- Differences in analysis approach? (Need a unified analysis on all data!)
- Contamination by 2nd and higher excited states?
- How is the chiral extrapolation is performed? Does it really work or coincidence?

• Other systematics? Finite-volume effect, theory cut-off, N_f , etc.

Roper in Full QCD

Prove or disprove Roper as the first radial excited state of nucleon?

Roper in Full QCD

- Not a crazy possibility (see the hand-drawn extrapolation lines)
- Stay tuned on future $N_f = 2+1$ lattice calculations

Form Factors

The form factors are buried in the amplitudes

Nucleon form factor (n = n' = 0)

$$\langle N | V_{\mu} | N \rangle(q) = \overline{u}_N(p') \left[\gamma_{\mu} F_1(q^2) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{2m} \right] u_N(p) e^{-iq \cdot x}$$

Multiple works done using lattice QCD in the past

- easy cross-checks
- Clear of excited-state contamination
 - better systematics

Form Factors

The form factors are buried in the amplitudes

$$\Gamma_{\mu,AB}^{(3),T}(t_{i},t,t_{f},\vec{p}_{i},\vec{p}_{f}) = a^{3}\sum_{n}\sum_{n'}\frac{1}{Z_{j}}\frac{Z_{n',B}(p_{f})Z_{n,A}(p_{i})}{4E_{n}'(\vec{p}_{f})E_{n}(\vec{p}_{i})}e^{-(t-t_{i})E_{n}(\vec{p}_{i})}e^{-(t-t_{i})E_{n}(\vec{p}_{i})}$$

$$\sum_{s,s'}T_{\alpha\beta}u_{n'}(\vec{p}_{f},s')_{\beta}\langle N_{n'}(\vec{p}_{f},s') | j_{\mu}(0) | N_{n}(\vec{p}_{i},s)\rangle \overline{u}_{n}(\vec{p}_{i},s)_{\alpha}$$
Nucleon form factor $(n = n' = 0)$

$$\langle N | V_{\mu} | N \rangle (q) = \overline{u}_{N}(p') \left[\gamma_{\mu}F_{1}(q^{2}) + \sigma_{\mu\nu}q_{\nu}\frac{F_{2}(q^{2})}{2m} \right] u_{N}(p)e^{-iq\cdot x}$$
Nucleon-Roper form factor $(n = 0, n' = 1 \text{ or } n = 1, n' = 0)$

$$\langle N_2 \left| V_{\mu} \right| N_1 \rangle_{\mu}(q) = \overline{u}_{N_2}(p') \left[F_1(q^2) \left(\gamma_{\mu} - \frac{q_{\mu}}{q^2} \not{q} \right) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{M_{N_1} + M_{N_2}} \right] u_{N_1}(p) e^{-iq \cdot x}$$

Need as better input from two-point correlators as possible

Variational Method

Generalized eigenvalue problem:

[*C. Michael, Nucl. Phys. B 259, 58 (1985)*] [*M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)*]

Construct the matrix

 $C_{ij}(t) = \langle 0 \mid \mathcal{O}_i(t)^{\dagger} \mathcal{O}_j(0) \mid 0 \rangle$

Solve for the generalized eigensystem of

 $C(t_0)^{-1/2}C(t)C(t_0)^{-1/2}v = \lambda(t, t_0)v$

with eigenvalues

$$\lambda_n(t, t_0) = e^{-(t-t_0)E_n} (1 + \mathcal{O}(e^{-|\delta E|(t-t_0)}))$$

Now the original correlator matrix can be approximated by

$$C_{ij} = \sum_{n=1}^{r} (C(t_0)^{1/2} v_n^*)_i (v_n C(t_0)^{1/2})_j \lambda_n(t, t_0) = \sum_n \frac{E_n + m}{2E_n} Z_{i,n} Z_{j,n} e^{-E_n t}$$

Three smearings (*i*,*j*) are chosen for this work
 2nd excited state is contaminated by remaining states

Variational Method

Variational Method

 Eigenvectors (at p = 0) show overlap of smearings with states

Huey-Wen Lin — ECT Workshop, May 08

Three-Point Fitting

• Example: $P_f = \{0,0,0\}, P_i = \{0,1,1\}, V_4$

Nucleon Form Factors

Pion masses around 480, 720 and 1100 MeV
Isovector F_1 Isovector F_2

Nucleon Form Factors

Pion mass around 480, 720 and 1100 MeV
 Isovector F₁
 Isovector F₂

and SVD solutions

Nucleon-Roper Form Factors

Nucleon-Roper Form Factors

Add two more mass points at $m_{\pi} \sim 480$ and 1100 MeV **Proton-P**₁₁ Neutron-P₁₁

Need to remove the points with potential decay kinematics

May want to calculate on a second volume

Challenges for the Future

As one goes to lighter pion-mass regions...

Need more statistics to get sufficient single-to-noise ratio

Signal		$\langle J(t)J(0) angle$
Noise	_	$\frac{1}{\sqrt{N}}\sqrt{\langle J(t)J(0) ^2\rangle - \langle J(t)J(0)\rangle^2}$
	\sim	Ae^{-M_nt}
		$\frac{1}{\sqrt{N}}\sqrt{Be^{-3m_{\pi}t} - Ce^{-2M_{n}t}}$
	\sim	$\sqrt{N}De^{-(M_n-\frac{3}{2}m_\pi)t}$

Challenges for the Future

As one goes to lighter pion-mass regions...

- Need more statistics to get sufficient single-to-noise ratio
- Decay channels open up...
 - Conservative approach: using multiple volumes to identify single- and multiple-particle states
- Further improvement:
 - Symmetry breaking on the lattice
 - Construct more operators that would generate the same quantum numbers in a = 0 world
 - More data input
 - Better discrimination among different states

Lattice QCD calculations of $N-P_{11}$ form factors...

- We demonstrate a method to determine $N-N^*$ form factors
- ♦ Large Q^2 momentum *N*-*N* form factors
- Test case is in a small "quenched" box with large pion mass

Further along our roadmap...

- Starting full-QCD anisotropic lattice calculations this summer
- Search over low and larger Q^2 regions
- Other N-N* form factors. The methodology developed can be applied to many other excited-nucleon form factors.