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Lattice QCD 
Beyond Ground States

Huey-Wen Lin
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Outline

Motivation and background

Two-point Green function
Black box methods
Variational method

Three-point Green function
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Long-standing puzzle 
Quark-gluon (hybrid) state 
[C. Carlson et al. (1991)]
Five-quark (meson-baryon) state 
[O. Krehl et al. (1999)]
Constituent quark models (many 
different specific approaches)
and many other models…

Shopping list: full dynamical lattice QCD with proper  
extrapolation to (or calculation nearby) the physical pion mass

Example: Roper (P11) Spectrum

First positive-parity excited state of 
nucleon (discovered in 1964)
Unusual feature: 1st excited state is 
lower than its negative-parity 
partner! 
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Helicity amplitudes are measured (in 10−3 GeV−1/2 units)

Example: Roper Form Factor

Experiments at Jefferson Laboratory (CLAS), MIT-Bates, 
LEGS, Mainz, Bonn, GRAAL, and Spring-8
Great effort has been put in by phenomenologists; Many 
models disagree (a selection are shown below)
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EBAC

Excited Baryon Analysis Center (EBAC) 
“an international effort which incorporates researchers 

from institutes around the world” 
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Physical observables are calculated from the path integral

Lattice QCD is a discrete version of continuum QCD theory

Use Monte Carlo integration combined with the “importance 
sampling” technique to calculate the path integral.
Take a → 0 and V → ∞ in the continuum limit

Lattice QCD
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Lattice QCD: Observables

Two-point Green function
e.g. Spectroscopy

Three-point Green function
e.g. Form factors, Structure functions, …
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Lattice QCD: Observables

Two-point Green function
e.g. Spectroscopy

Three-point Green function
e.g. Form factors, Structure functions, …

After taking spin and momentum projection
(ignore the variety of boundary condition choices)

×FF’s×

Three-point correlator

Different states are mixed and the signal decays 
exponentially as a function of t

Two-point correlator
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Lattice QCD: Improvements

Obtain the ground state observables at large t, after the excited 
states die out: Need large time dimension
The lighter the particle is, the longer the t required
Smaller lattice spacing in time (anisotropic lattices)
Multiple smearing techniques to overlap with different states 

Example:

Hydrogen wavefunction
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Lattice QCD: Improvements

Obtain the ground state observables at large t, after the excited 
states die out: Need large time dimension
The lighter the particle is, the longer the t required
Smaller lattice spacing in time (anisotropic lattices)
Multiple smearing techniques to overlap with different states 

Example: 
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Only Interested in Ground State?

Larger t solution does not always work well with three-
point correlators
Example:
Quark helicity distribution

LHPC & SESAM
Phys. Rev. D 66, 034506 (2002)

50% increase in error 
budget at tsep = 14

Confronting the excited states might be a better solution than 
avoiding them.
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Probing Excited-State Signals

Lattice spectrum (two-point Green function) case
Black box method 
(modified correlator method)
Multiple correlator fits
Variational methods
Bayesian Methods
(as in G. Fleming’s and P. Petreczky’s talks)

Form factor (three-point Green function) case
Fit the amplitude
Modified variational method
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Black Box Methods

In the 3rd iteration of this workshop, 
G. T. Fleming (hep-lat/0403023) talked about “black box 
methods” used in NMR:

Similar to the lattice correlators, which have the general form

This forms a Vandermonde system

with
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Black Box Method: N-State Effective Mass

Given a single correlator (with sufficient length of t), one can, in 
principle, solve for multiple a’s and α’s

Can one solve N/2 states from one correlator of length N ?
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Black Box Methods: Effective Mass 

System dominated by ground state (K = 1) case, 

easy solution: α1 = yn+1/yn

Thus, “effective mass” Meff = ln(yn+1/yn)
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Black Box Methods: Effective Mass 

System dominated by ground state (K = 1) case, 

easy solution: α1 = yn+1/yn

Thus, “effective mass” Meff = ln(yn+1/yn)
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Black Box Methods: 1st Excited State 

Toy model: consider three 
states with masses 0.5, 1.0, 1.5 and 
with the same amplitude

Extracting two states (K = 2) case, 

which leads to a more complicated solution

noise= 10^-15
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Black Box Methods: 1st Excited State 

Toy model: consider three 
states with masses 0.5, 1.0, 1.5 and 
with the same amplitude

Extracting two states (K = 2) case, 

which leads to a more complicated solution
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Lattice Data 

“Quenched” study on 163×64 anisotropic lattice
Wilson gauge action + nonperturbative clover fermion 
action
at
−1 ≈ 6 GeV and as ≈ 0.125 fm

7 effective mass plots from 
Gaussian smeared-point

Real World: proton case



Huey-Wen Lin — 4th QCDNA @ Yale 20

Black Box Methods: 1st Excited State 
Real World: proton case
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Black Box Methods: 1st Excited State 
Real World: proton case

Cut
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Black Box Methods: 1st Excited State 
Real World: proton case
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Modified Correlator
[D. Gaudagnoli, Phys. Lett. B604, 74 (2004)]

Instead of using a direct solution, define a modified 
correlator as t = yt-1 yt+1 – yt

2 (= α1 × α2)

−ln( t+1/ t) = E1+ E2
Toy model: consider three states with masses 0.5, 1.0, 1.5 and 
with the same amplitude
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Modified Correlator
Real World: proton case
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N-State Masses vs Modified Correlator

[George T. Fleming, hep-lat/0403023]
N-state effective mass 
method

[D. Gaudagnoli, Phys. Lett. B604, 74 
(2004)]

Modified correlator method
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Black Box Methods: Recap

Different point of view from what we normally do in lattice 
calculations

Neat idea. Simple algebra excise gives us multiple states from 
single correlator. Great difficulty to achieve with least-square 
fits. 

How about 2nd excited state?

Limitation: Abel’s Impossibility Theorem
algebraic solutions are only possible for N ≤ 5
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Black Box Method: Linear Prediction
In collaboration with Saul D. Cohen

Consider a K-state system: 
Construct a polynomial 

with coefficients

We know that

Solving the system of equations

for ideal data
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Black Box Method: Linear Prediction
In collaboration with Saul D. Cohen

Consider a K-state system: 
Construct a polynomial 

with coefficients

We can make the linear prediction

Solving the system now gives

for real data (N ≥ 2M)
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Black Box Method: Linear Prediction

3-state results on the smallest Gaussian smeared-point 
correlator; using the minimal M:

In collaboration with Saul D. Cohen
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Black Box Method: Linear Prediction

Increase M. A higher-order polynomial means bad roots can be 
thrown out without affecting the K roots we want.

In collaboration with Saul D. Cohen
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Black Box Method: Linear Prediction

Still higher M…
In collaboration with Saul D. Cohen
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Black Box Method: Linear Prediction

As N becomes large compared to the total length, not many 
independent measurements can be made. 

In collaboration with Saul D. Cohen
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Black Box Method: Linear Prediction

These settings seem to be a happy medium.
In collaboration with Saul D. Cohen
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Black Box Method: Linear Prediction

Can we extract even higher energies?
In collaboration with Saul D. Cohen
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Black Box Method: Linear Prediction

Can we get better results if we’re only interested in the lowest
energies?

In collaboration with Saul D. Cohen
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Multiple Least-Squares Fit

With multiple smeared correlators, one minimizes the quantity 

to extract En.
Example: 

To extract n states, one at needs at least n “distinguished” input 
correlators
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Variational Method

Generalized eigenvalue problem:
[C. Michael, Nucl. Phys. B 259, 58 (1985)]

[M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)]

Construct the matrix

Solve for the generalized eigensystem of 

with eigenvalues

and the original correlator matrix can be approximated by 
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Variational Method

Example: 5×5 smeared-smeared correlator matrices
Solve eigensystem for individual λn
Fit them individually with exponential form (red bars)
Plotted along with effective masses
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Three-Point Correlators

The form factors are buried in the amplitudes

Brute force approach: multi-exponential fits to two-point correlators to 
extract overlap factors Z and energies E

Modified variational method approach: use the eigensystem solved 
from the two-pt correlator as inputs; works for the diagonal elements. 

Any special trick for the non-diagonal elements? 
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Summary

A lot of interesting physics involves excited states, but they’re 
difficult to handle.

NMR-inspired methods provide an interesting alternate point 
of view for looking at the lattice QCD spectroscopy

Remarkable! Multiple excited states can be extracted from a 
single correlator

Extends further to multiple correlators to be compatible with 
other approaches, such as variational method
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