Lattice QCD
 Beyond Ground States

Huey-Wen Lin

Outline

\rightarrow Motivation and background
\rightarrow Two-point Green function
\rightarrow Black box methods
-Variational method
*Three-point Green function

Example: Roper $\left(P_{11}\right)$ Spectrum

\rightarrow First positive-parity excited state of nucleon (discovered in 1964)
\rightarrow Unusual feature: $1^{\text {st }}$ excited state is lower than its negative-parity partner!
\rightarrow Long-standing puzzle
\rightarrow Quark-gluon (hybrid) state [C. Carlson et al. (1991)]
\rightarrow Five-quark (meson-baryon) state [O. Krehl et al. (1999)]

\rightarrow Constituent quark models (many different specific approaches)
\rightarrow and many other models...
\rightarrow Shopping list: full dynamical lattice QCD with proper extrapolation to (or calculation nearby) the physical pion mass

Example: Roper Form Factor

\rightarrow Experiments at Jefferson Laboratory (CLAS), MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and Spring-8
\rightarrow Great effort has been put in by phenomenologists; Many models disagree (a selection are shown below)

Helicity amplitudes are measured (in $10^{-3} \mathrm{GeV}^{-1 / 2}$ units)

EBAC

\rightarrow Excited Baryon Analysis Center (EBAC)
"an international effort which incorporates researchers from institutes around the world"

Lattice QCD

- Physical observables are calculated from the path integral
$\langle 0| O(\bar{\psi}, \psi, A)|0\rangle=\frac{1}{Z} \int[d A][\bar{\psi}][d \psi] O(\bar{\psi}, \psi, A) e^{i \int d^{4} x \mathcal{L}^{Q C D}(\bar{\psi}, \psi, A)}$
\rightarrow Lattice QCD is a discrete version of continuum QCD theory

\rightarrow Use Monte Carlo integration combined with the "importance sampling" technique to calculate the path integral.
\rightarrow Take $a \rightarrow 0$ and $V \rightarrow \infty$ in the continuum limit

Lattice QCD: Observables

\rightarrow Two-point Green function

e.g. Spectroscopy

$\sum_{\alpha, \beta} \Gamma^{\alpha, \beta}\left\langle J\left(X_{\mathrm{snk}}\right) J\left(X_{\mathrm{src}}\right)\right\rangle_{\alpha, \beta}$

Three-point Green function
e.g. Form factors, Structure functions, ...

$$
\sum_{\alpha, \beta} \Gamma^{\alpha, \beta}\left\langle J\left(X_{\mathrm{snk}}\right) O\left(X_{\mathrm{int}}\right) J\left(X_{\mathrm{src}}\right)\right\rangle_{\alpha, \beta}
$$

Lattice QCD: Observables

\rightarrow Two-point Green function e.g. Spectroscopy

$\sum_{\alpha, \beta} \Gamma^{\alpha, \beta}\left\langle J\left(X_{\text {snk }}\right) J\left(X_{\text {src }}\right)\right\rangle_{\alpha, \beta}$

Three-point Green function
e.g. Form factors. Structure functions, ...

$\sum_{\alpha, \beta} \Gamma^{\alpha, \beta}\left\langle J\left(X_{\text {snk }}\right) O\left(X_{\text {int }}\right) J\left(X_{\text {src }}\right)\right\rangle_{\alpha, \beta}$

After taking spin and momentum projection
(ignore the variety of boundary condition choices)
Two-point correlator
Three-point correlator

$$
\begin{aligned}
& \sum_{n} \sum_{n^{\prime}} Z_{n^{\prime}, B}\left(p_{f}\right) Z_{n, A}\left(p_{i}\right) \\
& \times \text { FF's× } \mathrm{X}^{-\left(t_{f}-t\right) E_{n}^{\prime}\left(\vec{p}_{f}\right)} e^{-\left(t-t_{i}\right) E_{n}\left(\vec{p}_{i}\right)}
\end{aligned}
$$

Different states are mixed and the signal decays exponentially as a function of t

Lattice QCD: Improvements

\rightarrow Obtain the ground state observables at large t, after the excited states die out: Need large time dimension
\rightarrow The lighter the particle is, the longer the t required
\rightarrow Smaller lattice spacing in time (anisotropic lattices)
\rightarrow Multiple smearing techniques to overlap with different states

Example:

Hydrogen wavefunction

Lattice QCD: Improvements

\rightarrow Obtain the ground state observables at large t, after the excited states die out: Need large time dimension
\rightarrow The lighter the particle is, the longer the t required
\rightarrow Smaller lattice spacing in time (anisotropic lattices)
\rightarrow Multiple smearing techniques to overlap with different states

$$
\psi^{s}(0)=\sum_{\vec{y}} F(\vec{y}, 0) \psi(\vec{y}, 0)
$$

\rightarrow Example:

Gaussian function

Only Interested in Ground State?

\rightarrow Larger t solution does not always work well with threepoint correlators
\rightarrow Example:
Quark helicity distribution LHPC \& SESAM

Phys. Rev.D 66, 034506 (2002)
50% increase in error budget at $t_{\text {sep }}=14$

\rightarrow Confronting the excited states might be a better solution than avoiding them.

Probing Excited-State Signals

\rightarrow Lattice spectrum (two-point Green function) case
\rightarrow Black box method
(modified correlator method)
\rightarrow Multiple correlator fits

- Variational methods
\rightarrow Bayesian Methods

```
(as in G. Fleming's and P. Petreczky's talks)
```

\rightarrow Form factor (three-point Green function) case
\rightarrow Fit the amplitude
\rightarrow Modified variational method

Black Box Methods

\rightarrow In the $3^{\text {rd }}$ iteration of this workshop,
G. T. Fleming (hep-lat/0403023) talked about "black box methods" used in NMR:

$$
y_{n}=\sum_{k=1}^{K} a_{k} e^{i \phi_{k}} e^{\left(-d_{k}+i 2 \pi f_{k}\right) t_{n}}+e_{n}
$$

\rightarrow Similar to the lattice correlators, which have the general form

$$
y_{n}=\sum_{k=1}^{K} a_{k} \alpha_{k}^{n}
$$

This forms a Vandermonde system

$$
\text { with } \quad \Phi=\left(\begin{array}{ccc}
\phi_{1}\left(t_{1}, \boldsymbol{\alpha}\right) & \cdots & \phi_{K}\left(t_{1}, \boldsymbol{\alpha}\right) \\
\vdots & \ddots & \vdots \\
\phi_{1}\left(t_{N}, \boldsymbol{\alpha}\right) & \cdots & \phi_{K}\left(t_{N}, \boldsymbol{\alpha}\right)
\end{array}\right)
$$

Black Box Method: N-State Effective Mass

\rightarrow Given a single correlator (with sufficient length of t), one can, in principle, solve for multiple a 's and α 's

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right)=\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{K} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{K}^{2} \\
\vdots & \cdots & \cdots & \vdots \\
\alpha_{1}^{N} & \alpha_{2}^{N} & \cdots & \alpha_{K}^{N}
\end{array}\right) \times\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{K}
\end{array}\right)
$$

\rightarrow Can one solve $N / 2$ states from one correlator of length N ?

Black Box Methods: Effective Mass

\rightarrow System dominated by ground state $(K=1)$ case,
easy solution: $\alpha_{1}=y_{n+1} / y_{n}$
Thus, "effective mass" $M_{\text {eff }}=\ln \left(y_{n+1} / y_{n}\right)$

Black Box Methods: Effective Mass

\rightarrow System dominated by ground state $(K=1)$ case,
easy solution: $\alpha_{1}=y_{n+1} / y_{n}$
Thus, "effective mass" $M_{\text {eff }}=\ln \left(y_{n+1} / y_{n}\right)$

Black Box Methods: $1^{\text {st }}$ Excited State

\rightarrow Extracting two states $(K=2)$ case,

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\alpha_{1}^{2} & \alpha_{2}^{2} \\
\alpha_{1}^{3} & \alpha_{2}^{3} \\
\alpha_{1}^{4} & \alpha_{2}^{4}
\end{array}\right) \times\binom{ a_{1}}{a_{2}}
$$

which leads to a more complicated solution

$$
\alpha_{1,2}=\frac{\left(y_{1} y_{4}-y_{2} y_{3} \pm \sqrt{\left(y_{2} y_{3}-y_{1} y_{4}\right)^{2}+4\left(y_{2}^{2}-y_{1} y_{3}\right)\left(y_{2} y_{4}-y_{3}^{2}\right)}\right)}{2\left(y_{1} y_{3}-y_{2}^{2}\right)}
$$

\rightarrow Toy model: consider three states with masses $0.5,1.0,1.5$ and with the same amplitude

$$
\text { noise }=10^{\wedge}-15
$$

Black Box Methods: $1^{\text {st }}$ Excited State

\rightarrow Extracting two states $(K=2)$ case,

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\alpha_{1}^{2} & \alpha_{2}^{2} \\
\alpha_{1}^{3} & \alpha_{2}^{3} \\
\alpha_{1}^{4} & \alpha_{2}^{4}
\end{array}\right) \times\binom{ a_{1}}{a_{2}}
$$

which leads to a more complicated solution

$$
\alpha_{1,2}=\frac{\left(y_{1} y_{4}-y_{2} y_{3} \pm \sqrt{\left(y_{2} y_{3}-y_{1} y_{4}\right)^{2}+4\left(y_{2}^{2}-y_{1} y_{3}\right)\left(y_{2} y_{4}-y_{3}^{2}\right)}\right)}{2\left(y_{1} y_{3}-y_{2}^{2}\right)}
$$

\rightarrow Toy model: consider three states with masses $0.5,1.0,1.5$ and with the same amplitude

$$
\text { noise }=10^{\wedge}-15
$$

Lattice Data

\rightarrow Real World: proton case

\rightarrow "Quenched" study on $16^{3} \times 64$ anisotropic lattice
\rightarrow Wilson gauge action + nonperturbative clover fermion action
$\rightarrow a_{t}^{-1} \approx 6 \mathrm{GeV}$ and $a_{s} \approx 0.125 \mathrm{fm}$
$\rightarrow 7$ effective mass plots from Gaussian smeared-point

Black Box Methods: $1^{\text {st }}$ Excited State

Real World: proton case

Black Box Methods: $1^{\text {st }}$ Excited State

Real World: proton case

Black Box Methods: $1^{\text {st }}$ Excited State

Real World: proton case

Modified Correlator

[D. Gaudagnoli, Phys. Lett. B604, 74 (2004)]
\rightarrow Instead of using a direct solution, define a modified correlator as $y_{t}=y_{t-1} y_{t+1}-y_{t}^{2}\left(=\alpha_{1} \times \alpha_{2}\right)$
$\rightarrow-\ln \left(\mathcal{Y}_{t+1} / \mathcal{Y}_{t}\right)=E_{1}+E_{2}$
\rightarrow Toy model: consider three states with masses $0.5,1.0,1.5$ and with the same amplitude

$$
\text { noise }=10^{\wedge}-15
$$

Modified Correlator

\rightarrow Real World: proton case

N-State Masses vs Modified Correlator

[George T. Fleming, hep-lat/0403023]
[D. Gaudagnoli, Phys. Lett. B604, 74
$\rightarrow N$-state effective mass (2004)] method
\rightarrow Modified correlator method

Black Box Methods: Recap

\rightarrow Different point of view from what we normally do in lattice calculations
\rightarrow Neat idea. Simple algebra excise gives us multiple states from single correlator. Great difficulty to achieve with least-square fits.
\rightarrow How about $2^{\text {nd }}$ excited state?
\rightarrow Limitation: Abel's Impossibility Theorem
algebraic solutions are only possible for $N \leq 5$

Black Box Method: Linear Prediction

In collaboration with Saul D. Cohen

\rightarrow Consider a K-state system:
Construct a polynomial with coefficients

$$
\prod_{k=1}^{K}\left(\alpha-\alpha_{k}\right)=\sum_{i=0}^{K} p_{i} \alpha^{K-i}
$$

We know that

$$
y_{m}=-\sum_{k=1}^{K} p_{k} y_{m-k}, \quad m \geq K
$$

\rightarrow Solving the system of equations

$$
\left[\begin{array}{c}
\bar{y}_{K} \\
\bar{y}_{K+1} \\
\vdots \\
\bar{y}_{N-1}
\end{array}\right]=-\left[\begin{array}{ccc}
\bar{y}_{0} & \ldots & \bar{y}_{K-1} \\
\bar{y}_{1} & \ldots & \bar{y}_{K} \\
\vdots & \ddots & \vdots \\
\bar{y}_{N-K-1} & \cdots & \bar{y}_{N-2}
\end{array}\right]\left[\begin{array}{c}
p_{K} \\
p_{K-1} \\
\vdots \\
p_{1}
\end{array}\right]
$$

for ideal data

Black Box Method: Linear Prediction

In collaboration with Saul D. Cohen

\rightarrow Consider a K-state system:
Construct a polynomial with coefficients

$$
\prod_{k=1}^{K}\left(\alpha-\alpha_{k}\right)=\sum_{i=0}^{K} p_{i} \alpha^{K-i}
$$

We can make the linear prediction

$$
y_{n} \approx-\sum_{k=1}^{M} p_{m} y_{n-k}+v_{n}
$$

\rightarrow Solving the system now gives

$$
\left[\begin{array}{c}
y_{M} \\
y_{M+1} \\
\vdots \\
y_{N-1}
\end{array}\right] \approx-\left[\begin{array}{ccc}
y_{0} & \cdots & y_{M-1} \\
y_{1} & \cdots & y_{M} \\
\vdots & \ddots & \vdots \\
y_{N-M-1} & \cdots & y_{N-2}
\end{array}\right]\left[\begin{array}{c}
p_{M} \\
p_{M-1} \\
\vdots \\
p_{1}
\end{array}\right]
$$

for real data $(N \geq 2 M)$

Black Box Method: Linear Prediction

In collaboration with Saul D. Cohen
\rightarrow 3-state results on the smallest Gaussian smeared-point correlator; using the minimal M :

Black Box Method: Linear Prediction

In collaboration with Saul D. Cohen
\rightarrow Increase M. A higher-order polynomial means bad roots can be thrown out without affecting the K roots we want.

Black Box Method: Linear Prediction

In collaboration with Saul D. Cohen
\rightarrow Still higher $M .$.

Black Box Method: Linear Prediction

In collaboration with Saul D. Cohen

\rightarrow As N becomes large compared to the total length, not many independent measurements can be made.

Black Box Method: Linear Prediction

In collaboration with Saul D. Cohen
These settings seem to be a happy medium.

Black Box Method: Linear Prediction

In collaboration with Saul D. Cohen
Can we extract even higher energies?

Black Box Method: Linear Prediction

In collaboration with Saul D. Cohen
\rightarrow Can we get better results if we're only interested in the lowest energies?

Multiple Least-Squares Fit

\rightarrow With multiple smeared correlators, one minimizes the quantity

$$
\chi^{2}=\sum_{s} \frac{\left(G_{s}(t)-\sum_{n} a_{n} e^{-E_{n} t}\right)^{2}}{\sigma_{s}^{2}(t)}
$$

to extract E_{n}.
\rightarrow Example:

* To extract n states, one at needs at least n "distinguished" input correlators

Variational Method

\rightarrow Generalized eigenvalue problem:
[C. Michael, Nucl. Phys. B 259, 58 (1985)]
[M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)]
\rightarrow Construct the matrix

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t)^{\dagger} \mathcal{O}_{j}(0)|0\rangle
$$

\rightarrow Solve for the generalized eigensystem of

$$
C\left(t_{0}\right)^{-1 / 2} C(t) C\left(t_{0}\right)^{-1 / 2} \psi=\lambda\left(t, t_{0}\right) \psi
$$

with eigenvalues

$$
\lambda_{n}\left(t, t_{0}\right)=e^{-\left(t-t_{0}\right) E_{n}}
$$

and the original correlator matrix can be approximated by

$$
C_{i j}=\sum_{n=1}^{r} v_{i}^{n *} v_{j}^{n} e^{-t E_{n}}
$$

Variational Method

\rightarrow Example: 5×5 smeared-smeared correlator matrices
\rightarrow Solve eigensystem for individual λ_{n}
\rightarrow Fit them individually with exponential form (red bars)
\rightarrow Plotted along with effective masses

Three-Point Correlators

\rightarrow The form factors are buried in the amplitudes

$$
\begin{aligned}
& \Gamma_{\mu, A B}^{(3), T}\left(t_{i}, t, t_{f}, \vec{p}_{i}, \vec{p}_{f}\right) \\
& \quad=a^{3} \sum_{n} \sum_{n^{\prime}} \frac{1}{Z_{j}} \frac{Z_{n^{\prime}, B}\left(p_{f}\right) Z_{n, A}\left(p_{i}\right)}{4 E_{n}^{\prime}\left(\vec{p}_{f}\right) E_{n}\left(\vec{p}_{i}\right)} e^{-\left(t_{f}-t\right) E_{n}^{\prime}\left(\vec{p}_{f}\right)} e^{-\left(t-t_{i}\right) E_{n}\left(\vec{p}_{i}\right)} \\
& \quad \times \sum_{s, s^{\prime}} T_{\alpha \beta} u_{n^{\prime}}\left(\vec{p}_{f}, s^{\prime}\right)_{\beta}\left(\frac{\left.N_{n^{\prime}}\left(\overrightarrow{p_{f}}, s^{\prime}\right)\left|j_{\mu}(0)\right| N_{n}\left(\vec{p}_{i}, s\right)\right)_{n}\left(\vec{p}_{i}, s\right)_{\alpha}}{}\right.
\end{aligned}
$$

\rightarrow Brute force approach: multi-exponential fits to two-point correlators to extract overlap factors Z and energies E
\rightarrow Modified variational method approach: use the eigensystem solved from the two-pt correlator as inputs; works for the diagonal elements.
\rightarrow Any special trick for the non-diagonal elements?

Summary

\rightarrow A lot of interesting physics involves excited states, but they're difficult to handle.
\rightarrow NMR-inspired methods provide an interesting alternate point of view for looking at the lattice QCD spectroscopy
\rightarrow Remarkable! Multiple excited states can be extracted from a single correlator
\rightarrow Extends further to multiple correlators to be compatible with other approaches, such as variational method

