V_{us} Calculation from Lattice QCD

Huey-Wen Lin

7th Particle Physics and Phenomenology Workshop Taipei, Taiwan Motivation/Background
 Review of Lattice Calculations
 New Dynamical Result from Hyperons
 Summary/Outlook

$|V_{us}|$ and the CKM Matrix

Kobayashi and Maskawa (1973) propose extending Cabibbo's (1963) work with a mixing of three generations of quarks:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Unitarity constraint: |V_{ud}|² + |V_{us}|² + |V_{ub}|² = 1.
From the latest PDG (2006)
Well determined |V_{ud}| = 0.97377(27)
Very small |V_{ub}| = 4.31(30) × 10⁻³
Less known |V_{us}| = 0.2257(21)(2006) |V_{us}| = 0.2196(23)(2003)

Background: Lattice 101

Lattice Gauge Theory

Physical observables are calculated from the path integral $\langle \Omega | O | \Omega \rangle = \frac{1}{Z} \int [dU] [d\overline{\psi}] [d\psi] O(U, \overline{\psi}, \psi) e^{i \int d^4 x [S_F(U, \overline{\psi}, \psi) + S_G(U)]}$

Lattice QCD is a discrete version of continuum QCD theory

• Use Monte Carlo integration combined with the "importance sampling" technique to calculate the path integral.

Take $a \to 0$ and $V \to \infty$ for the "continuum limit"

Lattice Gauge Theory

Physical observables are calculated from the path integral $\langle \Omega | O | \Omega \rangle = \frac{1}{Z} \int [dU] [d\overline{\psi}] [d\psi] O(U, \overline{\psi}, \psi) e^{i \int d^4 x [S_F(U, \overline{\psi}, \psi) + S_G(U)]}$

Lattice QCD is a discrete version of continuum QCD theory

• Use Monte Carlo integration combined with the "importance sampling" technique to calculate the path integral.

Lattice Actions

(Improved) Staggered fermions (asqtad):

- Relatively cheap for dynamical fermions (good)
- Mixing among parities and flavours or "tastes"
- Baryonic operators a nightmare not suitable

O(a)-improved Wilson (Clover) fermions:

- Moderate in cost
- Chiral symmetry badly broken at non-zero lattice spacing
- Operator mixing issues

Chiral fermions (e.g., Domain-Wall/Overlap):

- Automatically O(a) improved, suitable for spin physics and weak matrix elements
- Expensive

Mixed actions:

- Staggered sea (cheap) with Domain-Wall valence (chiral)
- Match the sea Goldstone pion mass to the DWF pion

Quenched Approximation

Correct Math
$$\langle O \rangle = \frac{1}{Z} \int [dU] [d\psi] [d\overline{\psi}] e^{-S_F(U,\psi,\overline{\psi}) - S_G(U)} O(U,\psi,\overline{\psi})$$

$$= \frac{1}{Z} \int [dU] \det M e^{-S_G(U)} O(U)$$

 \clubsuit Instead, take det M =constant.

- Historically due to the lack of computation power and improved algorithms
- Bad: Uncontrollable systematic error
- Good? Cheap exploratory studies to develop new methods

9

 $0.2234(^{+12}_{-31})$

0.2250(27)

0.2257(21)(2006)

Leptonic Decays

 \bullet $K_{\mu 2}$ and $\pi_{\mu 2}$ decays

$$\left(\underbrace{V_{us}}_{|V_{ud}|} \right)^2 = \left[\left(\frac{f_K}{f_\pi} \right)^2 \frac{M_K \left(1 - m_\mu^2 / M_K^2 \right)^2}{M_\pi \left(1 - m_\mu^2 / M_\pi^2 \right)^2} \left(1 + \frac{\alpha}{\pi} \left(C_K - C_\pi \right) \right) \right]^{-1} \frac{\Gamma(K \to \mu \bar{\nu}_\mu)}{\Gamma(\pi \to \mu \bar{\nu}_\mu)}$$

MILC collaboration (staggered, C. Aubin et al., 2004) $f_K/f_{\pi} = 1.210(4)(13)$

 $W. Marciano, 2004 | V_{us} = 0.2219(25)$

◆ Other full-QCD f_K/f_π available since 2004

RBC+UKQCD *DWF*: $f_K/f_{\pi} = 1.24(2)$

MILC 2006: $f_K / f_{\pi} =$

K_R Decay

Huey-Wen Lin @ PPP7 Workshop

K_{β} Decay

Twisted-BC approach $\widetilde{\psi}(x + \hat{e}_j L) = e^{2\pi i \theta_j} \ \widetilde{\psi}(x)$

• Tune θ_i to cancel out the mass difference. No extrapolation in momentum is needed! 1.005 With 1.5 times the statistics, the results are $f_{K\pi}^{0}(aq)^{2}$ compatible with the conventional ones 0.985 0.98 J.M. Flenn et al. (2007) $(aq)^2$ x 10⁻³

momentum changes by $\widetilde{p}_j = \theta_j \frac{2\pi}{L} + n_j \frac{2\pi}{L}$

Chiral extrapolation: Ademollo-Gatto Theorem

SU(3) symmetry-breaking Hamiltonian

$$H' = \frac{1}{\sqrt{3}} \left(m_s - \frac{m_d + m_u}{2} \right) \bar{q} \lambda^8 q$$

There is no first-order correction O(H') to $f_1(0)$; thus $f_1(0) = f_1^{SU(3)}(0) + O({H'}^2)$

• Common choice of observable for $H': M_K^2 - M_\pi^2$

• Step I:
$$R(M_K, M_\pi) = \frac{1 - |f'(0)|}{a^4 (M_K^2 - M_\pi^2)^2}$$

• Step II: $R(M_K, M_\pi) = b_0 + b_1 a^2 (M_K^2 + M_\pi^2)$

Obtain | V_{us} | from

 $\Gamma(K_{\ell 3}) = \frac{G_F^2 M_K^5}{128\pi^3} V_{us} S_{\text{ew}} [f_+^{K^0 \pi^-}(0)]^2 C_K^2 I_K^{\ell}(\lambda_i) \left[1 + \delta_{SU(2)}^K + \delta_{\text{em}}^{K\ell}\right]^2$

 K_{β} Decay

\rightarrow Summary of K_{β} calculations

• Use common $|f_+ V_{us}| = 0.2169(9)$ from PDG 2006

Group	$N_{\rm f}$	$S_{ m f}$	$M_{\pi} \; ({\rm GeV})$
SPQcdR	0	Wilson	0.500 - 1.000
JLQCD	2	Clover	$0.440 – 0.960^{*}$
RBC	2	DWF	0.475 – 0.700
HPQCD	2 + 1	Staggered	0.500 - 0.700
RBC/UKQCD	2 + 1	DWF	0.390 - 0.700

Hyperon Decays

→ Matrix element of the hyperon β -decay process $B_1 \rightarrow B_2 e^- \overline{\nu}$ $\mathcal{M} = \frac{G_s}{\sqrt{2}} \overline{u}_{B_2} (O^{\mathrm{V}}_{\alpha} + O^{\mathrm{A}}_{\alpha}) u_{B_1} \overline{u}_e \gamma^{\alpha} (1 + \gamma_5) v_{\nu}$ with $O_{\alpha}^{\rm V} = f_1(q^2)\gamma^{\alpha} + \frac{f_2(q^2)}{M_{B_1}}\sigma_{\alpha\beta}q^{\beta} + \frac{f_3(q^2)}{M_{B_2}}q_{\alpha}$ $O_{\alpha}^{\mathrm{A}} = \left(g_1(q^2)\gamma^{\alpha} + \frac{g_2(q^2)}{M_{\mathrm{P}}}\sigma_{\alpha\beta}q^{\beta} + \frac{g_3(q^2)}{M_{\mathrm{P}}}q_{\alpha}\right)\gamma_5$ • The vector form factor $f_1(0)$ links to $|V_{us}|$ $\Gamma = G_F^2 |V_{us}|^2 \frac{\Delta m^5}{60\pi^3} (1 + \delta_{rad})$ $\times \left[\left(1 - \frac{3}{2}\beta \right) \left(|f_1|^2 + |g_1|^2 \right) + \frac{6}{7}\beta^2 \left(|f_1|^2 + 2|g_1|^2 + \operatorname{Re}(f_1f_2^{\star}) + \frac{2}{3}|f_2^2| \right) + \delta_{q^2} \right]$

with g_1/f_1 (exp) and f_2/f_1 (SU(3) value)

Hyperon Decay Experiments

- Experiments: CERN WA2, Fermilab E715, BNL AGS, Fermilab KTeV, CERN NA48
- Summary N. Cabibbo et al. 2003

with f_2/f_1 and f_1 at the SU(3) limit

Decay	Rate (µs-1)	g_1/f_1	V _{us}
$\Lambda \to p e^- \overline{\nu}$	3.161(58)	0.718(15)	0.2224 ± 0.0034
$\Sigma^- \to n e^- \overline{\nu}$	6.88(24)	-0.340(17)	0.2282 ± 0.0049
$\Xi^- \to \Lambda e^- \overline{\nu}$	3.44(19)	0.25(5)	0.2367 ± 0.0099
$\Xi^0 ightarrow \Sigma^+ e^- \overline{\nu}$	0.876(71)	1.32(+.22/18)	0.209 ± 0.027
Combined			0.2250 ± 0.0027

PDG 2006 number

The Better g_1/f_1 from lattice calculations?

 $|V_{us}|$ — Lattice Hyperons

Two quenched calculations, different channels

No systematic error estimate from quenching effects!

Sasaki et al.

Huey-Wen Lin @ PPP7 Workshop

Parameters

This calculation:

Mixed action (staggered sea with DWF valence)

- Pion mass range: 360–700 MeV
- Strange-strange Goldstone fixed at 763(2) MeV
- Volume fixed at 2.6 fm
- → $a \approx 0.125$ fm, $L_s = 16$, $M_5 = 1.7$
- HYP-smeared gauge, box size of $20^3 \times 32$

Label	$m_{\pi} \; ({\rm MeV})$	$m_K \; ({\rm MeV})$	$\Sigma^- \to n \text{ conf.}$
m010	358(2)	605(2)	600
m020	503(2)	653(2)	420
m030	599(1)	688(2)	561
m040	689(2)	730(2)	306

Construction

Two-point function

$$\begin{split} \Gamma^{NN}_{AB}(t_i, t_f, \overrightarrow{p} \; ; \; T) &\to \\ a^6 Z^N_B(p) Z^N_A(p) \sum_s T_{\alpha\beta} \overline{u}_\alpha(\overrightarrow{p}, s) u_\beta(\overrightarrow{p}, s) \\ &\times \frac{m_N}{E_N(\overrightarrow{p})} e^{-(t_f - t_i)E_N(\overrightarrow{p})} \\ &= \left(\frac{E_N(\overrightarrow{p}) + m_N}{2E_N(\overrightarrow{p})}\right) e^{-(t_f - t_i)E_N(\overrightarrow{p})} \end{split}$$

Three-point function

$$\begin{split} &\Gamma_{\mu,AB}^{NN}(t_i,t,t_f,\overrightarrow{p}_i,\overrightarrow{p}_f;\ T) \rightarrow \\ &= \frac{m_N^2}{E_N(\overrightarrow{p}_f)E_N(\overrightarrow{p}_i)} e^{-(t_f-t)E_N(\overrightarrow{p}_f)} e^{-(t-t_i)E_N(\overrightarrow{p}_i)} \\ &\sum_{s,s'} T_{\alpha\beta}Z_B(p_f)u_\beta(\overrightarrow{p}_f,s') \\ &\left\langle N(\overrightarrow{p}_f,s') \left| j_\mu(0) \right| N(\overrightarrow{p}_i,s) \right\rangle \bar{u}_\alpha(\overrightarrow{p}_i,s) Z_A(p_i) \end{split}$$

Ratio cancels out t and Z dependence

$$\begin{split} R_{j_{\mu}} &= \frac{Z_{V}\Gamma_{\mu,GG}^{\Sigma N}(t_{i},t,t_{f},\overrightarrow{p}_{i},\overrightarrow{p}_{f};\,T)}{\Gamma_{GG}^{NN}(t_{i},t_{f},\overrightarrow{p}_{f};\,T)} \sqrt{\frac{\Gamma_{PG}^{\Sigma \Sigma}(t,t_{f},\overrightarrow{p}_{i};\,T)}{\Gamma_{PG}^{NN}(t,t_{f},\overrightarrow{p}_{f};\,T)}} \\ &\times \sqrt{\frac{\Gamma_{GG}^{NN}(t_{i},t,\overrightarrow{p}_{f};\,T)}{\Gamma_{GG}^{\Sigma \Sigma}(t_{i},t,\overrightarrow{p}_{i};\,T)}} \sqrt{\frac{\Gamma_{PG}^{NN}(t_{i},t_{f},\overrightarrow{p}_{f};\,T)}{\Gamma_{PG}^{\Sigma \Sigma}(t_{i},t_{f},\overrightarrow{p}_{i};\,T)}}, \end{split}$$

Fit to the dipole form

Mass Dependence – I

• Do a mass extrapolation as $f_1(0) = -1 + (b_0 + b_1 a^2 (M_K^2 + M_\pi^2)) \times a^4 (M_K^2 - M_\pi^2)^2$

Simultaneous Fit

Combine the momentum and mass extrapolation into one fitting form

$$f_{+}(q^{2}) = \frac{1 + \left(M_{K}^{2} - M_{\pi}^{2}\right)^{2} \left(A_{1} + A_{2} \left(M_{K}^{2} + M_{\pi}^{2}\right)\right)}{\left(1 - \frac{q^{2}}{M_{0} + M_{1} \left(M_{K}^{2} + M_{\pi}^{2}\right)}\right)^{2}}$$

Simultaneous Fit

Combined momentum and mass dependence

A Remark

• Current $|V_{\mu s}|$ number from hyperons N. Cabibbo et al. 2003 used f_2/f_1 at the SU(3) limit and g_2 taken to be zero f_{2}/f_{1} Guadagnoli et al. -0.85(45), This Work -0.94(4), consistent w/ Exp.: -0.96(7)SU(3) limit -1.297 $\Rightarrow g_2 = 0$? affects the actual g_1 values Experiment good at $|g_1/f_1 - 0.237g_2/f_1|$ *Guadagnoli et al* $g_2/f_1 = 0.37(14)$ This could increase the $|f_1V_{\mu s}|$

Will the revised calculation in $|V_{us}|$ be consistent with the result from K_{l3} ?

Summary/Outlook

Taking f_K / f_π (MILC 2006) from lattice, $|V_{us}| = 0.2226(^{+26} / _{-15})$

◆ f_+ from best lattice calculation (RBC+UKQCD 2+1f) with proper systematic error estimation

 $|V_{us}| = 0.2257(23)$

More work needs to be done in hyperon channels

- Preliminary result from Lin-Orginos is consistent with the previous calculation
- We need much higher statistics for a lighter-pion mass calculation (compared with the quenched one)
- Change the calculation to Clover action to nail down this problem
- Higher precision g_1/f_1 : Will make the $|V_{us}|$ equivalently or better than the one from K_{l3} channel