Parameter Tuning of Three-Flavor Dynamical Anisotropic Clover Action

Huey-Wen Lin Robert G. Edwards Balint Joó

Lattice 2007, Regensburg, Germany

Background/Motivation

Why do we make our life troublesome?

Methodology and Setup

How do we tune them?

Numerical Results

Believe it or not

Summary/Outlook

Cannot wait?

Motivation

Beneficial for excited-state physics, as well as ground-state

Excited-State Physics

Lattice QCD spectrum

- Successfully calculates many ground states (Nature,...)
- Nucleon spectrum, on the other hand... not quite

Example: N, P_{11}, S_{11} spectrum

Excited-State Physics

Lattice QCD spectrum

- Successfully calculates many ground states (Nature,...)
- Nucleon spectrum, on the other hand... not quite
- Difficult to see excited states with current dynamical simulation lattice spacing (~2 GeV)

Anisotropic lattices ($a_t < a_{x,y,z}$)

2f Wilson excited baryons in progress

Excited-State Physics

Lattice QCD spectrum

- Successfully calculates many ground states (Nature,...)
- Nucleon spectrum, on the other hand... not quite
- Difficult to see excited states with current dynamical simulation lattice spacing (~2 GeV)
 Nucleon Mass

Anisotropic lattices ($a_t < a_{x,y,z}$)

- 2f Wilson excited baryons in progress
 Proliminary result at SaiD A C All
- Preliminary result at SciDAC All Hands' meeting ($m_{\pi} = 432$ MeV)

Example: N-P₁₁ Form Factor

- Experiments at Jefferson Laboratory (CLAS), MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and Spring-8
- Helicity amplitudes are measured (in 10⁻³ GeV^{-1/2} units)
- One of the major tasks given to Excited Baryon Analysis Center (EBAC)
- Many models disagree (a selection are shown below)

Lattice work in progress at JLab

Huey-Wen Lin — Lat2007@Regensburg

Only Interested in Ground State?

- Larger-t solution does not always work well with three-point correlators Example: $\langle x \rangle_q^{(b)}$ Quark helicity distribution 0.6 LHPC & SESAM 12 2 8 10 *Phys. Rev. D* 66, 034506 (2002) 8,0 50% increase in error $\langle x \rangle_q^{(b)}$ budget at $t_{sep} = 14$ 0.6 10
 - Confronting the excited states might be a better solution than avoiding them.

Methodology and Setup Anisotropic Lattice + Schrödinger Functional + Stout-Smearing

Anisotropic Tadpole-ed Lattice Actions

•
$$O(a^2)$$
-improved Symanzik gauge action
 $S_G^{\xi} = \frac{\beta}{N_c} \left\{ \frac{u_t}{\xi_0 u_s^3} \sum_{x,s>s'} [c_0 \mathcal{P}_{ss'} + c_1 \mathcal{R}_{ss'}] + \frac{\xi_0}{u_s^4} \sum_{x,s} [c_0 \mathcal{P}_{st} + c_1 \mathcal{R}_{st}] \right\}$
• $O(a)$ -improved Wilson fermion (Clover) action
 $a_t Q_F = \frac{1}{u_t} \left\{ u_t \hat{m}_0 + \nu_t \hat{W}_t + \frac{\nu_s}{\xi_0} \sum_s \hat{W}_s + \frac{1}{2} \left[C_{SW}^t \sum_s \sigma_{ts} \hat{F}_{ts} + \frac{C_{SW}^s}{\xi_0} \sum_{s < s'} \sigma_{ss'} \hat{F}_{ss'} \right] \right\}$
with $C_{SW}^s = \frac{\nu}{u_s^3}$, $C_{SW}^t = \frac{1}{2} \left(\nu + \frac{1}{\xi} \right) \frac{1}{u_t u_s^2}$ (P. Chen, 2001)
• Coefficients to tune: ξ_0 , v_s , m_0 , β

Schrödinger Functional

Applying a chromoelectric field across the lattice as $U_0^B(x) = 1, \ U_s^B(x) = e^{-i\frac{a_s}{T} \left[x_0 C'_s + (T - x_0) C_s \right]}$ Fermionic sector with additional boundary condition: $P_0^+\psi(x) = \rho(x), \quad \overline{\psi}(x)P_0^- = \overline{\rho}(x) \text{ at } x_0 = 0$ $P_0^-\psi(x) = \rho'(x), \quad \overline{\psi}P_0^+ = \overline{\rho}'(x) \text{ at } x_0 = T',$ Fermionic boundary fields are derivative of BC Boundary counter-terms enter PCAC at $O(a^2)$; no further improvement needed Background field helps with exceptional small eigenvalues • Example: lowest eigenvalue from $Q^{\dagger}Q$ (3f anisotropic lattice) Non-SF SF 0.003: 0.000 0.002 0.0015 0.001 0.0005 00001 5×10^{-1} 200 400600 800 1000 1200 100 300 0 200400 trai trai Dynamical 2- and 2+1-flavor isotropic lattice (Alpha, CP-PACS)

Huey-Wen Lin — Lat2007@Regensburg

Isotropic Nonperturbative c_{SW}

- O(a) improved axial current $A^a_{\text{Imp},\mu} = A^a_{\mu} + ac_A \frac{1}{2} \left(\partial_{\mu} + \partial^*_{\mu} \right) P^a$ • PCAC tells us $\frac{1}{2} \left(\partial_{\mu} + \partial^*_{\mu} \right) A^a_{\text{Imp},\mu} = 2am_q P^a + \mathcal{O}(a^2)$
- Green function with boundary fields $f_{O_{\Gamma}}(x_0) = -a^6 \sum_a \langle O_{\Gamma}(x)^a \mathcal{O}^a \rangle$
- ◆ PCAC implies $m(x_0) = r(x_0) + ac_A s(x_0)$ where $r(x_0) = 0.25 (\partial_0 + \partial_0^*) f_A(x_0) / f_P(x_0)$ $s(x_0) = 0.5a \partial_0 \partial_0^* f_P(x_0) / f_P(x_0).$
- Redefined the mass through algebra exercise

 $\begin{array}{lll}
M(x_0, y_0) &= r(x_0) - \hat{c}_A(y_0) s(x_0) \\
M'(x_0, y_0) &= r'(x_0) - \hat{c}_A(y_0) s'(x_0) \\
\end{array} \text{ with } \hat{c}_A(y_0) = \frac{1}{a} \frac{r'(y_0) - r(y_0)}{s'(y_0) - s(y_0)}
\end{array}$

✤ Nonperturbative c_{SW} from

$$\Delta M = M(x_0, y_0) - M'(x_0, y_0) = \Delta M^{(0)}$$

Stout-Link Smearing

Morningstar, Peardon'04 Smoothes out dislocations; impressive glueball results

Huey-Wen Lin — Lat2007@Regensburg

Tadpole Factors

- Mostly use either tree-level or one-loop PT value
- Question: How good is it on dynamical anisotropic lattices?
- Take the tadpole value from the 1/4 root of the plaquette
- Without link-smearing (<2% discrepancy is observed)</p>

We modify the tadpole factors from numerical runs to have consistency to within 2%

Numerical Setup

- Chroma HMC code with RHMC for the 3rd flavor and multi-timescale integration
- Create additional Schrödinger Functional world with background fields in the "z" direction
- Question: What would be an ideal spatial dimension?

Numerical Setup

- Chroma HMC code with RHMC for the 3rd flavor and multi-timescale integration
- Create additional Schrödinger Functional world with background fields in the "z" direction
- Question: What would be an ideal spatial dimension?

Conditions to Tune

Traditionally, conditions for anisotropic clover action

- Gauge anisotropy ξ_0 ratios of static quark potential (Klassen)
- Fermion anisotropy v_s meson dispersion relation

The above two are done in the non-SF world, big volume

Provide an equation NP Clover coeffs. (c_{SW}) from PCAC mass difference only in isotropic (Alpha,CP-PACS)

- Implement background fields in two directions: t and "z" Proposed conditions:

• Gauge anisotropy ξ_0 ratios of static quark potential

• Fermion anisotropy v_s PCAC mass ratio Done in the SF world, small volume

◆ 2 Clover coeffs. (c_{SW}) $\xi_G(\xi'_0,\nu',m'_0) = \xi$ $M_s(\xi'_0, \nu', m'_0) = a_s m_q$ $M_t(\xi'_0, \nu', m'_0) = a_s m_q / \xi$ Set to *stout-smeared tadpole* coefficient Check the PCAC mass difference

Numerical Results

Gauge Anisotropy

Gauge Anisotropy

2D Parameter/Data Space

2D Parameter/Data Space

2D Parameter/Data Space

Fermion Anisotropy

- Question: How does our condition for the fermion anisotropy compare with the conventional dispersion relation in large volume?
- Quick local test: $12^3 \times 128$ without background field 3-flavor, $m_0 = -0.054673$, $v_s = 1.0$, $a_s = 0.116(3)$ fm

From PCAC M_s and M_t , we see about 10% disagreement

Fermion Anisotropy

Question: How does our condition for the fermion anisotropy compare with the conventional dispersion relation in large volume?

Quick local test: $12^3 \times 128$ without background field 3-flavor, $m_0 = -0.054673$, $v_s = 1.0$, $a_s = 0.116(3)$ fm

From PCAC M_s and M_t, we see about 10% disagreement
 Dispersion relation shows similar amount of inconsistency

Parameterization

- Implement background fields in two directions: t and "z" ⇒ 2 PCAC mass, M_t , M_s
- Localized region suitable for linear ansatz
 - $M_{s,t}(v,m_0) = b_{s,t} + c_{s,t}v + d_{s,t}m_0$
- Condition: $M_s = M_t$

Parameterization

- Implement background fields in two directions: t and "z" ⇒ 2 PCAC masses: M_t , M_s
- Localized region suitable for linear ansatz
 - $M_{s,t}(v,m_0) = b_{s,t} + c_{s,t}v + d_{s,t}m_0$
- Condition: $M_s = M_t$

More runs in the range $0.95 \le v \le 1.05$ coming

Huey-Wen Lin — Lat2007@Regensburg

Nonperturbative c_{sw}?

- Nonperturbative condition $\Delta M = M(2T/4, T/4) - M'(2T/4, T/4) = \Delta M^{\text{Tree}, M=0}$
- Tree-level ∆M value obtained from simulation in free-field
 Examples:

Summary/Outlook

Current Status:

- SF + stout-link smearing show promise in the dynamical runs
- Stout-link smearing + modified tadpole factors make NP c_{sw} tuning condition fulfilled
- Finite-box tuning is as good as conventional large-box runs with gauge and fermion anisotropy but more efficient
- ♦ 2f anisotropic (ξ_R = 3) Wilson configurations completed
 - $(L \sim 1.8, 2.6 \text{ fm}, m_{\pi} \sim 400, 600 \text{ MeV})$

In the near future:

- Fine tuning the strange quark points
- ◆ Launch 2+1f, $24^3 \times 64$ generation
- O(a)-improved coefficients: $c_{V,A}, Z_{V,A}...$