

Strange Baryon Physics in Full Lattice QCD

Huey-Wen Lin

Theoretical Physics Seminar University of Kentucky 2007 Nov. 5

Outline

Lattice QCD

Background, actions, observables, …

Spectroscopy

Group theory, operator design, first results

Coupling constants and form factors

- Hyperon axial coupling constants
- Strangeness in nucleon magnetic and electric moments
- Hyperon semi-leptonic decays

Lattice QCD is a discrete version of continuum QCD theory

Lattice QCD is a discrete version of continuum QCD theory

- Physical observables are calculated from the path integral
 ⟨0|O(ψ,ψ,A)|0⟩ = 1/Z ∫ [dA][dψ][dψ]O(ψ,ψ,A)e^{i ∫ d⁴x L^{QCD}(ψ,ψ,A)}
 Use Monte Carlo integration combined with the "importance sampling" technique to calculate the path integral.
- Take $a \to 0$ and $V \to \infty$ in the continuum limit

- A wide variety of first-principles QCD calculations can be done: Since 1970, Wilson started to write down the actions
- Progress is limited by computational resources
 - But assisted by advances in algorithms

T.D. Lee uses an "analog computer" to calculate stellar radiative transfer equations

2007: The 13 Tflops cluster at Jefferson Lab

Other joint lattice resources within the US: Fermilab, BNL. Non-lattice resources open to USQCD: ORNL, LLNL, ANL.

Huey-Wen Lin — Univ. of Kentucky

Lattice QCD is computationally intensive

$$\operatorname{Cost} \approx \left(\frac{L}{\operatorname{fm}}\right)^5 L_s \left(\frac{\operatorname{MeV}}{M_{\pi}}\right) \left(\frac{\operatorname{fm}}{a}\right)^6 \left(C_0 + C_1 \left(\frac{\operatorname{fm}}{a}\right) \left(\frac{\operatorname{MeV}}{M_K}\right)^2 + C_2 \left(\frac{a}{\operatorname{fm}}\right)^2 \left(\frac{\operatorname{MeV}}{M_{\pi}}\right)^2\right)$$

Norman Christ, LAT2007

- Current major US 2+1-flavor gauge ensemble generation:
 - MILC: staggered, $a \sim 0.06$ fm, $L \sim 3$ fm, $M_{\pi} \sim 250$ MeV
 - → RBC+UKQCD: DWF, $a \sim 0.09$ fm, $L \sim 3$ fm, $M_{\pi} \sim 330$ MeV
- Chiral domain-wall fermions (DWF) at large volume (6 fm) at physical pion mass may be expected in 2011

But for now....

need a pion mass extrapolation $M_{\pi} \rightarrow (M_{\pi})_{\text{phys}}$ (use chiral perturbation theory, if available)

Lattice Fermion Actions

Chiral fermions (e.g., Domain-Wall/Overlap):

- Automatically O(a) improved, suitable for spin physics and weak matrix elements
- Expensive
- $D_{x,s;x',s'} = \delta_{x,x'} D_{s,s'}^{\perp} + \delta_{s,s'} D_{x,x'}^{\parallel}$

$$D_{s,s'}^{\perp} = \frac{1}{2} [(1 - \gamma_5)\delta_{s+1,s'} + (1 + \gamma_5)\delta_{s-1,s'} - 2\delta_{s,s'}]_{\psi(\mathbf{X},\mathbf{S})} \\ - \frac{m_f}{2} [(1 - \gamma_5)\delta_{s,L_s-1}\delta_{0,s'} + (1 + \gamma_5)\delta_{s,0}\delta_{L_s-1}]$$

(Improved) Staggered fermion

- Relatively cheap for dynamical fermions (good)
- Mixing among parities and flavors or "tastes"
- Baryonic operators a nightmare not suitable

Wilson/Clover action:

Moderate cost; explicit chiral symmetry breaking

Twisted Wilson action:

Moderate cost; isospin mixing

Mixed Action Parameters

Mixed action:

- Staggered sea (cheap) with domain-wall valence (chiral)
- Match the sea Goldstone pion mass to the DWF pion
- Only mixes with the "scalar" taste of sea pion
- Free light quark propagators (LHPC & NPLQCD)
- In this calculation:
 - Pion mass ranges 300–750 MeV
 - ♦ Volume fixed at 2.6 fm, box size of $20^3 \times 32$
 - → $a \approx 0.125$ fm, $L_s = 16$, $M_5 = 1.7$
 - HYP-smeared gauge fields

Lattice QCD: Observables

Two-point Green function
 Three-point Green function
 e.g. spectroscopy
 e.g. form factors, structure functions, ...

$$\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) J(X_{\rm src}) \rangle_{\alpha,\beta}$$

 $\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) O(X_{\rm int}) J(X_{\rm src}) \rangle_{\alpha,\beta}$

Lattice QCD: Observables

Two-Point Green Functions work with

Lattice Hadron Physics Collaboration (LHPC)

Why Baryons?

Lattice QCD spectrum

- Successfully calculates many ground states (Nature, ...)
- Nucleon spectrum, on the other hand... not quite

Example: N, P_{11}, S_{11} spectrum

Strange Baryons

Strange baryons are of special interests; challenging even to experiment

Example from PDG Live:

Ω BARYONS (S = -3, / = 0)									
			Ω ⁻ = s s s						
Ω_	0(3/2+)	****							
<u>Ω(2250)</u> ⁻	0(? [?])	***							
Ω(2380) ⁻		•**							
<u>Ω(2470)</u> ⁻		•**							

All baryon spin states wanted: *j* = 1/2, 3/2, 5/2, ...
 Rotation symmetry is reduced due to discretization rotation O(3) ⇒ octahedral O_h group

	I	J	6 C ₄	8 C ₆	8 C3	6 C ₈	6 C'g	$12 C'_4$
A_1	1	1	1	1	1	1	1	1
\mathbf{A}_2	1	3	-2	1	0	-1	1	0
Е	2	1	1	1	-1	-1	-1	0
G_1	2	0	1	-1	1	-2	1	0
G_2	2	-4	0	1	0	0	1	-1
T_1	3	2	0	0	1	1	-1	-1
T_2	3	3	0	-1	-1	1	1	0
Η	4	-3	-1	0	0	0	-1	1

All baryon spin states wanted: *j* = 1/2, 3/2, 5/2, ...
 Rotation symmetry is reduced due to discretization rotation O(3) ⇒ octahedral O_h group

	I	J	6 C4	8 C6	8 C3	6 C ₈	6 C' ₈	$12 \ C_4'$	$6 C_4(1)$
A_1	1	1	1	1	1	1	1	1	
A_2	1	3	-2	1	0	-1	1	0	
Е	2	1	1	1	-1	-1	-1	0	
G_1	2	0	1	-1	1	- 2	1	0	
\mathbf{G}_2	2	-4	0	1	0	0	1	-1	
T_1	3	2	0	0	1	1	-1	-1	
\mathbf{T}_2	З	3	0	-1	-1	1	1	0	
Н	4	- 3	-1	0	0	0	-1	1	-2
									-2 -1
									0 1
									2

All baryon spin states wanted: *j* = 1/2, 3/2, 5/2, ...
 Rotation symmetry is reduced due to discretization rotation O(3) ⇒ octahedral O_h group

	Ι	J	6 C4	8 C6	8 C3	6 C ₉	6 C'g	$12 C'_4$
A_1	1	1	1	1	1	1	1	1
A_2	1	3	-2	1	0	-1	1	0
Е	2	1	1	1	-1	-1	-1	0
G_1	2	0	1	-1	1	- 2	1	0
G_2	2	-4	0	1	0	0	1	-1
T_1	3	2	0	0	1	1	-1	-1
T_2	3	3	0	-1	-1	1	1	0
н	4	-3	-1	0	0	0	-1	1

All baryon spin states wanted: *j* = 1/2, 3/2, 5/2, ...
 Rotation symmetry is reduced due to discretization rotation O(3) ⇒ octahedral O_h j Irreps

	I	J	$6 C_4$	8 C6	8 C3	6 Cg	6 C'g	12 C' ₄
A_1	1	1	1	1	1	1	1	1
\mathbb{A}_2	1	3	-2	1	0	-1	1	0
Е	2	1	1	1	-1	-1	-1	0
G_1	2	0	1	-1	1	-2	1	0
G_2	2	-4	0	1	0	0	1	-1
T_1	3	2	0	0	1	1	-1	-1
T_2	3	3	0	-1	-1	1	1	0
\mathbf{H}	4	- 3	-1	0	0	0	-1	1
Baryons								

Variational Method

C. Michael, Nucl. Phys. B 259, 58 (1985) M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)

Construct the matrix

 $C_{i j}(t) = \langle 0 \mid \mathcal{O}_i(t)^{\dagger} \mathcal{O}_j(0) \mid 0 \rangle$

Solve for the generalized eigensystem of $\frac{1}{2}$

 $C(t_0)^{-1/2}C(t)C(t_0)^{-1/2}v = \lambda(t, t_0)v$

with eigenvalues

$$\lambda_n(t, t_0) = e^{-(t-t_0)E_n} (1 + \mathcal{O}(e^{-|\delta E|(t-t_0)}))$$

At large *t*, the signal of wanted state dominates.

Unfortunately, we cannot see a clear radial excited state with the smeared propagators we got for free.

Huey-Wen Lin — Univ. of Kentucky

Huey-Wen Lin — Univ. of Kentucky

The less known baryons (Ξ) Symbols: $J^P = 1/2^+ \triangle$, $1/2^- \nabla$, $3/2^+ \diamondsuit$, $3/2^- \Box$ Ξ $\Xi(1690)$? $\Xi(1530)$ $\Xi(1820)$

Summary/Outlook — I

What we have done:

- 2+1-flavor calculations with volume around 2.6 fm
- \clubsuit Ground states of $G_{1g/u}$ and $H_{g/u}$ for each flavor
- Preliminary study with lightest pion mass 300 MeV
- Correct mass ordering pattern is seen

Currently in progress:

- Increase the statistics on the lightest two pion-mass points
- Mixed action chiral extrapolation for octet and decuplet
- Open-minded for extrapolation to physical pion mass for other states

In the future:

Lower pion masses to confirm chiral logarithm drops

Three-Point Green Functions

in collaboration with

Kostas Orginos

Hyperon axial coupling constants

Strangeness in nucleon magnetic and electric moments

Semi-leptonic decays

Green Functions

Three-point function with connected piece only

$$C_{\text{3pt}}^{\Gamma,\mathcal{O}}\left(\vec{p},t,\tau\right) = \sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J_{\beta}\left(\vec{p},t\right) \mathcal{O}(\tau) \overline{J}_{\alpha}\left(\vec{p},0\right) \rangle$$

Two constructions:

- Iso-vector quantities
- Use ratios to cancel out the unwanted factors

 $\frac{\Gamma^{BB}_{\mu,GG}(t_i,t,t_f,\overrightarrow{p}_i,\overrightarrow{p}_f;T)}{\Gamma^{BB}_{GG}(t_i,t_f,\overrightarrow{p}_f;T)}\sqrt{\frac{\Gamma^{BB}_{PG}(t,t_f,\overrightarrow{p}_i;T)}{\Gamma^{BB}_{PG}(t,t_f,\overrightarrow{p}_f;T)}} \sqrt{\frac{\Gamma^{BB}_{PG}(t_i,t_f,\overrightarrow{p}_f;T)}{\Gamma^{BB}_{PG}(t_i,t_f,\overrightarrow{p}_f;T)}}\sqrt{\frac{\Gamma^{BB}_{PG}(t_i,t_f,\overrightarrow{p}_f;T)}{\Gamma^{BB}_{PG}(t_i,t_f,\overrightarrow{p}_i;T)}}$

Axial Coupling Constants: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

- Definition: $\langle N_2 | A | N_1 \rangle_{\mu}(q) = \overline{u}_{N_2}(p') \left[\gamma_{\mu} G_1(q^2) + \sigma_{\mu\nu} q_{\nu} \frac{G_2(q^2)}{M_{N_1} + M_{N_2}} \right] \gamma_5 u_{N_1}(p)$
- Has applications such as hyperon scattering, non-leptonic decays, ...
- Cannot be determined by experiment
- Existing theoretical predictions:
 - Chiral perturbation theory

 $0.35 \le g_{\Sigma\Sigma} \le 0.55$ $0.18 \le -g_{\Xi\Xi} \le 0.36$

M. J. Savage et al., Phys. Rev. D55, 5376 (1997);

 \Rightarrow Large- N_c

 $0.30 \leq g_{\Sigma\Sigma} \leq 0.36 \qquad 0.26 \leq -g_{\Xi\Xi} \leq 0.30$

R. Flores-Mendieta et al., Phys. Rev. D58, 094028 (1998); Loose bounds on the values

Lattice QCD can provide substantial improvement.

Axial Coupling Constants: $q_{==}$ and $q_{\Sigma\Sigma}$

- Pion mass: 350–750 MeV
- First lattice calculation of this quantity

Chiral perturbation theory fails to describe the data

W. Detmold and C. J. D. Lin, Phys. Rev. D71, 054510 (2005)

Including quadratic and log terms with coefficients consistent with 0

Systematic errors: finite volume + finite a $g_{\Sigma\Sigma} = 0.437(16)_{\text{stat}}(22)_{\text{syst}} \quad g_{\Xi\Xi} = -0.279(12)_{\text{stat}}(16)_{\text{syst}}$

- Purely sea-quark effect
- First strange magnetic moment was measured by SAMPLE $G_M^s(Q^2 = 0.1 \ GeV^2) = 0.23(37)(25)(29)$

B. Mueller et al. (SAMPLE) Phys. Rev. Lett. 78, 3824 (1997)

More data is being collected today

HAPPEX and *G0* collaborations at Jefferson Lab, *SAMPLE* at MIT-BATES, and A4 at Mainz

Lattice calculations

$$\langle B | V_{\mu} | B \rangle(q) = \overline{u}_B(p') \left[\gamma_{\mu} F_1(q^2) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{2M_B} \right] u_B(p) e^{-iq \cdot x}$$

the disconnected diagram is a must

- Noisy estimator -0.28(10) to +0.05(6)
 Kentucky Field Theory group (97-01)
- Help with chiral perturbation theory Adelaide-JLab group (06)
 -0.046(19)

Quenched approximation

Quenched Approximation

Full QCD:
$$\langle O \rangle = \frac{1}{Z} \int [dU] [d\psi] [d\overline{\psi}] e^{-S_F(U,\psi,\overline{\psi}) - S_G(U)} O(U,\psi,\overline{\psi})$$

$$= \frac{1}{Z} \int [dU] \det M e^{-S_G(U)} O(U)$$

Quenched: Take det M = constant.

Historically used due to the lack of computation power

- Bad: Uncontrollable systematic error
- Good? Cheap exploratory studies to develop new methods

- Disconnected diagrams are challenging
- Much effort has been put into resolving this difficulty
- Alternative approach:

D. B. Leinweber, Phys. Rev. D 53, 5115 (1996).

Assume charge symmetry:

$$p = e_{u}u^{p} + e_{d}d^{p} + O_{N}; \qquad n = e_{d}u^{p} + e_{u}d^{p} + O_{N},$$

$$\Sigma^{+} = e_{u}u^{\Sigma} + e_{s}s^{\Sigma} + O_{\Sigma}; \qquad \Sigma^{-} = e_{d}u^{\Sigma} + e_{s}s^{\Sigma} + O_{\Sigma},$$

$$\Xi^{0} = e_{s}s^{\Xi} + e_{u}u^{\Xi} + O_{\Xi}; \qquad \Xi^{-} = e_{s}s^{\Xi} + e_{d}u^{\Xi} + O_{\Xi}.$$

The disconnected piece for the proton is $O_N = \frac{2}{3}{}^l G_M^u - \frac{1}{3}{}^l G_M^d - \frac{1}{3}{}^l G_M^s$

The strangeness contribution is

$$G_M^s = \left(\frac{{}^l R_d^s}{1 - {}^l R_d^s}\right) \left[2p + n - \frac{u^p}{u^{\Sigma}}(\Sigma^+ - \Sigma^-)\right]$$

$$G_{M}^{s} = \left(\frac{{}^{l}R_{d}^{s}}{1 - {}^{l}R_{d}^{s}}\right)\left[p + 2n - \frac{u^{n}}{u^{\Xi}}(\Xi^{0} - \Xi^{-})\right] \text{ with } {}^{l}R_{d}^{s} \equiv {}^{l}G_{M}^{s}/{}^{l}G_{M}^{d}$$

- Disconnected diagrams are challenging
- Much effort has been put into resolving this difficulty
- Alternative approach:

D. B. Leinweber, Phys. Rev. D 53, 5115 (1996).

Assume charge symmetry:

$$p = e_u u^p + e_d d^p + O_N; \qquad n = e_d u^p + e_u d^p + O_N,$$

$$\Sigma^+ = e_u u^{\Sigma} + e_s s^{\Sigma} + O_{\Sigma}; \qquad \Sigma^- = e_d u^{\Sigma} + e_s s^{\Sigma} + O_{\Sigma},$$

$$\Xi^0 = e_s s^{\Xi} + e_u u^{\Xi} + O_{\Xi}; \qquad \Xi^- = e_s s^{\Xi} + e_d u^{\Xi} + O_{\Xi}.$$

The disconnected piece for the proton is $O_N = \frac{2}{3}{}^l G_M^u - \frac{1}{3}{}^l G_M^d - \frac{1}{3}{}^l G_M^s$

The strangeness contribution is

 $G_M^s = \left(\frac{{}^l R_d^s}{1 - {}^l R_d^s}\right) \left[3.673 - \frac{u^p}{u^{\Sigma}}(3.618)\right] \mu_N$

Needs better statistics

 $G_M^s = \left(\frac{{}^l R_d^s}{1 - {}^l R_d^s}\right) \left[-1.033 - \frac{u^n}{u^{\Xi}}(-0.599)\right] \mu_N \quad \text{with} \quad {}^l R_d^s \equiv {}^l G_M^s / {}^l G_M^d$

- Magnetic moment $\mu_B = F_2(q^2=0)$
- Tipole-form extrapolation to $q^2 = 0$

Example: *u*-quark contribution in Σ form factor $F_2(q^2)$

- **•** Dipole-form extrapolation to $q^2 = 0$
- Magnetic-moment ratios (linear extrapolation, for now)

- Tipole-form extrapolation to $q^2 = 0$
- Magnetic-moment ratios (linear extrapolation, for now)

- **•** Dipole-form extrapolation to $q^2 = 0$
- Magnetic-moment ratios (linear extrapolation, for now)

Strange Electric Moment of Nucleon

→ G^s_E is proportional to Q² r² s
→ Charge symmetry: D. B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2004).
⟨r²⟩^s = r^s_d/(1 - r^s_d) [2⟨r²⟩^p + ⟨r²⟩ⁿ - ⟨r²⟩^u)] r^s_d = 0.16(4)

u-quark form contribution of vector form factors

Strangeness

 \bullet G_E^s - G_M^s plots

A. Acha et al., Happex Collaboration, Phys.Rev.Lett.98:032301, 2007

Hyperon Decays

• Matrix element of the hyperon β -decay process $B_1 \rightarrow B_2 e^- \overline{\nu}$

$$\mathcal{M} = \frac{G_s}{\sqrt{2}} \overline{u}_{B_2} (O^{\mathrm{V}}_{\alpha} + O^{\mathrm{A}}_{\alpha}) u_{B_1} \overline{u}_e \gamma^{\alpha} (1 + \gamma_5) v_{\nu}$$

with

$$O_{\alpha}^{V} = f_{1}(q^{2})\gamma^{\alpha} + \frac{f_{2}(q^{2})}{M_{B_{1}}}\sigma_{\alpha\beta}q^{\beta} + \frac{f_{3}(q^{2})}{M_{B_{2}}}q_{\alpha}$$
$$O_{\alpha}^{A} = \left(g_{1}(q^{2})\gamma^{\alpha} + \frac{g_{2}(q^{2})}{M_{B_{1}}}\sigma_{\alpha\beta}q^{\beta} + \frac{g_{3}(q^{2})}{M_{B_{2}}}q_{\alpha}\right)\gamma_{5}$$

Hyperon Decay Experiments

- Experiments: CERN WA2, Fermilab E715, BNL AGS, Fermilab KTeV, CERN NA48
- Summary N. Cabibbo et al. 2003 with f_2/f_1 and f_1 at the SU(3) limit

Decay	Rate (µs-1)	g_1/f_1	V _{us}
$\Lambda \to p e^- \overline{\nu}$	3.161(58)	0.718(15)	0.2224 ± 0.0034
$\Sigma^- \to n e^- \overline{\nu}$	6.88(24)	-0.340(17)	0.2282 ± 0.0049
$\Xi^- \to \Lambda e^- \overline{\nu}$	3.44(19)	0.25(5)	0.2367 ± 0.0099
$\Xi^0 ightarrow \Sigma^+ e^- \overline{\nu}$	0.876(71)	1.32(+.22/18)	0.209 ± 0.027
Combined			0.2250 ± 0.0027

PDG 2006 number

• Better g_1/f_1 from lattice calculations?

$|V_{us}|$ from Hyperons Decays

Two quenched calculations, different channels

No systematic error estimate from quenching effects!

Huey-Wen Lin — Univ. of Kentucky

Ademollo-Gatto Theorem

- Chiral extrapolation:
 - SU(3) symmetry-breaking Hamiltonian

$$H' = \frac{1}{\sqrt{3}} \left(m_s - \frac{m_d + m_u}{2} \right) \bar{q} \lambda^8 q$$

There is no first-order correction O(H') to $f_1(0)$; thus

$$f_1(0) = f_1^{SU(3)}(0) + O({H'}^2)$$

Common choice of observable for $H': M_K^2 - M_\pi^2$

Step I:
$$R(M_K, M_\pi) = \frac{1 - |f'(0)|}{a^4 (M_K^2 - M_\pi^2)^2}$$

• Step II: $R(M_K, M_\pi) = b_0 + b_1 a^2 (M_K^2 + M_\pi^2)$

• Obtain
$$|V_{us}|$$
 from

$$\Gamma = G_F^2[V_{us}] \frac{\Delta m^5}{60\pi^3} (1 + \delta_{rad})$$

$$\times \left[\left(1 - \frac{3}{2}\beta \right) \left(|f_1|^2 + |g_1|^2 \right) + \frac{6}{7}\beta^2 \left(|f_1|^2 + 2|g_1|^2 + \operatorname{Re}(f_1f_2^{\star}) + \frac{2}{3}|f_2^2| \right) + \delta_{q^2} \right]$$
with g_1/f_1 (exp) and f_2/f_1 (SU(3) value)

Mass Dependence – I

• Do the mass extrapolation as $f_1(0) = -1 + (b_0 + b_1 a^2 (M_K^2 + M_\pi^2)) \times a^4 (M_K^2 - M_\pi^2)^2$

Simultaneous Fit

Combine the momentum and mass extrapolation into one fitting form

$$f_{+}(q^{2}) = \frac{1 + \left(M_{K}^{2} - M_{\pi}^{2}\right)^{2} \left(A_{1} + A_{2} \left(M_{K}^{2} + M_{\pi}^{2}\right)\right)}{\left(1 - \frac{q^{2}}{M_{0} + M_{1} \left(M_{K}^{2} + M_{\pi}^{2}\right)}\right)^{2}}$$

Simultaneous Fit

Combined momentum and mass dependence

From hyperon analysis

- ◆ Predictions for $g_{\Sigma\Sigma} = 0.437(16)(22)$ and $g_{\Xi\Xi} = -0.279(12)(16)$
- Preliminary proton strange magnetic and electric moments directly from full QCD: -0.066(12)(23) and -0.022(61)
- \clubsuit Looking for improvements in G_E^s

More work to be done in hyperon semi-leptonic decay

- First dynamical calculation
- Preliminary result from Lin-Orginos is consistent with the previous calculation
- We need much higher statistics for a lighter-pion mass calculation (compared with the quenched one)
- Higher precision g_1/f_1 :
 - Will make the $|V_{us}|$ equivalent to or better than the one from K_{l3} channel