Semileptonic Hyperon Decays in Full QCD

Huey-Wen Lin

in collaboration with Kostas Orginos

- Motivation/Background
- Quick Review of Lattice Calculations
- Lattice Techniques/Parameters
- Numerical Results
- Summary and Outlook

Semileptonic Decays and CKM Matrix

◆ 1963: Cabibbo proposes current theory $J^i_{\alpha} = V^i_{\alpha} + A^i_{\alpha}$ $J_{\alpha} = \cos \theta_C (J^1_{\alpha} + i J^2_{\alpha}) + \sin \theta_C (J^4_{\alpha} + i J^5_{\alpha})$

to explain semileptonic decays.

1973: Kobayashi and Maskawa add mixing of three generations of quarks:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

before the discovery of the *b* quark. Cabibbo angle in CKM matrix: $\tan \theta_C = \frac{V_{us}}{V_{ud}}$

$|V_{us}|$ in CKM Matrix

Huey-Wen Lin — DWF@10 Workshop

 Calculate $K \to \pi$ matrix element Lorentz invariance

$$\begin{split} &\langle \pi(p') \big| V_\mu \big| K(p) \rangle = (p_\mu + p'_\mu) f_+(q^2) + (p_\mu - p'_\mu) f_-(q^2) \\ &\text{with} \quad V_\mu = \bar{s} \gamma_\mu u \end{split}$$

 ◆ Calculate the scalar form factor $f_0(q^2) = f_+(q^2) + \frac{q^2}{m_K^2 - m_\pi^2} f_-(q^2)$
 ◆ Extrapolate to q = 0 point in dipole

 ◆ Obtain | V_{us}| from

 Γ(K_{ℓ3}) = $\frac{G_F^2 M_K^5}{128\pi^3} (V_{us})^2 S_{ew} (f_+^{K^0\pi^-}(0))^2 C_K^2 I_K^\ell(\lambda_i) [1 + \delta_{SU(2)}^K + \delta_{em}^{K\ell}]^2$

Lattice Calculation of $|V_{us}|$ – Meson

Baryon Matrix Elements

• Matrix element of hyperon β decay $B_1 \to B_2 e^- \overline{\nu}$

$$\mathcal{M} = \frac{G_s}{\sqrt{2}} \overline{u}_{B_2} (O^{\mathrm{V}}_{\alpha} + O^{\mathrm{A}}_{\alpha}) u_{B_1} \overline{u}_e \gamma^{\alpha} (1 + \gamma_5) v_{\nu}$$

with

$$O_{\alpha}^{V} = f_{1}(q^{2})\gamma^{\alpha} + \frac{f_{2}(q^{2})}{M_{B_{1}}}\sigma_{\alpha\beta}q^{\beta} + \frac{f_{3}(q^{2})}{M_{B_{2}}}q_{\alpha}$$
$$O_{\alpha}^{A} = \left(g_{1}(q^{2})\gamma^{\alpha} + \frac{g_{2}(q^{2})}{M_{B_{1}}}\sigma_{\alpha\beta}q^{\beta} + \frac{g_{3}(q^{2})}{M_{B_{2}}}q_{\alpha}\right)\gamma_{5}$$

The decay rate is

$$\Gamma = G_F^2 \left[|V_{us}| \right]^2 \frac{\Delta m^5}{60\pi^3} \left(1 + \delta_{\rm rad} \right) \\ \times \left[\left(1 - \frac{3}{2} \beta \right) \left(|f_1|^2 + |g_1|^2 \right) + \frac{6}{7} \beta^2 \left(|f_1|^2 + 2|g_1|^2 + \operatorname{Re}(f_1 f_2^{\star}) + \frac{2}{3} |f_2^2| \right) + \delta_{q^2} \right]$$

Baryon Matrix Elements

• Matrix element of hyperon β decay $B_1 \to B_2 e^- \overline{\nu}$

$$\mathcal{M} = \frac{G_s}{\sqrt{2}} \overline{u}_{B_2} (O^{\mathrm{V}}_{\alpha} + O^{\mathrm{A}}_{\alpha}) u_{B_1} \overline{u}_e \gamma^{\alpha} (1 + \gamma_5) v_{\nu}$$

with

$$O_{\alpha}^{V} = f_{1}(q^{2})\gamma^{\alpha} + \frac{f_{2}(q^{2})}{M_{B_{1}}}\sigma_{\alpha\beta}q^{\beta} + \frac{f_{3}(q^{2})}{M_{B_{1}}}q_{\alpha}$$
$$O_{\alpha}^{A} = \left(g_{1}(q^{2})\gamma^{\alpha} + \frac{g_{2}(q^{2})}{M_{B_{1}}}\sigma_{\alpha\beta}q^{\beta} + \frac{g_{3}(q^{2})}{M_{B_{1}}}q_{\alpha}\right)\gamma_{5}$$

The vector form factor $f_1(0)$ links to $|V_{us}|$

More than just an alternative way to get |V_{us}|!
\$ g₁(0)/f₁(0) gives information about strangeness content.
\$ g₂(0) and f₃(0) vanish in the SU(3) limit → Symmetry-breaking measure

Hyperon Experiments

- Experiments: CERN WA2, Fermilab E715, BNL AGS, Fermilab KTeV, CERN NA48
- Summary

Channel	$f_1^{SU(3)}$	$ f_1 V_{us} $	$(g_1/f_1)^{SU(3)}$	$(g_1/f_1)^{\exp}$
$n \to p$	1	n/a	F + D	1.2670(30)
$\Lambda \to p$	$-\sqrt{3/2}$	0.2221(33)	F + D/3	0.718(15)
$\Sigma^- \to n$	-1	0.2274(49)	F - D	-0.340(17)
$\Xi^- \to \Lambda$	$\sqrt{3/2}$	0.2367(97)	F - D/3	0.25(5)
$\Xi^- \to \Sigma^0$	$\sqrt{1/2}$	n/a	F + D	n/a
$\Xi^0 \to \Sigma^+$	1	0.216(33)	F + D	1.32(22)

Ξ measurements are still active!

Lattice Calculation of $|V_{us}|$ – Baryon

Two quenched calculations, different channels

Lattice Actions

- (Improved) Staggered fermions (asqtad):
 - Relatively cheap for dynamical fermions (good)
 - Mixing among parities and flavors or tastes
 - Baryonic operators a nightmare not suitable
- Chiral fermions (e.g., Domain-Wall/Overlap):
 - Automatically O(a) improved, suitable for spin physics and weak matrix elements
 - Expensive

Lattice Actions

- (Improved) Staggered fermions (asqtad):
 - Relatively cheap for dynamical fermions (good)
 - Mixing among parities and flavors or tastes
 - Baryonic operators a nightmare not suitable
- Chiral fermions (e.g., Domain-Wall/Overlap):
 - Automatically O(a) improved, suitable for spin physics and weak matrix elements
 - Expensive
- Mixed actions:
 - Match the sea Goldstone pion mass to the DWF pion
 - Pion masses as low as 260 MeV
 - Volume: 2.6-3.5 fm
 - Free light quark propagators

Parameters

- This calculation:
 - Pion mass range: 360-700 MeV
 - Strange-strange Goldstone fixed at 763(2) MeV
 - Volume fixed at 2.6 fm
 - → $a \approx 0.125$ fm, $L_s = 16$, $M_5 = 1.7$
 - HYP-smeared gauge, box size of $20^3 \times 32$

Label	m_{π} (MeV)	$m_K \; (MeV)$	$\Sigma^- \to n \text{ conf.}$
m010	358(2)	605(2)	600
m020	503(2)	653(2)	420
m030	599(1)	688(2)	561
m040	689(2)	730(2)	306

Effective Mass Plots

Huey-Wen Lin — DWF@10 Workshop

Summary

Summary and extrapolation

Summary and extrapolation

Alternative extrapolations

Better agreement with experiments

Constructions

Two-point function

$$\begin{split} \Gamma^{NN}_{AB}(t_i, t_f, \overrightarrow{p} \; ; \; T) &\to \\ a^6 Z^N_B(p) Z^N_A(p) \sum_s T_{\alpha\beta} \overline{u}_\alpha(\overrightarrow{p}, s) u_\beta(\overrightarrow{p}, s) \\ &\times \frac{m_N}{E_N(\overrightarrow{p})} e^{-(t_f - t_i)E_N(\overrightarrow{p})} \\ &= \left(\frac{E_N(\overrightarrow{p}) + m_N}{2E_N(\overrightarrow{p})}\right) e^{-(t_f - t_i)E_N(\overrightarrow{p})} \end{split}$$

Three-point function

$$\begin{split} &\Gamma_{\mu,AB}^{NN}(t_i,t,t_f,\overrightarrow{p}_i,\overrightarrow{p}_f;\,T) \rightarrow \\ &= \frac{m_N^2}{E_N(\overrightarrow{p}_f)E_N(\overrightarrow{p}_i)} e^{-(t_f-t)E_N(\overrightarrow{p}_f)} e^{-(t-t_i)E_N(\overrightarrow{p}_i)} \\ &\sum_{s,s'} T_{\alpha\beta}Z_B(p_f)u_\beta(\overrightarrow{p}_f,s') \\ &\left\langle N(\overrightarrow{p}_f,s') \left| j_\mu(0) \right| N(\overrightarrow{p}_i,s) \right\rangle \bar{u}_\alpha(\overrightarrow{p}_i,s) Z_A(p_i) \end{split}$$

Constructions

Two-point function

$$\begin{split} \Gamma^{NN}_{AB}(t_i, t_f, \overrightarrow{p} \; ; \; T) &\to \\ a^6 Z^N_B(p) Z^N_A(p) \sum_s T_{\alpha\beta} \overline{u}_\alpha(\overrightarrow{p}, s) u_\beta(\overrightarrow{p}, s) \\ &\times \frac{m_N}{E_N(\overrightarrow{p})} e^{-(t_f - t_i)E_N(\overrightarrow{p})} \\ &= \left(\frac{E_N(\overrightarrow{p}) + m_N}{2E_N(\overrightarrow{p})}\right) e^{-(t_f - t_i)E_N(\overrightarrow{p})} \end{split}$$

Three-point function

$$\begin{split} &\Gamma_{\mu,AB}^{NN}(t_i,t,t_f,\overrightarrow{p}_i,\overrightarrow{p}_f;\,T) \rightarrow \\ &= \frac{m_N^2}{E_N(\overrightarrow{p}_f)E_N(\overrightarrow{p}_i)} e^{-(t_f-t)E_N(\overrightarrow{p}_f)} e^{-(t-t_i)E_N(\overrightarrow{p}_i)} \\ &\sum_{s,s'} T_{\alpha\beta}Z_B(p_f)u_\beta(\overrightarrow{p}_f,s') \\ &\left\langle N(\overrightarrow{p}_f,s') \left| j_\mu(0) \right| N(\overrightarrow{p}_i,s) \right\rangle \bar{u}_\alpha(\overrightarrow{p}_i,s) Z_A(p_i) \end{split}$$

Ratio cancels out t and Z dependence

$$\begin{split} R_{j_{\mu}} &= \frac{Z_{V}\Gamma_{\mu,AB}^{\Sigma N}(t_{i},t,t_{f},\overrightarrow{p}_{i},\overrightarrow{p}_{f};\,T)}{\Gamma_{BC}^{NN}(t_{i},t_{f},\overrightarrow{p}_{f};\,T)}\sqrt{\frac{\Gamma_{DE}^{\Sigma\Sigma}(t_{i},t_{f},\overrightarrow{p}_{i};\,T)}{\Gamma_{FH}^{NN}(t_{i},t_{f},\overrightarrow{p}_{f};\,T)}} \\ &\times \sqrt{\frac{\Gamma_{CC}^{NN}(t_{i},t,\overrightarrow{p}_{f};\,T)}{\Gamma_{AA}^{\Sigma\Sigma}(t_{i},t,\overrightarrow{p}_{i};\,T)}}\sqrt{\frac{\Gamma_{FH}^{NN}(t_{i},t_{f},\overrightarrow{p}_{f};\,T)}{\Gamma_{DE}^{\Sigma\Sigma}(t_{i},t_{f},\overrightarrow{p}_{i};\,T)}}, \end{split}$$

Constructions

Two-point function

$$\begin{split} \Gamma^{NN}_{AB}(t_i, t_f, \overrightarrow{p} \; ; \; T) &\to \\ a^6 Z^N_B(p) Z^N_A(p) \sum_s T_{\alpha\beta} \overline{u}_\alpha(\overrightarrow{p}, s) u_\beta(\overrightarrow{p}, s) \\ &\times \frac{m_N}{E_N(\overrightarrow{p})} e^{-(t_f - t_i)E_N(\overrightarrow{p})} \\ &= \left(\frac{E_N(\overrightarrow{p}) + m_N}{2E_N(\overrightarrow{p})}\right) e^{-(t_f - t_i)E_N(\overrightarrow{p})} \end{split}$$

Three-point function

$$\begin{split} &\Gamma_{\mu,AB}^{NN}(t_i,t,t_f,\overrightarrow{p}_i,\overrightarrow{p}_f;\,T) \rightarrow \\ &= \frac{m_N^2}{E_N(\overrightarrow{p}_f)E_N(\overrightarrow{p}_i)} e^{-(t_f-t)E_N(\overrightarrow{p}_f)} e^{-(t-t_i)E_N(\overrightarrow{p}_i)} \\ &\sum_{s,s'} T_{\alpha\beta}Z_B(p_f)u_\beta(\overrightarrow{p}_f,s') \\ &\left\langle N(\overrightarrow{p}_f,s') \left| j_\mu(0) \right| N(\overrightarrow{p}_i,s) \right\rangle \bar{u}_\alpha(\overrightarrow{p}_i,s) Z_A(p_i) \end{split}$$

Ratio cancels out t and Z dependence

$$\begin{split} R_{j_{\mu}} &= \frac{Z_{V}\Gamma_{\mu,GG}^{\Sigma N}(t_{i},t,t_{f},\overrightarrow{p}_{i},\overrightarrow{p}_{f};\,T)}{\Gamma_{GG}^{NN}(t_{i},t_{f},\overrightarrow{p}_{f};\,T)} \sqrt{\frac{\Gamma_{PG}^{\Sigma \Sigma}(t,t_{f},\overrightarrow{p}_{i};\,T)}{\Gamma_{PG}^{NN}(t,t_{f},\overrightarrow{p}_{f};\,T)}} \\ &\times \sqrt{\frac{\Gamma_{GG}^{NN}(t_{i},t,\overrightarrow{p}_{f};\,T)}{\Gamma_{GG}^{\Sigma \Sigma}(t_{i},t,\overrightarrow{p}_{i};\,T)}} \sqrt{\frac{\Gamma_{PG}^{NN}(t_{i},t_{f},\overrightarrow{p}_{f};\,T)}{\Gamma_{PG}^{\Sigma \Sigma}(t_{i},t_{f},\overrightarrow{p}_{i};\,T)}}, \end{split}$$

Solve for From factors

Redefine matrix element as

$$\langle B_2 | V_\mu | B_1 \rangle(q) = \overline{u}_{B_2}(p') \left[\gamma_\mu F_1(q^2) + \sigma_{\mu\nu} q_\nu \frac{F_2(q^2)}{M_{B_1} + M_{B_2}} - iq_\mu \frac{F_3(q^2)}{M_{B_1} + M_{B_2}} \right] u_{B_1}(p) e^{-iq \cdot x}$$

$$\langle B_2 | A_\mu [B_1 \rangle_\mu(q) = \overline{u}_{B_2}(p') \left[\gamma_\mu G_1(q^2) + \sigma_{\mu\nu} q_\nu \frac{G_2(q^2)}{M_{B_1} + M_{B_2}} - iq_\mu \frac{G_3(q^2)}{M_{B_1} + B_{B_2}} \right] \gamma_5 u_{B_1}(p) e^{-iq \cdot x}$$

Use "mixed" projection operator

$$T = \frac{1}{8}(1 + \gamma_4)(1 + i\gamma_5\gamma_3)(1 + \gamma_4)$$

Solve the following:

$$\begin{aligned} \frac{1}{\sqrt{2E_{m_{\Sigma}}\left(m_{\Sigma}+E_{m_{\Sigma}}\right)}\left(m_{N}+m_{\Sigma}\right)} \times \\ &\left\{F_{1}\left(m_{N}+m_{\Sigma}\right)\left(p_{y}-ip_{x}\right)+F_{2}\left(-im_{N}p_{x}+iE_{m_{\Sigma}}p_{x}+m_{N}p_{y}+m_{\Sigma}p_{y}\right)+F_{3}\left(-2m_{\Sigma}p_{x}-2E_{m_{\Sigma}}p_{x}\right), \\ &F_{1}\left(-m_{N}-m_{\Sigma}\right)\left(p_{x}+ip_{y}\right)+F_{2}\left(-m_{N}p_{x}-m_{\Sigma}p_{x}-im_{N}p_{y}+ip_{y}E_{m_{\Sigma}}\right)+F_{3}\left(-2m_{\Sigma}p_{y}-2E_{m_{\Sigma}}p_{y}\right), \\ &-iF_{1}\left(m_{N}+m_{\Sigma}\right)p_{z}-iF_{2}\left(m_{N}-E_{m_{\Sigma}}\right)p_{z}-iF_{3}\left(-2im_{\Sigma}-2iE_{m_{\Sigma}}\right)p_{z}, \\ &F_{1}\left(m_{\Sigma}\left(m_{N}+m_{\Sigma}\right)+E_{m_{\Sigma}}\left(m_{N}+m_{\Sigma}\right)\right)-F_{2}\overrightarrow{p}^{2}+F_{3}\left(2i\overrightarrow{p}^{2}+2im_{\Sigma}^{2}-2im_{N}m_{\Sigma}-2i\left(m_{N}-m_{\Sigma}\right)E_{m_{\Sigma}}\right)\right\}\end{aligned}$$

Solve for From factors

Redefine matrix element as

$$\langle B_2 | V_\mu | B_1 \rangle(q) = \overline{u}_{B_2}(p') \left[\gamma_\mu F_1(q^2) + \sigma_{\mu\nu} q_\nu \frac{F_2(q^2)}{M_{B_1} + M_{B_2}} - iq_\mu \frac{F_3(q^2)}{M_{B_1} + M_{B_2}} \right] u_{B_1}(p) e^{-iq \cdot x}$$

$$\langle B_2 | A_\mu [B_1 \rangle_\mu(q) = \overline{u}_{B_2}(p') \left[\gamma_\mu G_1(q^2) + \sigma_{\mu\nu} q_\nu \frac{G_2(q^2)}{M_{B_1} + M_{B_2}} - iq_\mu \frac{G_3(q^2)}{M_{B_1} + B_{B_2}} \right] \gamma_5 u_{B_1}(p) e^{-iq \cdot x}$$

Use "mixed" projection operator

$$T = \frac{1}{8}(1 + \gamma_4)(1 + i\gamma_5\gamma_3)(1 + \gamma_4)$$

Solve the following:

$$\frac{1}{\sqrt{2E_{m_{\Sigma}}(m_{\Sigma}+E_{m_{\Sigma}})(m_{N}+m_{\Sigma})}} \times \left\{ F_{1}(m_{N}+m_{\Sigma})(p_{y}-ip_{x}) + F_{2}(-im_{N}p_{x}+iE_{m_{\Sigma}}p_{x}+m_{N}p_{y}+m_{\Sigma}p_{y}) + F_{3}(-2m_{\Sigma}p_{x}-2E_{m_{\Sigma}}p_{x}), \\ F_{1}(-m_{N}-m_{\Sigma})(p_{x}+ip_{y}) + F_{2}(-m_{N}p_{x}-m_{\Sigma}p_{x}-im_{N}p_{y}+ip_{y}E_{m_{\Sigma}}) + F_{3}(-2m_{\Sigma}p_{y}-2E_{m_{\Sigma}}p_{y}), \\ -iF_{1}(m_{N}+m_{\Sigma})p_{z}-iF_{2}(m_{N}-E_{m_{\Sigma}})p_{z}-iF_{3}(-2im_{\Sigma}-2iE_{m_{\Sigma}})p_{z}, \\ F_{1}(m_{\Sigma}(m_{N}+m_{\Sigma})+E_{m_{\Sigma}}(m_{N}+m_{\Sigma})) - F_{2}\vec{p}^{2} + F_{3}\left(2i\vec{p}^{2}+2im_{\Sigma}^{2}-2im_{N}m_{\Sigma}-2i(m_{N}-m_{\Sigma})E_{m_{\Sigma}}\right) \right\}$$

Three-Point Plateau

→ m_{π} = 358(2) MeV

Three-Point Plateau

Huey-Wen Lin — DWF@10 Workshop

Momentum Extrapolation

Fit to the dipole form

Huey-Wen Lin — DWF@10 Workshop

Momentum Extrapolation

Fit to the dipole form

Ademollo-Gatto Theorem

Symmetry-breaking Hamiltonian

$$H' = \frac{1}{\sqrt{3}} \left(m_s - \frac{m_d + m_u}{2} \right) \overline{q} \lambda^8 q$$

• Long story short, There is no first order correction O(H') to $f_1(0)$; thus $f_1(0) = f_1^{SU(3)}(0) + O({H'}^2)$

Ademollo-Gatto Theorem

Symmetry-breaking Hamiltonian

$$H' = \frac{1}{\sqrt{3}} \left(m_s - \frac{m_d + m_u}{2} \right) \bar{q} \lambda^8 q$$

The theorem tells us that There is no first order correction O(H') to $f_1(0)$; thus $f_1(0) = f_1^{SU(3)}(0) + O({H'}^2)$

Choices of observable for H':

$$rac{}{} m_K^2 - m_\pi^2$$

$$(m_{\Sigma} - m_N)/m_{\Sigma}$$

Mass Dependence – I

What has been done in the past...

• Guadagnoli et al. $\Sigma^- \to n$ construct an AG ratio $R(M_K, M_\pi) = \frac{1 - f_1(0)}{a^4 (M_K^2 - M_\pi^2)^2}$

and extrapolate mass dependence as

Huey-Wen Lin — DWF@10 Workshop

Mass Dependence – II

♦ Use $\delta = a^2 (M_K^2 - M_\pi^2)$ to describe the SU(3) symmetry breaking

Axial Coupling Constants: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

Summary/Outlook

- First non-quenched calculation of hyperon semileptonic decays
- Lighter pion masses as low as 350 MeV
- Preliminary results show $|V_{us}|$ (from $\Sigma \rightarrow n$)
 - * Consistent with the previous lattice measurement
 - * Larger error due to lighter pion mass
 - * More statistics needed for lightest point!

In the near future:

- * Finish the semileptonic form factor analysis, including $\Xi\!\to\Sigma$ channel
- * Σ and Ξ structure-function form factors
- Possibly take $\Lambda \rightarrow p$ data, if time allows