Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation.

H.H. Matevosyan^{1,2}, A.W. Thomas², P.C. Tandy³

¹Department of Physics & Astronomy, Louisiana State University

²Thomas Jefferson National Accelerator Facility

³Center for Nuclear Research, Department of Physics, Kent State University

Seminar at Nuclear Theory Center, Indiana University, 03/22/2007

H. H. Matevosyan, A. W. Thomas, P. C. Tandy

Improving Dressed LR Vertex

Seminar at NTC 1 / 40

モトイモト

Outline of Part I

- Introduction
- Motivation
- Dyson-Schwinger Equations (DSE) and Ladder-Rainbow Truncation
- The Quark-Gluon Vertex And The Bethe-Salpeter Kernel
 A Wider Class Of Quark-Gluon Vertex Dressing
 - Symmetry-Preserving Bethe-Salpeter Kernel
- 3 Algebraic Analysis
 - The Interaction Model
- 4 Meson Masses and Results
 - Vertex Dressing for Light Quarks
 - Current Quark Mass Dependence

Outline of Part II

Constructing The Fully Dressed Vertex

- Diagrammatic Counting
- Numerical Implementation
- Evaluating The Vertex
 - Computer-Algebraic And Numerical Evaluation

- Solutions Of The GAP Equation
- Looking For Convergence

Part I

Improving The Ladder-Summer Quark-Gluon Vertex

H. H. Matevosyan, A. W. Thomas, P. C. Tandy

Improving Dressed LR Vertex

Seminar at NTC 4 / 40

Motivation

- Dyson-Schwinger Equations tool for exploring non-perturbative hadron structure.
- Fully covariant Bethe-Salpeter description of bound states.
- Rarely one goes beyond Ladder-Rainbow (LR) truncation.
- How good or bad is LR truncation?
- Need to study the ladder truncation of more complete solution.
- Employ a simple model that can solve to high order and give some insight.

DSE and LR

GAP Equation

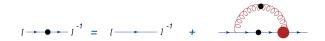
R. Alkofer and L. von Smekal, Phys. Rept. 353:28 (2001).

The DSE for the quark propagator (GAP equation):

•
$$S^{-1}(p) = Z_2 S_0^{-1}(p) + C_F Z_1 \int_q^{\Lambda} g^2 D_{\mu\nu}(p-q) \gamma_{\mu} S(q) \Gamma_{\nu}(q,p)$$

•
$$S_0^{-1}(p) = ip + m_{bm}$$

• $S(p)^{-1} = ip A(p^2, \mu^2) + B(p^2, \mu^2) = \frac{1}{Z(p^2, \mu^2)} [ip + M(p^2)]$



Renormalization Condition At The Scale $p^2 = \mu^2$: • $S(p)^{-1} \rightarrow ip + m(\mu)$

DSE and LR

GAP Equation

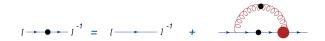
R. Alkofer and L. von Smekal, Phys. Rept. 353:28 (2001).

The DSE for the guark propagator (GAP equation):

•
$$S^{-1}(p) = Z_2 S_0^{-1}(p) + C_F Z_1 \int_q^{\Lambda} g^2 D_{\mu\nu}(p-q) \gamma_{\mu} S(q) \Gamma_{\nu}(q,p)$$

•
$$S_0^{-1}(p) = ip + m_{bm}$$

• $S(p)^{-1} = ip A(p^2, \mu^2) + B(p^2, \mu^2) = \frac{1}{Z(p^2, \mu^2)} [ip + M(p^2)]$



Renormalization Condition At The Scale $p^2 = \mu^2$:

•
$$S(p)^{-1} \rightarrow ip + m(\mu)$$

Need the dressed quark-gluon vertex and gluon 2-point functions to solve the GAP eq.

DSE and LR

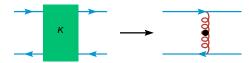
Ladder-Rainbow Truncation

P. Maris and C. D. Roberts, Int. J. Mod. Phys. E12, 297 (2003).

• GAP Eq. interaction kernel in Ultra-Violet:

 $Z_1 \gamma_\mu g^2 D_{\mu\nu}(k) \Gamma_{\nu}(q,p) \rightarrow 4\pi \alpha(k^2) \gamma_\mu D_{\mu\nu}^{\text{free}}(k) \gamma_{\nu}$

- Rainbow truncation of GAP eq. : $\alpha(k^2) \rightarrow \alpha_{eff}(k^2)$ for all k^2 and fit it to one or more chiral observables.
- Ladder approximation of Bethe-Salpeter (BS) scattering kernel one dressed gluon exchange:



• Inadequate description of scalar and flavor-singlet pseudoscalar mesons, admits colored diquark bound states.

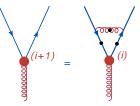
B N A B N

DSE and LB

Ladder-Summed Quark-Gluon Vertex Function

A. Bender et al., Phys. Rev. C65, 065203 (2002).

- Only 2-point gluon function were considered in dressing the quark-gluon vertex.
- $\Gamma_{\mu} = \sum_{i=0} \Gamma_{\mu}^{i}$, the ladder dressing scheme was used:

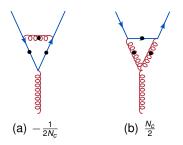


- Ansatz gluon 2-point function was used algebraic model.
- Chiral-Symmetry preserving Bethe-Salpeter (BS) scattering kernel has been constructed and the model was solved to obtain physical observables (meson masses, etc).
- Results don't agree with lattice-QCD data on vertex function and 1-loop pQCD analysis.

H. H. Matevosyan, A. W. Thomas, P. C. Tandy

Improving Dressed LR Vertex

1-loop pQCD Analysis



• Satisfies Slavnov-Taylor Id to $\mathcal{O}(g^3)$

$$k_{\mu}i\Gamma_{\mu}(
ho+k,
ho)=G(k^2)\left\{(1-B)S(
ho+k)^{-1}-S(
ho)^{-1}(1-B)
ight\}$$

Both in effective model: Ladder-Summed with CC_F color factor for each rung, −¹/₈ < C < 1.

I SL

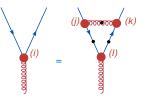
Effective 3-gluon Coupling in Ladder-Summed Vertex *M. S. Bhagwat et al., Phys. Rev. C70, 035205 (2004).*

- Implemented in *DSE_q* and meson *BSE* via (algebraic) *MN* model.
- C fitted to best reproduce lattice data reasonably good agreement with the data achieved.
- Compared to LR: 30% reduction in M_V , minor change in M_{PS} .

Self-Consistent Dressing

H.M. et al., nucl-th/0605057.

• Include all lower-order vertices in the ladder dressing scheme.



• Use effective color factor \mathcal{C} to account for 3-gluon coupling.

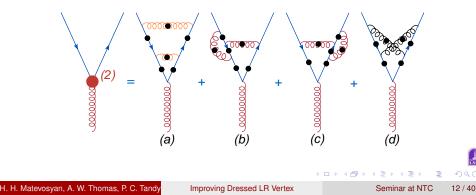
$$\Gamma^{i}_{\mu}(p_{+},p_{-}) = -\mathcal{C}C_{\rm F} \sum_{\substack{j,k,l \\ i=j+k+l+1 \\ \times \Gamma^{j}_{\sigma}(p_{+},l_{+})S(l_{+})\Gamma^{l}_{\mu}(l_{+},l_{-})S(l_{-})\Gamma^{k}_{\nu}(l_{-},p_{-}).$$

The Wider Class vs Ladder-Summed Vertex

The number of diagrams in a vertex with up to *n* gluon lines

- Improved scheme: 1 + n(n+1)(n+2)/6.
- Ladder-Summed vertex: a subset of (*n* + 1).

For Example:



Meson Bethe-Salpeter Equation (BSE)

The renormalized homogeneous Bethe-Salpeter equation (BSE) for the quark-antiquark channel, denoted by M:

$$[\Gamma_{M}(k; P)]_{EF} = \int_{q}^{\Lambda} [K(k, q; P)]_{EF}^{GH} [\chi_{M}(q; P)]_{GH},$$

where

- $\Gamma_M(k; P)$ meson Bethe-Salpeter amplitude (BSA).
- $\chi_M(k; P) = S(k_+)\Gamma_M(k; P)S(k_-)$ BS wavefunction.
- *K* amputated quark-antiquark scattering kernel.

Dressed-gluon ladder-truncation:

$$[K(k,q;P)]_{EF}^{GH} = D_{\mu\nu}(k-q) \left[l^{a} \gamma_{\mu} \right]_{EG} \left[l^{a} \gamma_{\nu} \right]_{HF}$$

Image: Image:

Symmetry-Preserving Bethe-Salpeter Kernel

A systematic procedure has been developed for obtaining chiral-symmetry preserving K_{BSE} from Σ_{GAP} (*H. J. Munczek, Phys. Rev. D52, 4736 (1995).*):

•
$$K_{EF}^{GH} = -\frac{\delta \Sigma_{EF}}{\delta S_{GH}}$$
.

 This kernel preserves the Axial-Vector Ward-Takahashi Identity ensures that chiral pseudoscalars remain massless independent of model details.

Using our model vertex to decompose the self-energy:

•
$$\Sigma(k) = \sum_{n=0}^{\infty} \Sigma^n(k).$$

H. H. Matevosyan, A. W. Thomas, P. C. Tandy

The Model Interaction Kernel

The meson BSE corresponding to the extended class of vertex dressing:

$$egin{aligned} \Gamma_{M}(k;P) &= -C_{\mathrm{F}} \int_{q}^{\Lambda} g^{2} D_{\mu
u}(k-q) \gamma_{\mu} \ & imes \left[\chi_{M}(q;P) \Gamma_{
u}(q_{-},k_{-}) + \mathcal{S}(q_{+}) \Lambda_{M
u}(q,k;P)
ight], \end{aligned}$$

where

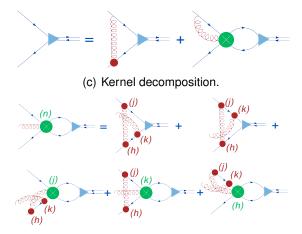
$$\Lambda_{M\nu}(\boldsymbol{q},\boldsymbol{k};\boldsymbol{P})=\sum_{n=0}^{\infty}\Lambda_{M\nu}^{n}(\boldsymbol{q},\boldsymbol{k};\boldsymbol{P}),$$

with

$$[\Lambda_{M\nu}^n(\boldsymbol{q},\boldsymbol{k};\boldsymbol{P})]_{LF} = \int_{I}^{\Lambda} \frac{\delta}{\delta S_{GH}(I_{\pm})} [\Gamma_{\nu}^n(\boldsymbol{q}_{-},\boldsymbol{k}_{-})]_{LF} \times [\chi_M(I;\boldsymbol{P})]_{GH}.$$

B N A B N

The Model Interaction Kernel



(d) Λ function decomposition.

Figure: BSE corresponding to the extended class of vertex dressing.

Improving Dressed LR Vertex

3 → 4 3

The Munczek-Nemirovsky Interaction Kernel

 Munczek-Nemirovsky Ansatz for the interaction kernel in Landau gauge:

$$g^2 D_{\mu
u}(k)
ightarrow \left(\delta_{\mu
u} - rac{k_\mu k_
u}{k^2}
ight) (2\pi)^4 \mathcal{G}^2 \delta^4(k)$$

 \mathcal{G}^2 - integrated kernel strength.

H. J. Munczek and A. M. Nemirovsky, Phys. Rev. D28, 181 (1983).

- Yields Ultra-Violet Finite DSEs: $Z_1 = Z_2 = 1$.
- Integral Equations ⇒ Algebraic Equations

Computer-Algebraic Evaluation Of The Dirac Algebra

- In the case of a limitation to a strict ladder summation with bare internal vertices, closed form expression for the vertex function in terms of *A* and *B* is obtainable.
- With the enlarged class of dressing considered here, corresponding closed form expressions have not been obtained.
- Numerical solution of the simultaneous algebraic equations for the vertex and propagator is carried out here using the algebraic and numerical tools of *Mathematica (5.2)* with the assistance of the *FeynCalc* (*R. Mertig et al., Comput. Phys. Commun. 64 (1991),345-359. "http://www.feyncalc.org"*) package used for computer-algebraic evaluation of the Dirac algebra.

\mathcal{C} From Fits To Lattice QCD Data

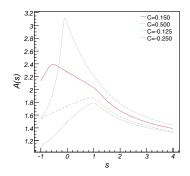
We fit C to best reproduce p = 0 extrapolations of lattice-QCD calculated:

- Quark propagator functions A(0) and B(0) (P. O. Bowman et al., Nucl. Phys. Proc. Suppl. 119, 323 (2003).)
- Invariant amplitudes α_i(0) of quark-gluon vertex function (*J. I. Skullerud et al., JHEP 04, 047 (2003).*)
- The best fit to these quantities gives:
 - C = 0.34, $\bar{r} = 24$ % and $\sigma_r = 70$ %.
 - The quality of fit is about the same as in *Bhagwat et al.*, and changes $\Delta C \approx \pm 0.2$ are not significant in this regard.
 - C = 0.15 leads to $\bar{r} = 39$ % and $\sigma_r = 72$ %. will be used, because the resulting vertex at timelike p^2 is more convergent with respect to increasing order of dressing. (Note: C = 0.51 in the prev. work)
 - C ≫ C_{SLR} = −1/8 The attraction provided by the 3-gluon coupling is important for the vertex.

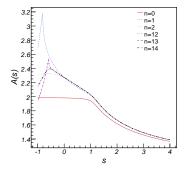
Improving Dressed LR Vertex

The Interaction Model

Solutions For $A(p^2)$



(a) $\ensuremath{\mathcal{C}}$ dependence calculated with converged summation of vertex dressing



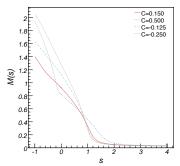
(b) Influence of vertex dressing to order *n* for C = 0.15.

Figure: Quark propagator amplitude A(s) versus Euclidean $s = p^2$ for $\mathcal{G} = 1$ GeV and m = 0.0183 $\mathcal{G} = 18.3$ MeV.

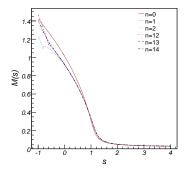
Improving Dressed LR Vertex

Seminar at NTC 20 / 40

Solutions For $M(p^2)$



(a) C dependence calculated with converged summation of vertex dressing



(b) Influence of vertex dressing to order *n* for C = 0.15.

Figure: Quark propagator amplitude M(s) versus Euclidean $s = p^2$ for $\mathcal{G} = 1$ GeV and m = 0.0183 $\mathcal{G} = 18.3$ MeV.

Improving Dressed LR Vertex

Seminar at NTC 21 / 40

Vertex Dressing Effect on m_{π} and m_{ρ} .

Meson masses are in GeV:

Vertex Dressing	m_{π}	$m_ ho$	$\Delta m_{ ho}$	$\frac{\Delta m_{\rho}}{m_{\rho}}$	$rac{\Delta m_{ ho}}{m_{ ho}}$ (prev.)
n = 0 (LR)	0.140	0.850	+0.074	+0.095	+0.295
<i>n</i> = 1 (1-loop)	0.135	0.759	-0.017	-0.022	
<i>n</i> = 2	0.135	0.781	+0.005	+0.006	+0.096
<i>n</i> = 3	0.135	0.772	-0.004	-0.005	N/A
<i>n</i> = 4	0.135	0.778	+0.002	+0.003	N/A
$\mathit{n}=\infty$ (full model)	0.135	0.776	0.0	0.0	0.0

G = 0.59 GeV, m = 0.0183 G = 11 MeV and C = 0.15.

э

BA 4 BA

LR Truncation Accuracy vs. Current Quark Mass

	ladder-rainbow	full model	LR % error	
	<i>n</i> = 0	$n = \infty$	this model	(prev.)
$m_{u,d} = 0.011$				
$m_ ho$	0.850	0.776	9.5%	30%
$\mathcal{BE}_{ ho}$	0.346	0.311	11%	
<i>m</i> _s = 0.165				
m_{ϕ}	1.08	1.02	6.0%	21%
\mathcal{BE}_{ϕ}	0.350	0.320	9.0%	
<i>m_c</i> = 1.35				
$m_{J/\psi}$	3.11	3.09	0.3%	3.5%
$\mathcal{BE}_{J/\psi}$	0.260	0.260	0%	
$m_b = 4.64$				
m_{Υ}	9.46	9.46	0%	0%
\mathcal{BE}_{Υ}	0.100	0.100	0%	
			< <u>□ > <⊡ > <</u> ≣ >	< ≣ > ≣ の

Improving Dressed LR Vertex

H. H. Matevosyan, A. W. Thomas, P. C. Tandy

1 SU

23/40

Seminar at NTC

Heavy Pseudoscalar and Vector Mesons

Meson masses (in GeV) calculated for u/d, s , c and b quarks:

<i>m_{u,d}</i> = 0.011	<i>m_s</i> = 0.165	<i>m</i> _c = 1.35	$m_b = 4.64$
$m_ ho=0.776$	$m_{\phi}=$ 1.02	$m_{J/\psi}=3.09$	$m_{\Upsilon(1S)} = 9.46$
$\mathcal{BE}_ ho=$ 0.311	$\mathcal{BE}_{\phi}=$ 0.320	$\mathcal{BE}_{J/\psi}=0.260$	$\mathcal{BE}_{\Upsilon} = 0.100$
$m_{\pi} = 0.135$	$m_{0^{s\bar{s}}} = 0.61$	$m_{\eta_c} = 2.97$	$m_{\eta_b}=9.43$
$\mathcal{BE}_{\pi}=$ 0.953	$B \mathcal{E}_{0^{-}} = 0.727$	$\mathcal{BE}_{\eta_c}=$ 0.380	$\mathcal{BE}_{\eta_b}=0.130$

Note:

Experimentally $m_{\eta_c} = 2.9797 \pm 0.00015$ and $m_{\eta_b} = 9.30 \pm 0.03^*$. The fictitious pseudoscalar $0_{s\bar{s}}^-$ is included for comparison with previous studies (0.63 in *Bhagwat et al.*).

* To be confirmed

Heavy Pseudoscalar and Vector Mesons

Meson masses (in GeV) calculated for u/d, s , c and b quarks:

$m_{u,d} = 0.011$	<i>m</i> _s = 0.165	<i>m</i> _c = 1.35	$m_b = 4.64$
$m_ ho=0.776$	$m_{\phi}=$ 1.02	$m_{J/\psi}=3.09$	$m_{\Upsilon(1S)} = 9.46$
$\mathcal{BE}_ ho=$ 0.311	$\mathcal{BE}_{\phi}=$ 0.320	$\mathcal{BE}_{J/\psi}=0.260$	$\mathcal{BE}_{\Upsilon} = 0.100$
$m_{\pi} = 0.135$	$m_{0^{s\bar{s}}} = 0.61$	$m_{\eta_c}=$ 2.97	$m_{\eta_b} = 9.43$
$\mathcal{BE}_{\pi}=$ 0.953	${\cal BE}_{0^-} = 0.727$	$\mathcal{BE}_{\eta_c}=$ 0.380	$\mathcal{BE}_{\eta_b}=$ 0.130

Note:

Experimentally $m_{\eta_c} = 2.9797 \pm 0.00015$ and $m_{\eta_b} = 9.30 \pm 0.03^*$. The fictitious pseudoscalar $0_{s\bar{s}}^-$ is included for comparison with previous studies (0.63 in *Bhagwat et al.*).

* To be confirmed

Summary - Part I

- We included self-consistent dressing on all available vertices in ladder dressing scheme of the quark-gluon vertex function and constructed chiral symmetry-preserving BSE kernel.
- We used a model gluon propagator to solve the GAP and the BS equations.
- Resulting vector meson masses were compared to ladder-rainbow truncation: 10% difference for m_{ρ} decreasing to < 1% for J/ψ and Υ .

Part II

Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines.

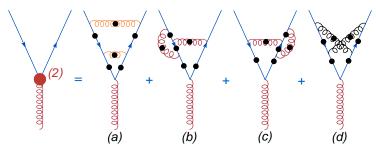
H. H. Matevosyan, A. W. Thomas, P. C. Tandy

Improving Dressed LR Vertex

Seminar at NTC 26 / 40

The Non-Planar Diagrams

- We previously neglected all the non-planar diagrams in the vertex dressing supposing their smallness.
- Figure (d) is the lowest-order non-planar diagram:



They prove to be significant in the dressing as n increases*!

* One should be careful when implementing the large N_c counting in here.

Improving Dressed LR Vertex

The Non-Planar Diagrams - How to Generate Them?

H. H. Matevosyan, A. W. Thomas, P. C. Tandy

Improving Dressed LR Vertex

1.SU

Recurrent Algorithm For Constructing The Full Vertex

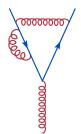
First we construct all possible diagrams for the vertex function with exactly **n** gluon lines:

- We construct them by considering every diagram with n-1 gluon lines from the full set of all such vertices.
- For each diagram we make all possible insertions of a single gluon propagator on the quark line, so that there is at least one other quark-gluon vertex in-between the gluon line's endpoints.
- We check if the resulting vertex is not redundant with already produced ones.

A (10) A (10)

Recurrent Algorithm For Constructing The Full Vertex - Cont.

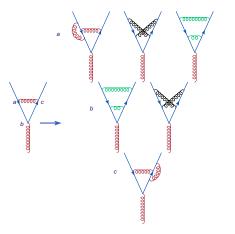
• This procedure guaranties that no quark self-energy type diagrams are produced!



• We generate ALL THE DIAGRAMS - it is easy to prove by mathematical induction!

Illustration

Generating all the 2-nd order diagrams form the only 1-st order diagram:

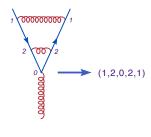


Improving Dressed LR Vertex

The Numerical Implementation

We implement the algorithm by first constructing a unique set of numbers for each diagram:

 We build the set by enumerating the bare quark-gluon vertices in a diagram with n-1 gluon lines from 1 to n-1 and assigning the same numbers to the vertices attached to the same gluon propagators. We assign 0 to the external gluon vertex.



The Numerical Implementation - Cont.

To construct the vertices with n gluon lines:

• We insert a pair of **n** into the set, so that we will not have them next to each other:

$$(1, 2, 1, ..., 0, ..., n-5, n-1)$$

- We relabel the resulting set in the ascending order.
- We check if the final set was already generated.

The Challenges

We encounter a skyrocketing number of diagrams!

1	'n	LR Summed	Improved	Full
	2	1	3	4
	3	1	6	27
	6	1	21	38232
	7	1	28	$\sim 5 * 10^{5}$ /

- We need to calculate the color factors for all the diagrams.
- The evaluation of the Dirac algebra will be unaffordable on a single PC.

The Color Factors

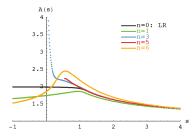
- We lacked analytic tools for calculating the color factors for diagrams with over n=2 gluon lines.
- We used simple numeric contractions of SU(3) color matrices to evaluate the color factors. The calculation speed on an ordinary PC was sufficient for the vertex truncation order we used (~ one week for n=6).
- Random checks with the results from the program Colour (*J. Hakkinen et al, arXiv:hep-ph/9603229*, discovered only after the completion of the project :)) and easily reducible cases were positive.

A B F A B F

Evaluation Of The Dirac Algebra

- We used *FeynCalc* package for computer-algebraic evaluation of the Dirac algebra.
- We used JLab's Scientific Computing Farm for parallel analytic computation of the vertex functions.
- For vertices with n=6 lines the code ran ~ one week on 10 machines simultaneously.
- We used the produced vertices to construct and solve the quark GAP equation for the propagator functions *A* and *B*.

The Solutions For The Quark Propagator



(a) Quark propagator amplitude A(s) versus Euclidean $s = p^2$.

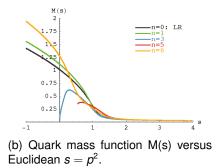


Figure: The influence of the vertex dressing to a finite order n: 0(LR)-Black, 1-Green, 3-Blue, 5-Red, 6-Orange. We used $\mathcal{G} = 1$ GeV and $m = 0.0175 \ \mathcal{G} = 17.5 \ \text{MeV}$.

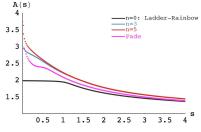
∃ >

Effective 3-point gluon function dressing and Pade Approximant

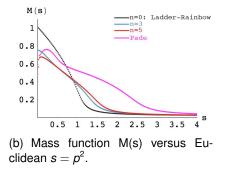
- We introduced the phenomenological parameter $-\frac{1}{8} \leq C \leq 1$ in counting the color factors to account for 3-gluon dressing and chose to implement it only for the sub-class of diagrams that were included in the improved LR vertex to be unambiguous.
- The results show that for the range of parameter $C \in (0.375, 0.8)$ the solutions of the GAP equation are in Nambu-Goldstone mode at every calculated order up to n = 6.
- In order to draw any reliable conclusions we employed a Pade approximant to re-sum the perturbative solutions of the GAP equation and yield a solution at $n = \infty$.

イロト 不得 トイヨト イヨト

The Converged Solutions



(a) Propagator amplitude A(s) versus Euclidean $s = p^2$.



< 6 b

Figure: The influence of the vertex dressing to a finite order n: 0(LR)-Black, 3-Blue, 5-Red. Pade Approximant - Magenta. We used C = 0.375 and $m = 0.0175 \ G = 17.5 \ \text{MeV}$.

H. H. Matevosyan, A. W. Thomas, P. C. Tandy

Seminar at NTC 39 / 40

A B >
 A B >

Summary - Part II

- We employed the most general quark-gluon vertex dressing scheme with only 2-point gluon functions to solve the GAP eqn.
- The solutions of the GAP eqn. didn't converge with the maximum number of gluon lines included and showed significant deviation from those calculated previously.
- The solutions for the vertices with the maximum odd number of gluon lines yield solutions in Wigner-Weyl mode.
- A phenomenological inclusion of 3-point gluon function dressing and employment of a Pade approximate yield a converged solutions in Nambu-Goldstone mode that show significant deviations from the solutions with rainbow truncated vertex.

Outlook

- Use more realistic 2-point gluon functions Thinking about.
- Explicitly include 3- and 4-point gluon functions Dreaming about :)