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If this field is to realize its full potential, we MUST learn to understand 
and compare different approaches.  This workshop provides an opportunity!

This talk will be a review.  I will try to present familiar things in a new light and 

encourage discussion.  My apologies for omitting many topics.



Part I -- Past: selected accomplishments of the last 60 years

 Non-relativistic nuclear physics matures
• Precision description of the nuclear force with OPE
• Explanation of the mass spectrum of nuclei with A ≤ 12
• Precision description of three-body scattering; the Ay puzzle

 Chiral effective field theory

 Development of Hamiltonian dynamical schemes
• Three methods based on Dirac’s famous (1949) paper -- 60 years
• Field theory NOT essential for relativistic quantum mechanics
• Emergence of light-front quantum mechanics as a powerful and practical technique

for describing physics at all energy scales

 Progress with hadronic field theory
• Bound states: require a nonperturbative approach
• Introduction of the Bethe-Salpeter equation and new methods for its solution
• Introduction of Quasipotential methods; quantitative application of the Covariant

Spectator Theory (CST) to two and three body problems
• Treatment of current conservation in the presence of composite systems

Discuss now

Discuss in 
Part II



Non-relativistic nuclear physics matures

-- Precision description of the nuclear force below 350 MeV (1)

 Potential models have been found that give essentially perfect fits to NN data

 Relativistic models (WJC is just as good)

1.02(3058)--200043CD-Bonn

1.06(2526)199540AV18

1.03(2514)199341Nijm I

1.13(3788)1.12(3336)
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3 data sets
-- 1993 (PWA)
-- 2000 (Bonn)
-- 2007 (WJC)

Red χ2 for 2007set



Non-relativistic nuclear physics matures

-- Precision description of the nuclear force below 350 MeV (2)

 Fits to the data are excellent; all data shown are scaled by the fit; some data with large
systematic errors is excluded

total cross section; entire energy range
194 MeV differential cross section

162 MeV differential cross section; 
brown data excluded 319 MeV differential cross section; 

shows scaling permitted by systematic errors



Relativistic effects in 3H binding*
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It turns out that the relativistic
calculation of the three body binding
energy is sensitive to a new,
relativistic off-shell coupling (described
by the parameter ν). Non-zero ν is
equivalent to effective three-body (and
n-body forces).

Et

ν *three body calculations FG and Alfred 
  Stadler, Phys. Rev. Letters 78, 26 (1997)
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The value of ν that gives the correct
binding energy is close to the value that
gives the best fit to the two-body data!



Non-relativistic nuclear physics matures

--Explanation of the mass spectrum of nuclei with A ≤ 12*

 Greens function Monte Carlo (GFMC) shows good agreement with 51 states for A ≤ 12

*from Bob Wiringa (winner of the Bonner prize, together with Steve Pieper), Oct. 11, 2009



Non-relativistic nuclear physics matures

-- Precision description of 3-body scattering (slides from 1995)

 Famous calculations first presented
by Glöckle and collaborators*

• many three body observables agree
with data to excellent precision

• all precision potential models agree
• full Faddeev calculations needed

 Example: excellent agreement for pD
elastic scattering at 6, 16, and 22.7
MeV

 Disagreement in nD analyzing power
(Ay) a “puzzle”  only because of the
precision of other calculations

 Still problems with some breakup
observables.  Worst case: breakup
p+d-> p1+p2+n along the “S” curve
(θ1+ θ2 fixed)>

*from a review I gave to the 1995 
  International Nuclear Physics conference)
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Chiral effective field theory

 Features
• A perturbation expansion for the potential based on chiral symmetry
• Short range physics parameterized by unknown constants
• Power counting scheme depends on momentum scale Q

 Logical development (not historical)
• KSW (Kaplan, Savage, and Weiss) works for the “pionless” theory.

 leading term is                                                       Ο(Q-1)

 pion exchange is Ο(Q0)

 Bubbles involving CS and CT can be regularized and summed to all orders giving
a generalized effective range theory.  ALL cutoffs absorbed into
renormalized C’s.  Pions were added perturbatively.

• KSW breaks down at momenta well below the pion mass (140 MeV).  For modern
applications need the Weinberg counting scheme.

 CS and CT demoted to order Q0 and together with OPE, are LO.
 NLO includes pion loops
 Resulting potential (to any order) is inserted into the Schrödinger equation.
 Cutoffs are needed!

 CS + CT σ1 ⋅σ 2   where C's are 

VOPE = −
g2

(2m)2
τ1 ⋅τ 2

σ1 ⋅q σ 2 ⋅q
mπ
2 + q2



Weinberg power counting

 The power counting as used modern NN calculations:

• Many more diagrams and 15 more constants at N4LO (terms up to Q4 - see next
slide)

• Calculations sensitive to the cutoffs
• Consistent currents are complicated (Schiavilla)

 At N4LO, a total of 24 unknown constants, cutoffs, and still the calculations
do not reproduce phase shifts well above ≈ 200 MeV!

 Still, a great intellectual advance because of close connection to QCD and
possibility to estimate errors.

2 constants 7 more constants (from 
R. Schiavilla)



Diagrams to N4LO*

LO

N2LO

N3LO

N4LO

*E. Epelbaum, H.-W. Hammer, Ulf-G. Meißner, Reviews of Modern Physics, 
 arXiv:0811.1338 [nucl-th] 



Conclusions -- Part I

 Non-relativistic nuclear physics now on a solid footing;
• Precise 2 (and 3 and ?) body potentials can describe nuclei (for all A?).
• Low energy few body scattering largely explained by the same potentials

 Chiral perturbation theory establishes the close connection between
QCD (through chiral symmetry) and nuclear physics based on
hadronic degrees of freedom.



Part II -- Present:
what do we know;

what is the state-of-the-art?

(This part is larger a primer of
elementary concepts.

Many topics are omitted.)



Part II-- Present:
what do we know; what is the state-of-the-art?

 Lessons (largely ignored) from the Dirac equation

 Pictorial discussion of Hamiltonian vs. field dynamics for fixed numbers of
particles
• Use simple φ4-type field theory (in second order) to illustrate general principles
• Time and tau ordered diagrams
• Role of u-channel diagrams
• One body limit
• Cancellation theorem

 Construction of the non-perturbative equations of field dynamics (many
parallels with Hamiltonian dynamics)
• Bethe-Salpeter and spectator equations
• Definitions of bound states and normalization

 Interaction currents
• Consistency and uniqueness



Lessons (largely ignored) from the 
Dirac equation



Lessons from the Dirac equation (1)

 The Dirac equation for the coulomb interaction (with                 )  is

 Taking the non-relativistic limit gives [to order (v/c)2]

 Each of these terms has a special history:

i
∂
∂t

Ψ = α ⋅ (p − eA) + βm + eφ( )Ψ

Aµ = φ,A{ }

i
∂
∂t
ψ =

(p − eA)2

2m
−
p4

8m3 −
e
2m

σ ⋅B +
e ∇2φ⎡⎣ ⎤⎦
8m2 +

e
4m2r

dφ
dr

σ ⋅L
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
ψ
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Lessons from the Dirac equation (2)

 The Dirac equation has negative energy solutions -- that can be
reinterpreted as anti-particle states when we use field theory

 Two choices (or points of view):
• Avoid the Dirac equation, because

 We abhor negative energy states; they are unphysical
 Hard (maybe impossible??) to extend to 2+ body sector; what is the Hilbert

space?
 Return to Schrodinger equation quantum mechanics with the familiar Hilbert

space with a fixed number of particles, and
 Treat relativity using Hamiltonian dynamics.

• Keep the Dirac equation, because
 We are impressed with the physics it contains
 We are willing to truncate the field theory (i.e. invent a new “field dynamics”

which may require uncontrolled approximations),
 We are willing to have a formalism with “off-shell” particles or and negative

energy states
 We are willing to give up the variational principle (?).



Overview of relativistic methods: Two “schools”

Relativity 
with a fixed number of particles

Instant
form

Front
form

Point
form

BSLT*
(1966)

PWM†
Spectator

(1969)
Bethe-Salpeter

(1951)
†Phillips
 Wallace
 Mandelzweig

Schweiger
Klink

Bakker
Mathiot
Salme
Smirnov
Tsirova

Arriaga
Carlson
Elster
Kamada
Schiavilla
Witala

Gross
Jeschonnek
Pena
Stadler

Field dynamics
Off-shell particles - no Hilbert space(?)

+ manifest covariance and locality
− keep the Dirac equation

Hamiltonian dynamics
Hilbert space of on-shell particles

+ no negative energy states
− lose the Dirac equation

Carbonell
Kaptari
Karmanov
Rogochaya
Sauli

Equal Time (ET) manifest covariance

Front
form

Frederico
Maris
Miller

Dyson-
Schwinger

Nicmorus

Polyzou

*Blankenbecler
 Sugar
 Logunov
 Tavkhelidze



Hamiltonian vs. field dynamics

Simple discussion using φ4-type theory 
as an example



Illustrate general principles with φ4 as an example (1):
-- Feynman vs. time ordered diagrams

 Example: φ4-type interactions
Consider the interaction                where

             is a “light” charged scalar field  of mass m;
        is a “heavy” neutral scalar field of mass M

 Feynman diagrams = sums of all time (or tau) ordered diagrams

 Field theory to second order (λ2 ) has 2 Feynman = 4 time-ordered

−λφ†φψ 2

φ
ψ

=

Feynman diagrams Time-ordered diagrams



Lessons illustrated by φ4 (2):
-- s-channel diagram contains quantum mechanics

 Regularization an issue -- here take a cutoff in k

 s-channel diagrams (p=0):

k

λ2

4Ekek ek + Ek −W( )k
∫ ⇒

M→∞

λ2

4M ek ek −α m( )k
∫

W = M +αm; α ≅ 1;

λ2

4Ekek ek + Ek +W( )k
∫ ⇒

M→∞

λ2

8M 2 ekk
∫ ⇒ 0

This is “quantum mechanics” with a fixed number of particles 
  2 particles in positive energy states

Ek = M 2 + k2 , ek = m2 + k2



Lessons illustrated by φ4 (3):
-- (aside) Z-diagrams give manifest covariance

 Add and subtract a term to aid in the comparison:

 And, note that these two terms come from integrating the Feynman
diagram over k0

λ2

4Ekek ek + Ek −W( )k
∫ +

λ2

4Ekek ek − Ek +W( )k
∫ =

λ2

2Ek ek
2 − W − Ek( )2( )k

∫

λ2

4Ekek ek + Ek +W( )k
∫ −

λ2

4Ekek ek − Ek +W( )k
∫ =

λ2

2ek Ek
2 − ek +W( )2( )k

∫

B(W 2 ) = −i
dk0
2π∫

λ2

m2 − (W − k)2 − iε( ) M 2 − k2 − iε( )k
∫

=
λ2

2Ek ek
2 − W − Ek( )2( )k

∫ +
λ2

2ek Ek
2 − ek +W( )2( )k

∫
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Lessons illustrated by φ4 (4):
-- BUT: Z-diagrams NOT needed for covariance (Hamiltonian dynamics)!

 Non-relativistic quantum mechanics can be made Poincaré invariant.

 Here the integrals are functions of (kR)2 ( kR is the three vector in the
rest system).
• Define                                                                        This is covariant.
• (kR)2 = k2 when the system is at rest (when P={W,0})
• If P={P0,0,0,Pz}, then,

where k is the three momentum in the moving system.

 BUT, this same result can be gotten from the boost operator

 
kR
2 = −k2 +

k ⋅P( )2
P2

, with kR
2 = k2 = M 2 andW = P2 .

kR
2 = −M 2 +

P0Ek − kzPz( )2
W 2 ; P0 = W 2 + Pz

2 , Ek = M 2 + k2

kR = B(−P)k =
1
W

P0 0 0 −Pz
0
0

1 0
0 1

0
0

−Pz 0 0 P0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ek

kx
ky
kz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒ kR
2 = k⊥

2 +
(P0kz − PzEk )

2

W 2 = −M 2 +
P0Ek − kzPz( )2

W 2

AGREES!

(P0kz − PzEk )
2 = P0Ek − kzPz( )2 − P0

2 − Pz
2( )(M 2 + k⊥

2 )



Lessons illustrated by φ4 (5):
-- Hamiltonian dynamics from field theory; light-front

 Leading contribution from s-channel diagram ⇔ quantum mechanics.

 Z-diagrams give covariance, but diagram can also be made covariant using
Hamiltonian dynamics.  How do these compare?

 Instant-form and front-form give different results.  The s-channel bubble
in front-form is obtained by integrating over k+ = k0+kz instead of k0, and
gives the exact result for the bubble :

 Does this the exact result make the front-form better?
 

B(s) = −iλ2

2(2π )4
dk+dk−d

2k⊥
m2 + k⊥

2 − (W − k)+ (W − k)− − iε( ) M 2 + k⊥
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2(2π )3
d 2k⊥∫

dk−
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W
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2 − W − M 2 + k⊥

2

k−

⎛
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⎞
⎠⎟
(W − k− ) − iε

⎛

⎝⎜
⎞

⎠⎟

= λ2
k⊥
∫

dx
x(1− x)0

1

∫
1

m2 + k⊥
2

(1− x)
+ M 2 + k⊥

2

x
−W 2⎛

⎝⎜
⎞
⎠⎟

where k− = xW
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SO -- whats the difference between 
Hamiltonian dynamics and Field dynamics?



Lessons illustrated by φ4 (6):
-- BUT: Field dynamics requires u-channel diagrams:

 For p=0 and                                  as before

 u-channel contributions are NEW terms not included in “quantum
mechanics”

W = M +α m

λ2

4Ekek Ek + ek + 2αm −W( )k
∫ ⇒

M→∞

λ2

4M ek ek +α m( )k
∫

λ2

4Ekek Ek + ek + 2M −W( )k
∫ ⇒

M→∞

λ2

8M 2 ekk
∫ ⇒ 0



Lessons illustrated by φ4 (6):
-- BUT: Field dynamics requires u-channel diagrams:

 For p=0 and                                  as before

 u-channel contributions are NEW terms not included in “quantum
mechanics”

W = M +α m

λ2

4Ekek Ek + ek + 2αm −W( )k
∫ ⇒

M→∞

λ2

4M ek ek +α m( )k
∫

λ2

4Ekek Ek + ek + 2M −W( )k
∫ ⇒

M→∞

λ2

8M 2 ekk
∫ ⇒ 0

This term does NOT vanish in the M →     limit!∞



Lessons illustrated by φ4 (7):
-- Furthermore, field dynamics satisfies the one-body limit

 The leading contributions as                 are

 This is the second order result for scattering from the Klein-Gordon equation:

 The s-channel bubbles do NOT have a one-body limit.

 Crossed diagrams (u-channel exchanges) are needed.  (For meson exchange: BOTH
ladder and crossed ladder diagrams are needed).

M → ∞

λ2

4M ekk
∫

1
ek −α m

+
1

ek +α m
⎧
⎨
⎩

⎫
⎬
⎭
=

λ2

2M
1

ek
2 −α 2 m2

k
∫

(A) (B) (A)         (B)

ek
2 −α 2 m2 = m2 + k2 − (W − M )2

Klein-Gordon propagator

=

m2 + k2 − (W − M )2⎡⎣ ⎤⎦Ψ(k) = λ Ψ(k)

One-body limit: as           , the light particle satisfies a one-body equation 
(Klein-Gordon) with an effective potential (the constant     in this case).

M → ∞
λ



Lessons illustrated by φ4 (8):
-- Cancellation theorem in field dynamics

 The Covariant Spectator Theory (CST), which picks up the positive energy
pole of the heavy particle, has a one-body limit

 This implies that the rest of the second order terms cancel in the  limit

This is the Cancellation Theorem

 Conclusions:
• Both the Bethe-Salpeter equation (in ladder approximation), and the Schrodinger

equation do NOT have the one-body limit !
• The CST DOES have the one-body limit
• Caveat: How important is the one-body limit? (Return to this in Part III)

X
λ2

2Ek ek
2 − W − Ek( )2( )k

∫ ⇒
M→∞

λ2

2M
1

ek
2 −α 2 m2

k
∫

M → ∞

lim
M∞

+ ⇒ 0



Lessons illustrated by φ4 (9):
-- Conclusions - Hamiltonian vs. field dynamics

 Field dynamics includes contributions (i.e. u-channel, or crossed
ladder diagrams) not included in “quantum mechanics”
• some of these contributions involve virtual antiparticles

 These other diagrams are NOT needed for Poincaré invariance
• Hamilton dynamics incorporates exact Poincaré invariance into quantum

mechanics of a fixed number of particles

 Is the physics described by the “other diagrams” of field dynamics
important?
• They give a one-body limit, showing the connection between one body

relativistic equations and two (and many) body theory
• Their contributions are not small.



Construction of field dynamical equations

(Many of these ideas also apply to 
Hamiltonian dynamics, and even

Schrödinger theory)



Construction of field dynamical equations (similarities with Hamiltonian dynamics) (1)
-- Diagrammatic derivation of the 2-body scattering equations

  Step 1: The exact scattering amplitude is the sum of all Feynman diagrams

 Step 2: Divide the sum into irreducible and 2-body reducible terms, and collect
the irreducible terms into a kernel, which is iterated

 Step 3: Field theory becomes field dynamics when the kernel is phenomenological

Scattering
amplitude

OBE TBE

ladder sum crossed
ladder

vertex
correction

self
energy

M (p ', p;P) = V (p ', p;P) + V (p ',k;P)G(k;P)M (k, p;P)∫
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Construction of field dynamical equations (similarities with Hamiltonian dynamics) (1)
-- Diagrammatic derivation of the 2-body scattering equations

  Step 1: The exact scattering amplitude is the sum of all Feynman diagrams

 Step 2: Divide the sum into irreducible and 2-body reducible terms, and collect
the irreducible terms into a kernel, which is iterated

 Step 3: Field theory becomes field dynamics when the kernel is phenomenological

Scattering
amplitude

OBE TBE

ladder sum crossed
ladder

vertex
correction

self
energy

2-body reducible 2-body reducible

Kernel (potential) is the sum of all
two-body irreducible diagrams

M (p ', p;P) = V (p ', p;P) + V (p ',k;P)G(k;P)M (k, p;P)∫



 A bound state is a new particle (not in the Lagrangian).  It is generated non-perturbatively
from the sum of an infinite number of diagrams much as the geometric series generates a pole
at z=1:

 The vertex function Γ describes how the bound state couples to particles in the Lagrangian:

 The bound state equation follows from the assumption the M matrix has a pole, and
substituting

Notation: 
P=total momentum (always conserved)
p relative momentum

 

M = V + VGM∫ ⇒ z + zM = z + z2 + z3 + i i i =
z

1− z

Field dynamics (2)
-- Bound state equations emerge automatically: NO extra assumptions

p1 = 1
2 P + p

p2 = 1
2 P − p

Γ(p)Γ

M (p ', p;P) = Γ(p ')Γ(p)
MB

2 − P2
+ R(p ', p;P)Γ Γ

M (p ', p;P) = Γ(p ')Γ(p)
MB

2 − P2
+ R(p ', p;P) = V (p ', p;P) + V (p ',k;P)G(k;P) Γ(k)Γ(p)

MB
2 − P2

+ R(k, p;P)
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

∫
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Γ(p ') = V (p ',k;P)G(k;P)Γ(k)∫at the pole:



Field dynamics (3)
-- Two (of many) types of field dynamical equations

 The Bethe-Salpeter (BS) propagator depends on all four components of the
relative momentum, {k0,k}.  For two spinor particles it is

 The Covariant Spectator Theory© propagator depends on only three
components of the relative momentum, k.  One particle is on-shell

 Diagrammatic notation for 2-body CST equations:

 
GBS (k;P) =

1
m1 − p1 − Σ p( ) − iε( ) m2 − p2 − Σ p2( ) − iε( )   with  

p1 = 1
2 P + k

p2 = 1
2 P − k

⎧
⎨
⎪

⎩⎪

GCS (k;P) =
2πiδ+ m1

2 − 1
2 P + k( )2( ) m1 + p̂1⎡⎣ ⎤⎦

m2 − p2 − Σ p2( ) − iε( ) =
2πiδ k0 − E1 + 1

2 P0( )
E2
2 − P0 − E1( )2 − Σ p2( ) − iε( )

m1

E1
u(k, s)u (k, s)

s
∑

M
× ×

+= M
× × ×××

=
× ×

ΓΓ
×
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 Define three-body vertex functions for each possibility

 then three body Faddeev-like equations emerge automatically.  For
identical particles they are:

Field dynamics (4)
-- CST equations for three-body bound state*

   

this amplitude already 
known from the 2-body sector

*Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)

this particle is 
the “last” spectator

×
×

×
×
× ×

M
×
M

ΓM Γ
M

      = 2Γ ΓM× ×
×
×

×

Γ2
1 = 2M 22

1 G2
1P12 Γ2

1

1
2
3



 Covariant bound state normalization conditions follow from examination of
the residue of the bound state pole
• 2-body case

• 3-body case

 Define the 2-body relativistic wave function:

• Identical to the normalization condition for the Dirac equation

 Similar interpretation for the 3-body normalization condition

 Similar derivation for the Bethe-Salpeter (and Schrödinger) equation

Field dynamics (5)
-- Normalization conditions obtained directly from the CST equations

1 = Γ
dG
dMd

2 Γ − Γ G
dV
dMd

2 G Γ

1 = 3 Γ2
1 1+ 2P12( ) dG2

1

dMd
2 Γ2

1 − 3 Γ2
1 1+ 2P12( )G2

1 dV22
1

dMd
2 G2

1 1+ 2P12( ) Γ2
1

 
Ψ = G Γ .  Then, if dV

dMd
2 = 0,

 
because dG

dMd
2 =

1
2Md

dG
dMd

=
1
2Md

Gγ 0G
⎛
⎝⎜

⎞
⎠⎟
.2Md = Ψ γ 0 Ψ



 The Bethe-Salpeter amplitude is a well defined field theoretic matrix element:

 The Covariant Spectator amplitude is also a well defined field theoretic
amplitude:

 Equations for the Bethe-Salpeter and the Spectator* amplitudes can be derived
from field theory

 It is only the fact that the kernels are approximate that makes them a dynamics
and not a theory !  Field dynamics is merely a relativistic generalization of QM.

 The close connection to field theory provides guidance for
• construction of new channels
• construction of the current operator

Field dynamics (6)
-- Close connection between field dynamics and field theory

Ψ(x2 ) = N ψ (x2 ) d

Ψ(x1, x2 ) = 0 T ψ (x1)ψ (x1)( ) d x

*O. W. Greenberg’s "n-quantum approximation"

x
x



Gauge invariant currents for CST

Also true (with modifications) for BS and
quantum mechanics



 Exact gauge invariance currents can be constructed following the method of
FG and Riska,* and these have been used for both relativistic and non-
relativistic calculations

 Proceed in two steps:
• Step 1: construct one body currents that satisfy the Ward-Takahashi identity
• Step 2: couple these currents to all charges (or momentum dependent couplings) in

ALL of the infinite number of diagrams under consideration.

 Step 2: coupling to ALL charges not so difficult -- if the equations are used.
The diagrams for the elastic two-body current, in CST, are

*FG, and D. O. Riska, PRC 36, 1928 (1987)

Construction of the current operator in CST

-- Gauge invariant* two body current operator

xx x
xx

xxx x
+ + xx x x



[=
1
2

+ + - - - ]

 Interaction current for the OBE model:

 Current for three body elastic scattering

-6 -6 -6

-6 -6

Construction of the current operator in CST

-- Gauge invariant* three body current operator



jµ (p ', p) = F0 γ µ + F1 −1( ) γ µ −
qqµ

q2
⎛
⎝⎜

⎞
⎠⎟
+ F2

iσ µνqν
2m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+G0 Λ− (p ') γ µ + F3 −1( ) γ µ −

qqµ

q2
⎛
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⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
Λ− (p)

jµ (p ', p) = F0 F1γ
µ + F2

iσ µνqν
2m

⎧
⎨
⎩

⎫
⎬
⎭
+G0F3Λ− (p ')γ

µ Λ− (p)

 Construction of the current operator in CST

-- Gauge invariant* three body current operator

 Step 1: to conserve current, the one body current operators must satisfy the WT
identity.  Example: the nucleon:

 The spectator models use a nucleon form factor, h(p).  This means that the nucleon
propagator can be considered to be dressed.  One solution (the simplest) is

 F3(Q2) is unknown, except F3(0)=1. This freedom can be exploited.
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⎞ 
⎠ ⎟ 
4m 2

p2 − p'2

� 

S(p) =
h2 (p)
m − p

=
h2(p)
Δ−(p)
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qµ jN
µ( p', p) = S−1(p) − S−1( p')
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-- Gauge invariant* three body current operator

 Step 1: to conserve current, the one body current operators must satisfy the WT
identity.  Example: the nucleon:

 The spectator models use a nucleon form factor, h(p).  This means that the nucleon
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Part III: Future

Where do we go from here?

This part is designed to stimulate discussion!



Part III: Future

 Limitations of hadronic field theory
• Structure vs renormalization in hadronic field theory; scales
• Including excited baryons; coupled channels
• Degrees of freedom: quarks vs hadrons

 Issues:
• Extensions of the cancellation theorem
• Interpretation of angular momentum on the light cone
• Does the boost operator create particles?

 Low Q2 form factors and study of relativistic effects (discuss in
the working group)
• an opportunity to benchmark relativistic calculations

 The landscape of electron scattering: Q2 versus W



Future
-- Limitations of hadronic field theory

 Hadrons are composite.  This alone is not the problem, because
• QED works in atomic physics even though the nucleus is composite
• Atomic bound states are non-perturbative, but we can treat higher order

corrections perturbatively.
• QED works the way we hoped χPT would!

 Fundamental differences between QCD and QED:
• We know empirically that momentum scales of 700-800 MeV are important in

nuclear physics
• BUT, strong forces are perturbative only at very low momentum scales

 much less than the pion mass (because χPT does not work for the pion tensor
force);

 Way out?
• Assume X GeV (where X is some momentum >> 1 GeV) is the scale for the

emergence of quark core effects
• Use regularized hadronic field theory (i.e. field dynamics) for all scales up to X

GeV.

 Is this a good way out?  If not, what should we do?



Future
-- Implications of field dynamics with X ≥ 1 Gev

 If X > 1, its allowed to choose a phenomenological OBE kernel with contact
terms and boson masses < 1 GeV

 The hadrons are considered point-like; their interactions are regularized
using Pauli-Villiars type subtractions with masses ≥ 1 GeV.

 For example, recent CST fit uses a regularized pion propagator

This hard cutoff is a regularization parameter, NOT the “size” of the pion!

 In this language, nucleon charge form factors must be described by vector
dominance; otherwise their “small” size violates the field dynamical model

 Current conservation can be exactly (but not uniquely) described using the
ideas of Riska and FG.
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  where Λπ ≈ 4 GeV

replacement
of -q2→|q2|
discussed by 
Stadler



Future
-- Including excited baryons

 Excited baryons (masses ≤ 1 + X GeV) are treated as point like particles. Inclusion
of the Δ will extend the NN scattering to 500 MeV lab energy

 Treat the spin 3/2 particles using the formalism of Pascalutsa.*
• The spin 3/2 propagator includes (well known) spurious spin 1/2 parts

• These are eliminated by the strong vertex          (invariant under a strong gauge
transformation).  The vertex has the property

• The pion bubble contribution then becomes a pure spin 3/2 structure

• and the dressing of the Δ pole contributions is easily summed to all orders

*Pascalutsa, Phys. Rev. D 58, 096002 (1998); Pascalutsa and Timmermans, Phys. Rev. C 60, 042201 (1999);
  Pascalutsa and Phillips, Phys. Rev. C 68, 055205 (2003); Pascalutsa and Vanderhaeghen, Phys.Lett. B63, 31 (2006)
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This solution
of the spin 3/2
problem is a
breakthrough



Future
-- Where are the quarks?

 In this picture the quarks are “frozen” out, and do not need to be
included explicitly until momenta >> X GeV

 Still, quarks might “explain,” through duality, the relative strength
of meson exchange models:
The “exact kernel is a complicated sum of many contributions

= + + + +

OPE TPE with/o
resonances

 short range 
contact EFT(?)

+ ••• ??

V heavy
meson
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Future
-- Extensions of the cancellation theorem

 Has been proved only for scalar theories and QED

 For pion exchanges with chiral symmetry treated as in the sigma model (i.e.
γ5 coupling with sigma type contact term            required by chiral symmetry,
and use

The 4th order kernel becomes

 This can be generalized: see study of the large Nc limits by T. Cohen. et.al.*
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*see, for example, Phys.Rev.C65:064008,2002. 



Future
-- Other issues

 Physical interpretation of angular momentum on the light cone?

 Does the boost operator create particles?
• Yes, but in a limited sense using field dynamics
• Example: decomposition of the off-shell propagator is frame dependent

 if                   then

if P0=0, then this is an equal mixture of particle and antiparticle
 if the propagator is boosted to                          then as p →∞, the

propagator contains positive energy components ONLY

• The positive/negative energy mixture depends on the frame!

1
m − p0

=
u(0, s) u (0, s)

m − P0
−
v(0, s) v (0, s)

m + P0

⎧
⎨
⎩

⎫
⎬
⎭s

∑

 

1
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m
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⎛

⎝
⎜
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⎠
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The landscape of electron scattering: Q2 versus W

 There are two variables that
characterize the photon

 For deuteron photodisintegration:

at Eγ = 12 GeV the NN system is
excited to ELAB = 24 GeV!!

 For deuteron elastic scattering:

and the final state is NOT excited at
all!

 These study very different regions of
physics -->

W 2 = (PT + q)
2 = MT

2 +Q2 MT

mx
−1⎛

⎝⎜
⎞
⎠⎟

ν = Eγ =
q ⋅PT
MT

=
Q2

2mx
≥

Q2

2MT

W 2 = (p1 + p2 )
2 = 4m2 + 2mELAB

= (PT + q)
2 = Md

2 + 2Mdν
⇒ ELAB ≅ 2ν

 W
2 = Md

2   for ALL Q2
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Overall Conclusions

 Jefferson Lab at 12 GeV will require relativistic calculations
• Even for elastic scattering, recoil will be large.  Is it sufficient to treat recoil

correctly? Do quark degrees of freedom remain frozen out of elastic scattering
observables, even as Q2 → ∞?

• DIS explicitly uncovers the quark degrees of freedom.  How deep does DIS have
to be before these set in?

• Light-front is the king for DIS, but not for weakly inelastic scattering.  How does
the transition from instant-forms of field dynamics (CST for example) to the
light-front occur? (Or, should we use light-front dynamics at all energy scales?
Not to my taste.)

 Key issues:
• How do we renormalize?  Can we completely eliminate renormalization parameters

(so far, only for bubbles it seems)?
• Can chiral perturbation theory constrain field dynamical models at low energy?

How?
• To what extent do your predictions depend on the relativistic formalism we use? If

they do depend on it, can we understand the differences?



END


