LECTURES: 2007 PRAGUE SUMMER SCHOOL

Franz Gross JLab and W&M

Lecture III

Results: Energies below the pion production threshold

- ★ New, high precision fits to np data below 350 MeV lab energy, and the relativistic properties of the deuteron and triton.
- What do these new results tell us about the nature of nuclear forces?

Outline

- ★ CS theory with spin
- ★ Structure of the deuteron wave functions
- ★ Antisymmetrize the kernel
- ★ Removal of spurious singularities
- ★ One Boson Exchange (OBE) interaction with off-shell coupling
- ★ Implications of off-shell couplings
- ★ New model fits to the NN data
- ★ Three-body binding energy and the role of off-shell couplings
- ★ Changes in the phase shifts
- ★ Scaling and rejecting certain data sets
- ★ Conclusions

References

- Original spectator paper
 FG, Phys. Rev. 186, 1448 (1969)
- ★ Effective NN potential and OBE models
 FG, Phys. Rev. D 10, 223 (1974)
 J. W. Van Orden, FG, and K. Holinde, Phys. Rev. C 45, 2094 (1992)
 M. T. Peña, FG, and Yohanes Surya, Phys. Rev. C 54, 2235 (1996); [Two-pion exchange potential and the π N amplitude]
 FG and Alfred Stadler, arXiv:0704.1229 [nucl-th] (2007)
 ★ Cancellations for scalar and chiral cases
 - FG, Phys. Rev. C 26, 2203 (1982).
- Three body CS equations, and three body binding energy FG, Phys. Rev. C 26, 2226 (1982).
 Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)
 Alfred Stadler and FG, Phys. Rev. Letters 78, 26 (1997)
- Normalization of three-body bound state vertices
 J. Adam, Jr., FG, Cetin Savkli, J. W. Van Orden, Phys. Rev. C 56, 641 (1997)
- Charge conjugation invariance of the spectator equations
 FG, Few Body Syst. 30, 21 (2001)

The Covariant Spectator[©] (CS) theory with spin

★ In the *n* nucleon problem, make the following substitution for *n*-1 nucleon propagators (with $\overline{u}_{\alpha}(\mathbf{p},s)u_{\alpha}(\mathbf{p},s') = 2m\delta_{ss'}$)

$$S_{\alpha\beta}(p) = \frac{(m+p)_{\alpha\beta}}{m^2 - p^2 - i\varepsilon} \Longrightarrow 2\pi i \,\delta_+(m^2 - p^2) \sum_s u_\alpha(\mathbf{p}, s) \overline{u}_\beta(\mathbf{p}, s)$$

* The off-shell propagator is (in the CM with k = P - p)

$$S_{\alpha\beta}(k) = \frac{\left(m + k\right)_{\alpha\beta}}{m^2 - k^2 - i\varepsilon} \Longrightarrow \left(\frac{1}{2E(p)}\right) \sum_{s} \left\{\frac{u_{\alpha}(-\mathbf{p}, s)\overline{u}_{\beta}(-\mathbf{p}, s)}{(2E(p) - W)} - \frac{v_{\alpha}(\mathbf{p}, s)\overline{v}_{\beta}(\mathbf{p}, s)}{W}\right\}$$

- * Integration over all internal p_0 's places n-1 particles on their *positive* energy mass-shell. All 4-d integrations reduce to 3-d integrations.
- * Antisymmetrize for identical fermions; remove spurious singularities(!)
- ★ Mass of off-shell particle is $k^2 m^2 = (P p)^2 m^2 = W^2 2WE(p) < W(W 2m)$. If $W < m + m_{res}$, then $k^2 < (m_{res})^2$ and nucleon resonances are frozen out (see last lecture).

Coupled equations with spin (1)

★ The positive and negative energies give separate coupled channels

$$M^{++} = V^{++} - \int \left\{ V^{+} G^{+} M^{++} + V^{+} G^{-} M^{-+} \right\}$$
$$M^{-+} = V^{-+} - \int \left\{ V^{-+} G^{+} M^{++} + V^{--} G^{-} M^{-+} \right\}$$

where + and - refer to the *u* or *v* spinor matrix element of the off-shell particle 2

$$V^{++}(k, p; P) = \overline{u}_{\alpha'}(\mathbf{k}, \lambda_{1}^{'}) \overline{u}_{\beta'}(-\mathbf{k}, \lambda_{2}^{'}) \mathcal{V}_{\alpha'\alpha,\beta'\beta}(k, p; P) u_{\alpha}(\mathbf{p}, \lambda_{1}) u_{\beta}(-\mathbf{p}, \lambda_{2})$$

$$V^{+-}(k, p; P) = \overline{u}_{\alpha'}(\mathbf{k}, \lambda_{1}^{'}) \overline{u}_{\beta'}(-\mathbf{k}, \lambda_{2}^{'}) \mathcal{V}_{\alpha'\alpha,\beta'\beta}(k, p; P) u_{\alpha}(\mathbf{p}, \lambda_{1}) v_{\beta}(-\mathbf{p}, \lambda_{2})$$

$$V^{-+}(k, p; P) = \overline{u}_{\alpha'}(\mathbf{k}, \lambda_{1}^{'}) \overline{v}_{\beta'}(-\mathbf{k}, \lambda_{2}^{'}) \mathcal{V}_{\alpha'\alpha,\beta'\beta}(k, p; P) u_{\alpha}(\mathbf{p}, \lambda_{1}) u_{\beta}(-\mathbf{p}, \lambda_{2})$$

$$V^{--}(k, p; P) = \overline{u}_{\alpha'}(\mathbf{k}, \lambda_{1}^{'}) \overline{v}_{\beta'}(-\mathbf{k}, \lambda_{2}^{'}) \mathcal{V}_{\alpha'\alpha,\beta'\beta}(k, p; P) u_{\alpha}(\mathbf{p}, \lambda_{1}) v_{\beta}(-\mathbf{p}, \lambda_{2})$$

Coupled equations with spin (2)

★ In the nonrelativistic limit, the equations reduce in coordinate space to $\left(\frac{\nabla^2}{m} + \varepsilon\right)\Psi^+(r) = V^{++}(r)\Psi^+(r) + V^{+-}(r)\Psi^-(r)$

$$2m \Psi'(r) = V''(r)\Psi'(r) + V''(r)\Psi'(r)$$

★ These can be solved (even when dependent or $\hat{\vec{\xi}}$ spin operators-see Ref.~1*). For scalar V⁻⁻, we have (V⁻⁺ = (V⁺⁻)[†])

$$\Psi^{-}(r) = \frac{V^{-+}(r)}{2m - V^{--}(r)} \Psi^{+}(r)$$
$$\left(\frac{\nabla^{2}}{m} + \varepsilon\right) \Psi^{+}(r) = \left\{ V^{++}(r) + \frac{V^{+-}(r) \left(V^{+-}(r)\right)^{\dagger}}{2m - V^{--}(r)} \right\} \Psi^{+}$$

if $V^{--} < 2m$, this is a positive definite repulsive core

*FG, Phys. Rev. D 10,223 (1974)

CS deuteron wave function fixed by Poincaré covariance

Deuteron wave functions (1)

★ The relativistic deuteron wave function has one nucleon off-shell. This off-shell nucleon has both a positive energy spinor part (u) and a negative energy spinor part (v)

$$\Psi_{\alpha,\lambda}(P,p) = \begin{bmatrix} u_{\alpha}(\mathbf{p}_{2},\lambda') & \psi_{\lambda'\lambda}^{+}(\mathbf{P},\mathbf{p}) \end{bmatrix} + \begin{bmatrix} v_{\alpha}(-\mathbf{p}_{2},\lambda') & \psi_{\lambda'\lambda}^{-}(\mathbf{P},\mathbf{p}) \end{bmatrix}$$
positive energy part negative energy part

★ Four scalar wave functions are needed, 2 for each part

$$\psi_{\lambda'\lambda}^{+}(\mathbf{P},\mathbf{p}) = \frac{1}{\mathbf{J}4\pi} \left[u(p) \,\sigma_{1} \cdot \sigma_{2} - \frac{1}{\mathbf{J}8} w(p) \left(3\sigma_{1} \cdot \hat{\mathbf{p}} \,\sigma_{2} \cdot \hat{\mathbf{p}} - \sigma_{1} \cdot \sigma_{2} \right) \right]$$
same as non relativistic
$$\psi_{\lambda'\lambda}^{-}(\mathbf{P},\mathbf{p}) = -\sqrt{\frac{3}{16\pi}} \left[v_{s}(p) \left(\sigma_{1} - \sigma_{2} \right) \cdot \hat{\mathbf{p}} + \frac{1}{\mathbf{J}2} v_{t}(p) \left(\sigma_{1} + \sigma_{2} \right) \cdot \hat{\mathbf{p}} \right]$$

★ The normalization condition becomes

$$1 = \int_{0}^{\infty} p^2 dp \left\{ u^2 + w^2 + v_t^2 + v_s^2 \right\} + \left\langle \frac{\partial V}{\partial M_d^2} \right\rangle$$

P-state probabilities

Deuteron wave functions (2)

Antisymmetrize the Kernel

- ★ The kernel must be explicitly antisymmetrized interchange $\mathcal{V}_{\alpha'\alpha,\beta'\beta}(k,p;P) \rightarrow \overline{\mathcal{V}}_{\alpha'\alpha,\beta'\beta}(k,p;P)$ $= \frac{1}{2} \{\mathcal{V}_{\alpha'\alpha,\beta'\beta}(k,p;P) + (-1)^{I} \mathcal{V}_{\beta'\alpha,\alpha'\beta}(-k,p;P)\}$
- ★ Under interchange of Dirac and momentum indices,

$$\overline{\mathcal{V}}_{\alpha'\alpha,\beta'\beta}(k,p;P) = (-1)^{I} \overline{\mathcal{V}}_{\beta'\alpha,\alpha'\beta}(-k,p;P)$$

corresponding to antisymmetry of I=1 states and symmetry of I=0 states, corresponding to full antisymmetry.

★ Diagrammatically

$$\frac{\mathbf{X}}{\mathbf{x}} = \frac{1}{2} \left\{ \underbrace{\mathbf{X}}_{\mathbf{x}} \\ \underbrace{\mathbf{X}}_{\mathbf{$$

Implications of the antisymmetrization

- ★ The direct OBE has no singularities $\frac{\frac{1}{2}P+k}{\overset{\frac{1}{2}P+p}{\overset{\frac{1}{2}P+p}{\overset{\frac{1}{2}}{\overset{\frac{$
- ★ However, the exchange OBE has singularities

$$\frac{1}{m_b^2 + (\mathbf{k} + \mathbf{p})^2 - (W - E_k - E_p)^2} = \frac{1}{m_b^2 + 2(E_p E_k - m^2) - (W - 2E_k)(W - 2E_p)} + 2\mathbf{k} \cdot \mathbf{p}$$

this =0 if either initial or final state is on-shell

- * If $W < 2m + m_b$, these singularities are *spurious*, because they are cancelled if the kernel is calculated to ALL orders.
- ★ So, imaginary part may be dropped (calculate the principal value), but how to handle the real part?

Removal of spurious singularities

- ★ Exploit a great freedom: the kernel may be defined in any convenient way, with "corrections" included in higher order
- ★ An elegant way to remove the singularities is to replace

$$\frac{1}{m_b^2 + (\mathbf{k} + \mathbf{p})^2 - (W - E_k - E_p)^2} \Longrightarrow \frac{1}{m_b^2 + |(\mathbf{k} + \mathbf{p})^2 - (W - E_k - E_p)^2|} = \frac{1}{m_b^2 + |q^2|}$$

- preserves exchange symmetry exactly
- removes all singularities (does NOT work for coulomb scattering)
- does not change the direct term, or any results if either the initial or final state is on shell

research exercise: calculate the 4th order kernel in ϕ^3 theory using this prescription, and study the cancellations

Look at the details for S-wave scattering

CS Dynamics: OBE with off-shell couplings

	★ Kernel is a sum of One Boson Exchange diagrams									
$\left(\right)$			$p_1' p_1$	$\delta = \begin{cases} \tau & \text{isoscala} \\ \tau_1 \cdot \tau_2 & \text{isovector} \end{cases}$, or					
	V =	<u> </u>	<i>p</i> ₂ ' <i>p</i>	2	$\varepsilon_b \delta \frac{-\omega_a \omega_b \omega_b \omega_b}{m}$	$\int \frac{\left \left(\Delta_{b}, q \right) \right ^{2} \left \left(\Delta_{b}, q \right) \right ^{2}}{\left \left(\Delta_{b}, q \right) \right ^{2}} \int f^{4} \left(\Delta_{b}, q \right) = \left[\frac{\Lambda_{b}^{2}}{\Lambda_{b}^{2} + \left q^{2} \right ^{2}} \right]$				
	Ьо	son	<i>J⁰(b</i>)	$arepsilon_{b}$	$\Lambda_1\otimes\Lambda_2$	$\Lambda(k,p)$ or $\Lambda^{\mu}(k,p)$				
	σ_{0}	σ_1	0⁺(s)	_	$\Lambda_1 \Lambda_2$	$\Lambda(k, p) = \mathbf{g}_s + \mathbf{v}_s \big[\theta(k) + \theta(p) \big]$				
	π	η	0-(p)	+	$\Lambda_1 \Lambda_2$	$\Lambda(k,p) = g_p \left\{ \gamma^5 - (1 - \mathbf{v}_p) \left[\theta(k) \gamma^5 + \gamma^5 \theta(p) \right] \right\}$	}			
	ρ	ω	1-(v)	+	$\Lambda^{\mu}_{1}\Lambda^{\nu}_{2}\Delta_{\mu u}$	$\Lambda^{\mu}(k,p) = g_{\nu} \left\{ \gamma^{\mu} + \frac{\kappa_{\nu}}{2m} i \sigma^{\mu\nu} (k-p)_{\nu} \right\}$				
						$+ \frac{\mathbf{v}_{\nu}}{\left[\theta(k)\boldsymbol{\gamma}^{\mu} + \boldsymbol{\gamma}^{\mu}\boldsymbol{\theta}(p)\right]} \Big\}$				
	a ₁	h ₁	1+(a)	+	$\Lambda^{\mu}_{1} \Lambda^{ u}_{2} g_{\mu u}$	$\Lambda^{\mu}(k,p) = \frac{g_a \gamma^5 \gamma^{\mu}}{q_a \gamma^5 \gamma^{\mu}}$				
		$\theta(p)$	$=\frac{m-\not p}{2m}$	van	ishes on-shel	$\Delta_{\mu\nu} = g_{\mu\nu} - q_{\mu}q_{\nu}/m_{\nu}^2$				

Implications of off-shell couplings

Two precision fits to the 2007 data base

1	nodels		Data set [$\chi^2/N_{data}(N_{data})$]			
Ref	year	# para	1993	2000	2007	
PWA93	1993	39	0.99 (2514)			
			1.09 (3010)	1.11 (3336)	1.12 (3788)	
Nijm I	1993	41	1.03 (2514)			
AV18	1995	40	1.06 (2526)			
CD-Bonn	2000	43		1.02 (3058)		
WJC-1	2007	27	1.03 (3010)	1.05 (3336)	1.06 (3788)	
WJC-2	2007	15	1.09 (3010)	1.11 (3336)	1.12 (3788)	

★ Comparison with other precision fits

#'s in green are for fits to BOTH np and pp data

OBE parameters obtained from the fits

Ь	Ι	$G_b = \frac{g_b^2}{4\pi}$		m _b		$\lambda_{ m b}$ or $v_{ m b}$		K _v		Λ_{b}	
π^{0}	1	14.608	14.038	134.9766		0.153	0.0			4400	3661
π^{\pm}	1	13.703	14.038*	139.5702		-0.312	0.0			4400*	3661*
η	0	10.684	4.386	604 547.51		0.622	0.0			4400*	3661*
$\sigma_{_0}$	0	2.307	4.486	429	478	-6.500	-1.550			1435	3661*
$\sigma_{_1}$	1	0.539	0.477	515	454	0.987	1.924			1435*	3661*
ω	0	3.456	8.711	657	782.65	0.843	0.0	0.048	0.0	1376	1591
ρ	1	0.327	0.626	787	775.50	-1.263	-2.787	6.536	5.099	1376*	1591*
h_1	0	0.0026	0.0							1376*	
a_1	1	-0.436	0.0							1376*	
_		•							٨	1454	1720

left column: WJC-1 27 parameters right column: WJC-2 15 parameters

 $1 N_N$ 1656 1739

Conclusions from the fits

- ★ Model WJC-1: 27 parameters:
 - As good as any phase shift analysis or any fit to date; truly QUANTATIVE
 - 27 parameters is less than other fits (but only *np* data fit so far) •
 - OBE parameters are reasonable:
 - masses close to observed masses of actual mesons (within 50 MeV except for the ω , which is 126 MeV lower); π masses fixed at observed values
 - σ (0 and 1) have masses near the peak of the 2 pion continuum
 - π couplings are close to expected values; BUT $q_0 > q_+$ (!)
 - ω and ρ are week; η is strong (compared to WJC-2)
- ★ Model WJC-2: ONLY 15 parameters
 - EXCELLENT; as good as the Nijmegen phases
 - OBE parameters are reasonable, and SATISFY constraints:
 - masses of ω , ρ , and η (and π) fixed at observed values; σ (0 and 1) masses still near the peak of the 2 pion continuum
 - π^0 and π^{\pm} couplings equal; PURE pv coupling as required by chiral symmetry
 - No novel features (i.e. κ_{ω} =0, η pure pv, no off=shell coupling for ω) EXCEPT off-shell couplings for σ (0 and 1) and ρ

Relativistic effects in ³H binding (1997 results)*

New results confirm the 1997 findings

Changes in the phase shifts

★ Nijmegen phases differ by several degrees from the WJC-1 phases. (Explains earlier problem fitting the data.)

Low χ^2 implies excellent fits to data (of course)

Scaling and rejection of data sets

This data initially unscaled Experimentalists may specify that data has a systematic error; it may be scaled (within the error) to agree with theory. 14 E_{lab}=162 MeV np The red Bonner data has been scaled (below). 12-Bonner (LAMPF, 1978) (d_d/d)^m (mb/sr) Rahm (Uppsala, 1998) WJC-1 =162 MeV np 12 Bonner (LAMPF, 1978) Rahm (Uppsala, 1998) 2. WJC-1 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 θ_{cm} (deg) However, the Uppsala data (blue) is rejected; no scaling can 70 80 90 100 110 120 130 140 150 160 170 180 60 change its incorrect shape.

Rejected data sets can be identified

 θ_{cm} (deg)

* Nijmegen identifies a 3σ criterion. Data sets with χ^2 too large or too small are rejected.

Conclusions

- ★ We have a simple (comparatively) covariant model of the NN kernel based on OBE that gives a quantitatively EXCELLENT description of the low energy NN data.
- ★ The OBE mechanism works very well, with only a few parameters needed.
- ★ ALL Poincaré transformations are kinematic -- i.e. exact.
- ★ Three body forces are incorporated as off-shell effects arising from two body interactions.
- ★ These models can be used for precision calculations of few body interactions
- ★ The kernel provides a "bridge" between hadronic physics and QCD -in the sense that the task of QCD is now to understand the kernel we have found

END