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Results: Energies below the pion production
threshold

! New, high precision fits to np data below 350 MeV lab
energy, and the relativistic properties of the deuteron
and triton.

! What do these new results tell us about the nature of
nuclear forces?

Outline

! CS theory with spin

! Structure of the deuteron wave functions

! Antisymmetrize the kernel

! Removal of spurious singularities

! One Boson Exchange (OBE) interaction with off-shell coupling

! Implications of off-shell couplings

! New model fits to the NN data

! Three-body binding energy and the role of off-shell couplings

! Changes in the phase shifts

! Scaling and rejecting certain data sets

! Conclusions



References

! Original spectator paper

FG, Phys. Rev. 186, 1448 (1969)

! Effective NN potential and OBE models

FG, Phys. Rev. D 10, 223 (1974)

J. W. Van Orden, FG, and K. Holinde, Phys. Rev. C 45, 2094 (1992)

M. T. Peña, FG, and Yohanes Surya, Phys. Rev. C 54, 2235 (1996);
[Two-pion exchange potential and the ! N amplitude]

FG and Alfred Stadler, arXiv:0704.1229 [nucl-th] (2007)

! Cancellations for scalar and chiral cases

FG, Phys. Rev. C 26, 2203 (1982).

! Three body CS equations, and three body binding energy

FG, Phys. Rev. C 26, 2226 (1982).

Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)

Alfred Stadler and FG, Phys. Rev. Letters 78, 26 (1997)

! Normalization of three-body bound state vertices

J. Adam, Jr., FG, Cetin Savkli, J. W. Van Orden, Phys. Rev. C 56, 641 (1997)

! Charge conjugation invariance of the spectator equations

FG, Few Body Syst. 30, 21 (2001)

! In the n nucleon problem, make the following substitution for n – 1
nucleon propagators (with                                          )

! The off-shell propagator is (in the CM with k = P - p)

! Integration over all internal p0's places n – 1 particles on their positive
energy mass-shell.  All 4-d integrations reduce to 3-d integrations.

! Antisymmetrize for identical fermions; remove spurious singularities(!)

! Mass of off-shell particle is k2- m2 = (P - p)2 - m2 = W 2 - 2WE(p) <
W(W - 2m).  If  W  < m + mres, then k2 < (mres)

2 and nucleon resonances are
frozen out (see last lecture).

The Covariant Spectator! (CS) theory with spin
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Coupled equations with spin (1)

! The positive and negative energies give separate coupled

channels

where + and - refer to the u or v spinor matrix element of

the off-shell particle 2
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Coupled equations with spin (2)

! In the nonrelativistic limit, the equations

reduce in coordinate space to

! These can be solved (even when dependent on

spin operators-see Ref.~1*).  For scalar V ! !,

we have (                  )
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if V-- < 2m, this is a positive
definite repulsive core

*FG, Phys. Rev. D 10,223 (1974)



CS deuteron wave function fixed by Poincaré covariance

! from translational invariance:

! from rotational invariance

! from transformations under boosts
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! The relativistic deuteron wave function has one nucleon off-shell.

This off-shell nucleon has both a positive energy spinor part (u) and

a negative energy spinor part (v)

! Four scalar wave functions are needed, 2 for each part

! The normalization condition becomes
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1 = p
2

dp u
2

+ w
2

+ vt
2

+ vs
2{ }

0

!

" +
#V

#Md

2

}

P-state probabilities

!"' "
+ (P,p) = 1

4#
u( p)$1 %$2 &

1

8
w( p) 3$1 % ˆ p $ 2 % ˆ p & $1 % $2( )[ ]

!
"' "

& (P,p) = & 3
16# vs (p) $1 &$ 2( ) % ˆ p + 1

2
vt( p) $1 +$ 2( ) % ˆ p [ ]

same as 

non

relativistic



Deuteron wave functions (2)

! AV18: Argonne AV18

nonrelativistic model

! Model IIB: earlier model*

used to predict the

deuteron form factors

*J.W. Van Orden, FG, and K.

Holinde, Phys. Rev. C 45, 2094

(1992).

! WJC-1: new high precision

fit described here.

P
s
= 92.35% D / S = 0.0256

P
d
= 7.32%

P
vt
= 0.11%

P
vs
= 0.22%

agrees with
experimental
value

Antisymmetrize the Kernel

! The kernel must be explicitly antisymmetrized

! Under interchange of Dirac and momentum indices,

corresponding to antisymmetry of I=1 states and symmetry

of I=0 states, corresponding to full antisymmetry.

! Diagrammatically
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Implications of the antisymmetrization

! The direct OBE has no singularities

! However, the exchange OBE has singularities

! If W < 2m + mb, these singularities are spurious, because they are
cancelled if the kernel is calculated to ALL orders.

! So, imaginary part may be dropped (calculate the principal value),
but how to handle the real part?

1

2
P + k

1

2
P + p

1

mb

2
+ k ! p( )

2

! Ek ! Ep( )
2
=

1

mb

2
+ 2 EpEk ! m

2( ) ! 2k "p
# 0

 

1

mb

2
+ k + p( )

2

! W ! Ek ! Ep( )
2
=

1

mb

2
+ 2 EpEk ! m

2( ) ! W ! 2EK( ) W ! 2Ep( )
! "### $###

+ 2k "p

this =0 if either
initial or final state
is on-shell

Removal of spurious singularities

! Exploit a great freedom: the kernel may be defined in any

convenient way, with “corrections” included in higher order

! An elegant way to remove the singularities is to replace

• preserves exchange symmetry exactly

• removes all singularities (does NOT work for coulomb scattering)

• does not change the direct term, or any results if either the initial or

final state is on shell
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research exercise: calculate the 4th order kernel in &3 theory 
using this prescription, and study the cancellations



Look at the details for S-wave scattering

! The angular integral is

! Locus of singularities and

(in units of m)
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! Kernel is a sum of One Boson Exchange diagrams

  CS Dynamics: OBE with off-shell couplings
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Implications of off-shell couplings

! In basic connection is, diagrammatically

! This can happen repeatedly

OBE with off-shell
couplings

OBE without off-shell couplings
PLUS

a specific set of N-meson exchange
and N-body forces
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Two precision fits to the 2007 data base

! Comparison with other precision fits

1.12 (3788)1.11 (3336)1.09 (3010)152007WJC-2

1.06 (3788)1.05 (3336)1.03 (3010)272007WJC-1

1.02 (3058)432000CD-Bonn

1.06 (2526)401995AV18

1.03 (2514)411993Nijm I

1.12 (3788)1.11 (3336)1.09 (3010)

0.99 (2514)391993PWA93

200720001993# parayearRef

Data set [               (Ndata)]models
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#’s in green are for fits to BOTH np and pp data



OBE parameters obtained from the fits
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Conclusions from the fits

! Model WJC-1: 27 parameters:

• As good as any phase shift analysis or any fit to date; truly QUANTATIVE

• 27 parameters is less than other fits (but only np data fit so far)

• OBE parameters are reasonable:

" masses close to observed masses of actual mesons (within 50 MeV except for
the ,, which is 126 MeV lower); ! masses fixed at observed values

" - (0 and 1) have masses near the peak of the 2 pion continuum

" ! couplings are close to expected values; BUT g0 > g+ (!)

" , and + are week; * is strong (compared to WJC-2)

! Model WJC-2: ONLY 15 parameters

• EXCELLENT; as good as the Nijmegen phases

• OBE parameters are reasonable, and SATISFY constraints:

" masses of ,, +, and * (and !) fixed at observed values; - (0 and 1) masses
still near the peak of the 2 pion continuum

"  !0 and !± couplings equal; PURE pv coupling as required by chiral symmetry

" No novel features (i.e. .,=0, * pure pv, no off=shell coupling for ,) EXCEPT
off-shell couplings for - (0 and 1) and  +



Relativistic effects in 3H binding (1997 results)*
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*three body calculations FG and Alfred 

  Stadler, Phys. Rev. Letters 78, 26 (1997)

It turns out that the relativistic

calculation of the three body binding

energy is sensitive to a new,

relativistic off-shell coupling (described

by the parameter /). Non-zero / is

equivalent to effective three-body (and

n-body forces).

Et

/

The value of / that gives the correct

binding energy is close to the value that

gives the best fit to the two-body data!

note poor 02

New results confirm the 1997 findings

! Minimum                for Model

WJC-1 coincides with

experimental triton binding

energy of -8.48 MeV
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Changes in the phase shifts

! Nijmegen phases differ by several degrees from the WJC-1
phases.  (Explains earlier problem fitting the data.)

Low 02 implies excellent fits to data (of course)
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Scaling and rejection of data sets
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Experimentalists may specify that data 
has a systematic error; it may be scaled 
(within the error) to agree with theory. 
The red Bonner data has been scaled (below).

This data initially unscaled

However, the Uppsala data (blue)
is rejected; no scaling can
change its incorrect shape.
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Rejected data sets can be identified

! Nijmegen identifies a 3- criterion.  Data sets with 02 too

large or too small are rejected.
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Conclusions

! We have a simple (comparatively) covariant model of the NN kernel
based on OBE that gives a quantitatively EXCELLENT description of
the low energy NN data.

! The OBE mechanism works very well, with only a few parameters
needed.

! ALL Poincaré transformations are kinematic -- i.e. exact.

! Three body forces are incorporated as off-shell effects arising
from two body interactions.

! These models can be used for precision calculations of few body
interactions

! The kernel provides a “bridge” between hadronic physics and QCD --
in the sense that the task of QCD is now to understand the kernel
we have found

END


