Relativistic Description of Few-Nucleon Systems

LECTURES: 2007 PRAGUE SUMMER SCHOOL

Franz Gross JLab and W\&M

Lecture II

Theory: Two and Three Nucleon Systems

* Introduction to the Covariant Spectator Theory.
\star How are the bound state and scattering equations obtained? What are the normalization conditions?

Jefferson Lab

Outline

* Theoretical assumptions
* CS equations for two-body systems
\star Equivalence of two-body BS and CS equations
* Effective theory; estimate of the bound state mass
* The one-body limit and cancellations
* Freeze-out of nucleon resonances in the CS theory
* Normalization condition for two-body relativistic bound states
* Three-body CS equation
* Conclusions

Theoretical Assumptions

* Elementary particles (those in the Lagrangian) produce poles in the scattering amplitude

$$
M \sim \frac{g^{2}}{m^{2}-s}
$$

* Nuclei are not elementary (comment: in some, very low energy EFT calculations, they may be treated as effective particles). No single Feynman diagram will have the bound state pole; it must be generated from an infinite sum of Feynman diagrams, much as the geometric series generates a pole:

$$
z+z^{2}+\cdots=\frac{z}{1-z}
$$

Therefore we must sum up infinite series of diagrams in order to treat nuclear bound states.

* Nuclei arise from the NN (and NNN) interactions.
* Nucleon resonances are frozen out (i.e. they do not needed to be treated dynamically, but can be put into the interaction).

CS equations for 2-body systems

* scattering amplitudes: an infinite sum of interactions V

* if a bound state exists, there is a pole in the scattering amplitude

* equation for the bound state vertex functions: obtained from the scattering equation near the bound state pole

* the bound state normalization condition follows from examination of the residue of the bound state pole

Equivalence of the two-body BS and $C S$ equations

* In both cases, the two-body equation has the same form

$$
\begin{aligned}
& M_{B S}\left(p^{\prime}, p ; P\right)=V_{B S}\left(p^{\prime}, p ; P\right)+\int V_{B S}\left(p^{\prime}, k ; P\right) G_{B S}(k ; P) M_{B S}(k, p ; P) \\
& M_{B S}\left(p^{\prime}, p ; P\right)=V_{B S}\left(p^{\prime}, p ; P\right)+\int M_{B S}\left(p^{\prime}, k ; P\right) G_{B S}(k ; P) V_{B S}(k, p ; P) \\
& M_{C S}\left(p^{\prime}, p ; P\right)=V_{C S}\left(p^{\prime}, p ; P\right)+\int V_{C S}\left(p^{\prime}, k ; P\right) G_{C S}(k ; P) M_{C S}(k, p ; P)
\end{aligned}
$$

Equate the amplitudes, and determine the relation between the kernels
or

$$
\begin{gathered}
M_{B S}=V_{B S}\left[1-G_{B S} V_{B S}\right]^{-1}=\left[1-V_{C S} G_{C S}\right]^{-1} V_{C S}=M_{C S} \Rightarrow \\
V_{B S}=V_{C S}+V_{C S}\left[G_{C S}-G_{B S}\right] V_{B S} \\
V_{C S}=V_{B S}+V_{B S}\left[G_{B S}-G_{C S}\right] V_{C S}
\end{gathered}
$$

* The solutions of one equation are identical to the solutions of the other, provided the kernels are properly related

Equivalent summations of the generalized ladder sum

* To 6th order, the generalized ladder sum is

* In the BS theory, these terms require the following irreducible kernel:

nd order

th order

6th order

* In the CS theory, the kernel is

Effective theory: estimate of the bound state mass

* Take an effective short range interaction (treated as a contact term)
* The bubble sum is

$$
><\quad-i \lambda
$$

M	$=\lambda+i \lambda B(s) \lambda+i^{2} \lambda B(s) \lambda B(s) \lambda+\cdots$
	$=\lambda+i \lambda B(s) M$
	$=\frac{\lambda}{1-i \lambda B(s)} \quad$a bound state of mass M_{B} exists if$\quad i \lambda B\left(M_{B}^{2}\right)=1$

* This means that all the Feynman diagrams in the series are the same size - the physics is non-perturbative.
* Bound states arise in field theory from the infinite sum of Feynman diagrams.

Estimate: bound state mass in $1+1$ dimensions (1)

\star Work in 1 time and 1 space dimensions $\left(p_{0} ; p_{z}\right)$ to remove divergences; most results carry over to $1+3$ dimensions

* The bubble in $1+1$ dimensions is easy to calculate

$$
\begin{aligned}
i B\left(P^{2}\right) & =i(-i)^{4} \int \frac{d^{2} k}{(2 \pi)^{2}}\left(\frac{1}{m_{1}^{2}-\left(\frac{1}{2} P+k\right)^{2}-i \varepsilon}\right)\left(\frac{1}{m_{2}^{2}-\left(\frac{1}{2} P-k\right)^{2}-i \varepsilon}\right)=i \int \frac{d^{2} k}{(2 \pi)^{2}}\left(\frac{1}{A_{1}}\right)\left(\frac{1}{A_{2}}\right) \\
& =i \int \frac{d^{2} k}{(2 \pi)^{2}} \int_{0}^{1} d x \frac{1}{\left(A_{1} x+A_{2}(1-x)\right)^{2}}=i \int \frac{d^{2} k^{\prime}}{(2 \pi)^{2}} \int_{0}^{1} d x \frac{1}{\left(m_{1}^{2} x+m_{2}^{2}(1-x)-P^{2} x(1-x)-k^{\prime 2}-i \varepsilon\right)^{2}} \\
& =-\frac{1}{4 \pi} \int_{0}^{1} d x \frac{1}{\left(m_{1}^{2} x+m_{2}^{2}(1-x)-P^{2} x(1-x)\right)} \\
& =-\frac{1}{2 \pi \Delta}\left\{\tan ^{-1}\left(\frac{m_{1}^{2}-m_{2}^{2}+P^{2}}{\Delta}\right)-\tan ^{-1}\left(\frac{m_{1}^{2}-m_{2}^{2}-P^{2}}{\Delta}\right)\right\}
\end{aligned}
$$

where $\Delta^{2}=\left(P^{2}-\left(m_{1}-m_{2}\right)^{2}\right)\left(\left(m_{1}+m_{2}\right)^{2}-P^{2}\right)$

Estimate: bound state mass in $1+1$ dimensions (2)

\star Assume equal masses and weak binding: $m_{1}=m_{2}=m ; P^{2}=4 m^{2}-\delta^{2}$; $m » \delta ; \Delta \cong 2 m \delta$

$$
i B\left(4 m^{2}-\delta^{2}\right)=-\frac{1}{2 \pi \Delta}\left\{\tan ^{-1}\left(\frac{m_{1}^{2}-m_{2}^{2}+P^{2}}{\Delta}\right)-\tan ^{-1}\left(\frac{m_{1}^{2}-m_{2}^{2}-P^{2}}{\Delta}\right)\right\} \simeq-\frac{1}{4 m \delta}
$$

* The binding energy is approximately

$$
-\frac{\lambda}{4 m \delta} \simeq 1 \Rightarrow \delta \simeq-\frac{\lambda}{4 m}
$$

* The contact term must be negative (attractive) for a bound state to exist.

exercise: work this out for $1+2$ dimensions

The one-body limit

* If $m_{1} \Rightarrow \infty$, the equation should reduce to a one-body equation for m_{2} with a potential independent of the coordinates of m_{1}. This is the one-body limit.
* In scalar ϕ^{3} theory, the generalized ladder sum has this property to each order. The proof is in my textbook "Relativistic Quantum Mechanics and Field Theory". Diagrammatically, for the 2nd and 4th orders

\star For scalar theories in the $m_{1} \Rightarrow \infty$ limit, the OBE approximation in CS theory gives the exact result for the generalized ladder sum.

Cancellations: ϕ^{4} theory in $1+1$ dimensions

* Study a simple example: ϕ^{4} theory with one interaction
* On shell scattering to $2 n d$ order:
$M=\ggg \underbrace{\substack{\frac{1}{2} P-k}}_{\substack{i(-i \lambda)=\lambda \\ s=P^{2}}} \underbrace{\frac{1}{2} P+k}_{\text {bubble } B(s)}$
* $B(s)$ already evaluated previously:

$$
B(s)=-\frac{\lambda^{2}}{2 \pi \Delta}\left\{\tan ^{-1}\left(\frac{m_{1}^{2}-m_{2}^{2}+P^{2}}{\Delta}\right)-\tan ^{-1}\left(\frac{m_{1}^{2}-m_{2}^{2}-P^{2}}{\Delta}\right)\right\}
$$

\star where $\Delta^{2}=\left(P^{2}-\left(m_{1}-m_{2}\right)^{2}\right)\left(\left(m_{1}+m_{2}\right)^{2}-P^{2}\right)$

Interesting limits

$$
\begin{gathered}
\star m_{1}=m_{2}=m ; P^{2}=4 m^{2}-\delta^{2} ; u=\delta^{2}, \text { and } m » \delta \\
B(s) \cong-\frac{\lambda^{2}}{2 \pi m \delta} \tan ^{-1}\left(\frac{2 m}{\delta}\right) \simeq-\frac{\lambda^{2}}{2 \pi m \delta}\left\{\frac{\pi}{2}-\frac{\delta}{2 m}\right\} ; \quad B(u) \cong-\frac{\lambda^{2}}{2 \pi m \delta}\left\{\frac{\delta}{2 m}\right\} \\
B(s)+B(u) \cong-\frac{\lambda^{2}}{2 \pi m \delta}\left\{\frac{\pi}{2}\right\} \quad \text { Note the cancellation } \\
\star m_{1} \gg m_{2} \gg \delta ; P^{2}=\left(m_{1}+m_{2}\right)^{2}-\delta^{2} ; u=\left(m_{1}-m_{2}\right)^{2}+\delta^{2} \\
B(s) \cong-\frac{\lambda^{2}}{4 \pi \sqrt{m_{1} m_{2}} \delta}\left\{\tan ^{-1}\left(\frac{m_{1}\left(m_{1}+m_{2}\right)}{\sqrt{m_{1} m_{2}} \delta}\right)+\tan ^{-1}\left(\frac{m_{2}\left(m_{1}+m_{2}\right)}{\sqrt{m_{1} m_{2}} \delta}\right)\right\} \simeq-\frac{\lambda^{2}}{4 \pi \sqrt{m_{1} m_{2}} \delta}\left\{\pi-\frac{\}{\sqrt{m_{1} m_{1}}}\right\} \\
B(u) \cong-\frac{\lambda^{2}}{4 \pi \sqrt{m_{1} m_{2}} \delta}\left\{\tan ^{-1}\left(\frac{m_{1}\left(m_{1}-m_{2}\right)}{\sqrt{m_{1} m_{2}} \delta}\right)-\tan ^{-1}\left(\frac{m_{2}\left(m_{1}-m_{2}\right)}{\sqrt{m_{1} m_{2}} \delta}\right)\right\} \simeq-\frac{\lambda^{2}}{4 \pi \sqrt{m_{1} m_{2}} \delta}\left\{\frac{\delta}{\sqrt{m_{1} m_{2}}}\right\} \\
B(s)+B(u) \cong-\frac{\lambda^{2}}{4 \pi \sqrt{m_{1} m_{2}} \delta}\{\pi\} \quad \text { Note the cancellation }
\end{gathered}
$$

exercise: evaluate these bubbles in 1+2 dimensions

Evaluation of the CS bubble in $1+1$ dimension (1)

* The CS bubble has particle \#1 on-shell; there is no crossed bubble

* This can be written in the convenient form

$$
\begin{aligned}
C(s) & =i \lambda^{2} \int \frac{d^{2} k}{(2 \pi)^{2}}\left(\frac{1}{A_{1}-i \varepsilon}\right)\left(\frac{1}{A_{2}-A_{1}-i \varepsilon}\right) \\
& =i \lambda^{2} \int \frac{d^{2} k}{(2 \pi)^{2}}(\frac{1}{\left.\frac{E_{1}^{2}-\left(\frac{1}{2} P+k_{0}\right)^{2}-i \varepsilon}{\left(E_{1}-\frac{1}{2} P-k_{0}-i \varepsilon\right)}\right)\left(\frac{1}{m_{1}^{2}+m_{1}^{2}+2 P k_{0}-i \varepsilon}\right)} \underbrace{\left(\frac{1}{2} P+k_{0}-i \varepsilon\right)}
\end{aligned}
$$

only pole in the lower half-plane and hence this integral gives the exact CS result

Evaluation of the CS bubble in 1+1 dimension (2)

* This can be also be written

$$
\begin{aligned}
C(s) & =i \lambda^{2} \int \frac{d^{2} k}{(2 \pi)^{2}}\left(\frac{1}{A_{1}-i \varepsilon}\right)\left(\frac{1}{A_{2}-A_{1}-i \varepsilon}\right)=i \lambda^{2} \int \frac{d^{2} k}{(2 \pi)^{2}} \int_{-\infty}^{1} d x \frac{1}{\left[\left(A_{1}-i \varepsilon\right) x+\left(A_{2}-2 i \varepsilon\right)(1-x)\right]^{2}} \\
& =-\frac{\lambda^{2}}{4 \pi} \int_{-\infty}^{1} d x \frac{1}{\left(m_{1}^{2} x+m_{2}^{2}(1-x)-P^{2} x(1-x)\right)}=-\frac{\lambda^{2}}{2 \pi \Delta}\left\{\tan ^{-1}\left(\frac{m_{1}^{2}-m_{2}^{2}+P^{2}}{\Delta}\right)+\frac{\pi}{2}\right\}
\end{aligned}
$$

\star Interesting limits (as before)

- $m_{1} \gg m_{2} \geqslant \delta ; P^{2}=\left(m_{1}+m_{2}\right)^{2}-\delta^{2}$

$$
C(s) \Rightarrow-\frac{\lambda^{2}}{4 \pi \sqrt{m_{1} m_{2}} \delta}\{\pi\} \cong B(s)+B(u)
$$

The correction $\left(-\frac{\delta}{\sqrt{m_{1} m_{2}}} \frac{m_{2}}{m_{1}}\right)$ is much smaller than the term cancelled by
$B(u)$.

- $m_{1}=m_{2}=m ; P^{2}=4 m^{2}-\delta^{2} \quad C(s) \Rightarrow-\frac{\lambda^{2}}{4 \pi m \delta}\left\{\pi-\frac{\delta}{m}\right\} \simeq B(s)$
* Conclusion: the CS equation (in the scalar case when $m_{1}->\infty$) builds in the cancellations.

Freeze-out of nucleon resonances (in the CS theory)

* Nucleon resonances can be excited when the mass of the off-shell nucleon becomes bigger than $\left(m+m_{\pi}\right)^{2}$.
* However, in the CS theory, the mass of the off shell nucleon is bounded from above. For two nucleon scattering at lab energy of W $>2 m$ (with k the internal relative nucleon three-momentum),

$$
\rho=(W-k)^{2}-m^{2}=W^{2}-2 W \sqrt{m^{2}+\mathbf{k}^{2}}<W(W-2 m)
$$

* Hence, nucleon resonances are not explicitly excited unless

$$
W>2 m+m_{\pi}
$$

* This is fundamentally different from Hamiltonian dynamics, where they are excited for all W. The internal momentum must only be larger than a minimum value

$$
2 E(k)>2 m+m_{\pi} \quad \Rightarrow \quad \mathbf{k}^{2}>m m_{\pi}+\frac{1}{4} m_{\pi}^{2}
$$

Resonances frozen out because "left hides right"

Relativistic normalization condition (1)

* The normalization condition for the bound state vertex function also follows from the scattering equation. First find the nonlinear forms of the equation:

$$
\begin{gathered}
M=V+\int_{\bar{L}} V G M=V+\int \bar{M} G M-\iint \bar{M} \bar{G} V G M \\
\bar{M}=V+\int \bar{M} \bar{G} V
\end{gathered}
$$

* Then substitute the pole part of M and expand (away from the pole, is $\rightarrow 0$ and $G=G$:

$$
\begin{aligned}
\frac{\Gamma \bar{\Gamma}}{M_{B}^{2}-P^{2}}= & V+\int \frac{\Gamma \bar{\Gamma}}{M_{B}^{2}-P^{2}}\left\{G+\frac{\partial G}{\partial M_{B}^{2}}\left(P^{2}-M_{B}^{2}\right)\right\} \frac{\Gamma \bar{\Gamma}}{M_{B}^{2}-P^{2}} \\
& -\iint \frac{\Gamma \bar{\Gamma}}{M_{B}^{2}-P^{2}}\left\{G V G+\left[\frac{\partial G}{\partial M_{B}^{2}} V G+G \frac{\partial V}{\partial M_{B}^{2}} G+G V \frac{\partial G}{\partial M_{B}^{2}}\right]\left(P^{2}-M_{B}^{2}\right)\right\} \frac{\Gamma \bar{\Gamma}}{M_{B}^{2}-P^{2}}
\end{aligned}
$$

Relativistic normalization condition (2)

* The double poles give the bound state equation (again)
* The single poles give the normalization condition:

$$
\begin{aligned}
\frac{\Gamma \bar{\Gamma}}{\bar{M}_{B}^{2} P^{2}}= & \int \frac{\Gamma \bar{\Gamma}}{\bar{M}_{B}^{2}-P^{2}}\left\{\frac{\partial G}{\partial M_{B}^{2}}\left(P^{2}-M_{B}^{2}\right)\right\} \frac{\Gamma \bar{\Gamma}}{M_{S}^{2}-P^{2}} \\
& -\iint \frac{\Gamma \bar{\Gamma}}{\bar{M}_{B}^{2}-P^{2}}\left\{\left[\frac{\partial G}{\partial M_{B}^{2}} V G+G \frac{\partial V}{\partial M_{B}^{2}} G+G V \frac{\partial G}{\partial M_{B}^{2}}\right]\left(P^{2}-M_{B}^{2}\right)\right\} \frac{\Gamma \bar{\Pi}}{M_{B}^{2}-P^{2}} \\
1= & \int \bar{\Gamma}\left\{\frac{\partial G}{\partial M_{B}^{2}}\right\} \Gamma+\iint \bar{\Gamma}\left\{\frac{\partial V}{\partial M_{B}^{2}}\right\} \Gamma
\end{aligned}
$$

exercise: work through these details

CS equations for three-body systems*

* Define three-body vertex functions for each possibility

\star Then three body Faddeev-like equations emerge automatically. For identical particles they are:

known from the 2-body sector
*Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)

Applications of the CS theory

* Gauge invariance can be treated exactly (lecture 4)
* Excellent fits to the NN data below 350 MeV (with $\chi^{2} \approx 1.06$ - lecture 3)
* Excellent description of the 3 N binding energy with no explicit three body force (lecture 3)
* Excellent fit to all deuteron form factors to $Q^{2} \sim 6 \mathrm{GeV}^{2}$ with one free parameter in the current (lecture 4)
* Satisfactory description of πN scattering and various quark model calculations (not discussed)
* Exploratory study of $\mathrm{d}\left(e, e^{\prime} \mathrm{p}\right) \mathrm{n}$ in Born approximation*
* To do (work in progress)
- photodisintegration and electrodisintegration of 2 and 3 body nuclei

[^0] PRC 66: 044003 (2002).

Conclusions

* Few body nuclei are composite systems. They must be described nonperturbatively \Rightarrow integral equations for amplitudes in p space.
\star The features of a relativistic description depend on the formalism. In Field form -- all generators are kinematic at the cost of negative energy states (twice as many degrees of freedom).
* Physics depends on whether or not nucleon resonances are explicitly excited (recall: "left hides right").
* A theoretically sound description of few-body reactions requires FSI and MEC and NNN forces consistent with the two-body dynamics assumed. We will return to this in the subsequent lectures.
\star The CS theory can serve as a framework for the use of any method. Take nonrelativistic limit to interpret correspondence with relativistic theory.

END

[^0]: *J. Adam Jr., FG, S.Jeschonnek, P.Ulmer, and J.W.Van Orden,

