Relativistic Description of Few-Nucleon Systems

LECTURES FOR THE 2007 PRAGUE SUMMER SCHOOL

Franz Gross JLab and W\&M

Plan: Each lecture will be accompanied by questions and problems, some requiring original research

Jefferson Lab

Outline:

* Lecture 1: Overview: discussion of relativistic methods
- Two schools for the relativistic description of few nucleon systems will be described.
- How do these approaches handle the problem of relativity and what are the advantages and disadvantages of each?
* Lecture 2: Theory: two and three nucleon systems
- Introduction to the Covariant Spectator Theory.
- How are the bound state and scattering equations obtained, what are the normalization conditions?

Outline (continued)

* Lecture 3: Results: energies below the pion production threshold
- New, high precision fits to np data below 350 MeV lab energy, and the relativistic properties of the deuteron and triton.
- What do these new results tell us about the nature of nuclear forces?

Lecture 4: Electromagnetic interactions: gauge invariance and effective current operators

- General method for doing gauge invariant calculations in systems composed of composite particles.
- What can be learned from high energy electron scattering experiments?

Lecture I:

Overview: Discussion of Relativistic Methods

Outline

* Overview of relativistic methods: "Two schools"
* Field dynamics (also referred, in these lectures, to as "field form")
- Relativistic interactions and equations in field theory
- Introduction to Bethe-Salpeter (BS) and Covariant Spectator ${ }^{\ominus}$ (CS) equations
- Description of bound states in field dynamics
* Hamiltonian Dynamics
- Basic theory in "instant form"
- Comparison with field form
- Poincaré transformations
- Dirac's forms of dynamics
- The Bakamjian-Thomas construction
- The mass operator
* Cluster separability
* Conclusions

First -- why use a relativistic theory?

* NOT because
- of size of $(\mathrm{v} / \mathrm{c})^{2}$ corrections (although they may be large in some applications)
- it is more accurate (it may not be)
- it is "better" than EFT (it complements EFT)
* Use a covariant theory for the following reasons
- Intellectual: to preserve an exact symmetry (Poncare' invariance)
- Practical: to calculate boosts and Lorentz kinematics consistently to all orders (essential when energies are of the order of 1 GeV)
- Consistent: to use field theory for guidance in the construction of
- forces ($2 \Leftrightarrow 3$ body consistency)
- currents consistent with forces
- Conceptual: for "phenomenological economy", and to understand the non relativistic limit:
- spin 1/2 particles (Dirac equation)
- interpretation of L•S forces (covariant scalar-vector theory of N matter)
- efficient one boson exchange models of NN forces (?)

Overview of relativistic methods: Two "schools"

Relativity
with a fixed number of particles

FIELD DYNAMICS

Relativistic interactions in field theory

* Diagrammatic derivation for 2 body scattering:
- The exact scattering amplitude is the sum of all Feynman

- Divide the sum into irreducible and 2-body reducible terms, and collect the irreducible terms into a kernel, which is iterated

Field Theory: How are bound states described?

\star What is a bound state in field theory?

* A bound state is a new particle (not in the Lagrangian) that arises because of the interactions. The vertex function Γ describes how it couples to the elementary particles in the Lagrangian:
$p_{1}=\frac{1}{2} P+p$
$p_{2}=\frac{1}{2} P-p \quad \Gamma(p)$
Notation:
$P=$ total momentum (always conserved)
p relative momentum
* The bound state produces a pole in the scattering amplitude which does not correspond to one of the elementary particles in the theory:

$$
\quad M=\Gamma\left(p^{\prime}\right) \frac{1}{\left(M_{B}^{2}-P^{2}\right)} \bar{\Gamma}(p)
$$

* If the bound state is not elementary, no single Feynman diagram will have the bound state pole; it must be generated from an infinite sum of Feynman diagrams, much as the geometric series generates a pole at $\mathrm{z}=1$:

$$
M=z+z^{2}+z^{3}+\cdots=\frac{z}{1-z}
$$

Relativistic scattering equations in field theory

* The scattering equation is

$$
M\left(p^{\prime}, p ; P\right)=V\left(p^{\prime}, p ; P\right)+\int V\left(p^{\prime}, k ; P\right) G(k ; P) M(k, p ; P)
$$

where V is the kernel (i.e. potential) and G is the propagator

* If the kernel is phenomenological, this is field dynamics instead of field theory.
* The bound state equation follows by assuming the M matrix has a pole, and substituting

$$
\begin{aligned}
M\left(p^{\prime}, p ; P\right)= & \frac{\Gamma\left(p^{\prime}, M_{B}\right) \bar{\Gamma}\left(p, M_{B}\right)}{M_{B}^{2}-P^{2}}=V\left(p^{\prime}, p ; P\right) \\
& +\int V\left(p^{\prime}, k ; P\right) G(k ; P) \frac{\Gamma\left(k, M_{B}\right) \bar{\Gamma}\left(p, M_{B}\right)}{M_{B}^{2}-P^{2}}
\end{aligned}
$$

extracting the pole part gives the bound state equation uniquely

$$
\Gamma\left(p^{\prime}, M_{B}\right)=\int V\left(p^{\prime}, k ; M_{B}\right) G\left(k ; M_{B}\right) \Gamma\left(k, M_{B}\right)
$$

* This equation also insures that the non-pole parts of the scattering amplitude do not contribute near the pole (next lecture)

Two field dynamical equations

* The Bethe-Salpeter (BS) propagator depends on all four components of the relative momentum, $\left\{k_{0}, \mathbf{k}\right\}$. For two scalar particles it is

$$
G_{B S}(k ; P)=\frac{1}{\left(m_{1}^{2}-p_{1}^{2}-\Sigma\left(p_{1}^{2}\right)-i \varepsilon\right)\left(m_{2}^{2}-p_{2}^{2}-\Sigma\left(p_{2}^{2}\right)-i \varepsilon\right)} \text { with }\left\{\begin{array}{l}
p_{1}=\frac{1}{2} P+k \\
p_{2}=\frac{1}{2} P-k
\end{array}\right.
$$

* The Covariant Spectator® propagator depends on only three components of the relative momentum, \boldsymbol{k}. One particle is onshell

$$
G_{C S}(k ; P)=\frac{2 \pi i \delta_{+}\left(m_{1}^{2}-\left(\frac{1}{2} P+k\right)^{2}\right)}{\left(m_{2}^{2}-p_{2}^{2}-\Sigma\left(p_{2}^{2}\right)-i \varepsilon\right)}=\frac{2 \pi i \delta\left(k_{0}-E_{1}+\frac{1}{2} P_{0}\right)}{2 E_{1}\left(E_{2}^{2}-\left(P_{0}-E_{1}\right)^{2}-\Sigma\left(p_{2}^{2}\right)-i \varepsilon\right)}
$$

exercise: write the explicit form of these equations in a ϕ^{4} theory

These equations both have a connection to field theory

* The Bethe-Salpeter amplitude is a well defined field theoretic matrix element:

$$
\Psi\left(x_{1}, x_{2}\right)=\langle 0| T\left(\psi\left(x_{2}\right) \psi\left(x_{1}\right)\right)|d\rangle
$$

* The Covariant Spectator® amplitude is also a well defined field theoretic amplitude:

$$
\Psi\left(x_{1}\right)=\langle N| \psi\left(x_{1}\right)|d\rangle
$$

* Equations for the Bethe-Salpeter and the Spectator* amplitudes can be derived from field theory
- Both are manifestly covariant under all Poincaré transformations (advantage)
- Both incorporate negative energy (antiparticle) states (disadvantage)

[^0]
HAMILTONIAN DYNAMICS*

*B. D. Keister and W. N. Polyzou, Ad. in Nucl. Phys. 20, 225 (1991)

Hamiltonian dynamics: basic theory (in "instant" form)

* Start with a Hilbert space of free particle states $\left(H_{0}-E_{i}\right) \phi_{i}=0$
\star Interactions described by the interaction Hamiltonian, H_{I}

$$
\left(H_{0}-E_{i}\right) \Psi_{i}=H_{I} \Psi_{i} \Rightarrow \Psi_{i}=\phi_{i}+\frac{1}{H_{0}-E_{i}} H_{I} \Psi_{i}
$$

\star Solve by iteration (perturbation theory) $H_{j k}=\left\langle\phi_{j} H_{l} \phi_{k}\right\rangle$

$$
\Psi_{i}=\phi_{i}+\sum_{j \neq i} \phi_{j} \frac{1}{E_{j}-E_{i}} H_{j i}+\sum_{\substack{j^{\prime} \neq i \\ j \neq i}} \phi_{j^{\prime}}\left(\frac{1}{E_{j^{\prime}}-E_{i}}\right) H_{j^{\prime},}\left(\frac{1}{E_{j}-E_{i}}\right) H_{j i}+\cdots
$$

* The scattering amplitude is then

$$
M_{k i}=\left\langle\phi_{k} H_{I} \Psi_{i}\right\rangle=H_{k i}+\sum_{j \neq i} H_{k j} \frac{1}{E_{j}-E_{i}} H_{j i}+\sum_{\substack{j \neq i \\ j \neq i}} H_{k j^{\prime}}\left(\frac{1}{E_{j^{\prime}}-E_{i}}\right) H_{j^{\prime} j}\left(\frac{1}{E_{j}-E_{i}}\right) H_{j i}+\cdots
$$

exercise: check these relations

Comparison with Field form: ϕ^{4} theory in $1+1$ dimensions

* Consider scattering from the 2nd order bubble

* In field theory (Feynman diagrams) this is

$$
\begin{aligned}
B(s)= & i \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{\lambda^{2}}{\left(m_{1}^{2}+\mathbf{k}_{+}^{2}-\left(\frac{1}{2} P+k_{0}\right)^{2}-i \varepsilon\right)\left(m_{2}^{2}+\mathbf{k}_{-}^{2}-\left(\frac{1}{2} P-k_{0}\right)^{2}\right.} \\
& =-\lambda^{2} \int \frac{d k_{z}}{(2 \pi)}\left(\frac{1}{4 E_{1} E_{2}}\right)\left(\frac{1}{E_{1}+E_{2}-P_{0}}+\frac{1}{E_{1}+E_{2}+2 P_{0}-P_{0}}\right)
\end{aligned}
$$

* Conclusion 1: Manifest covariance obtained when BOTH positive and negative energy contributions are included.
* Conclusion 2: ONE Feynman diagram is the sum of ALL possible time-ordered graphs.

The Poincaré group and Dirac forms of dynamics

* The Poincaré group are unitary operators on the Hilbert space, with 10 generators: Po, P, J, and K, satisfying the following $45 C R^{\prime} s$:

$$
\begin{array}{lll}
{\left[J^{i}, J^{j}\right]=i \varepsilon^{i j k} J^{k},} & {\left[J^{i}, K^{j}\right]=i \varepsilon^{i k} K^{k},} & {\left[J^{i}, P^{j}\right]=i \varepsilon^{i j k} P^{k}, \quad\left[K^{i}, K^{j}\right]=-i \varepsilon^{i k k} J^{k}} \\
{\left[K^{i}, P^{j}\right]=-i \delta^{i j} P^{0},} & {\left[K^{i}, P^{0}\right]=-i P^{i},} & {\left[P^{\mu}, P^{v}\right]=0,}
\end{array}\left[J^{i}, P^{0}\right]=0
$$

* Forms of dynamics: The Poincaré group has three subgroups:
- The instant-form is based on the subgroup

$$
\left[J^{i}, J^{j}\right]=i \varepsilon^{i j k} J^{k}, \quad\left[J^{i}, P^{j}\right]=i \varepsilon^{i k k} P^{k}, \quad\left[P^{i}, P^{j}\right]=0
$$

- The point-form is based on the Lorentz subgroup

$$
\left[J^{i}, J^{j}\right]=i \varepsilon^{i j k} J^{k}, \quad\left[J^{i}, K^{j}\right]=i \varepsilon^{i j k} K^{k}, \quad\left[K^{i}, K^{j}\right]=-i \varepsilon^{i k} J^{k}
$$

- The front-form is based on the subgroup constructed from 7 generators

$$
P^{+}=P^{0}+P^{3}, \quad \mathbf{P}_{\perp}=\left\{P^{1}, P^{2}\right\}, \quad J^{3}, \quad K^{3}, \quad \mathbf{E}_{\perp}=\mathbf{K}_{\perp}-\hat{\mathbf{z}} \times \mathbf{J}_{\perp}
$$

exercise: prove that the commutation relations for these 7 generators close.

Definition of generators

* Finite transformations "generated" by the generators

$$
\begin{aligned}
T \psi(z) & =\exp \left(-i P_{\mu} \cdot x^{\mu}\right) \psi(z)=\exp \left(i P_{z} a_{z}\right) \psi(z)=\exp \left(a_{z} \nabla_{z}\right) \psi(z) \\
& =\psi(z)+a_{z} \frac{\partial}{\partial z} \psi(z)+\frac{1}{2} a_{z}^{2} \frac{\partial^{2}}{\partial^{2} z} \psi(z)+\cdots \\
& =\psi\left(z+a_{z}\right)
\end{aligned}
$$

Kinematic surfaces and generalized hamiltonia

* Instant-form:

States with definite momentum and spin (eigenstates of P and J): defined on a surface connected by translations and rotations (the $t=0$ surface). P^{0} and K are dynamical; evolving the states away from the $t=0$ surface

* Point-form:

States with definite four-velocity (eigenstates of J and K): defined on a hyperboloid with $x_{\mu} x^{\mu}=1$. The 4 components of P^{μ} are dynamical.

* Front-form:

States defined on a light-front, $x=t-z=0$. The dynamical generators are $P-=P^{0}-P^{3}, F_{\perp}=K_{\perp}+z \times J_{\perp}$

$\begin{array}{ll}a \leq 1: \text { instant form } 6+4 \\ a=1 \text { : front form } & 7+3\end{array} \begin{aligned} & \text { Limit not } \\ & \text { continuous }\end{aligned}$

$a=0$: point form on the light cone $a=\infty$: instant form

The Bakamjian-Thomas construction (in instant-form)*

* The commutation relations can be automatically satisfied if the operators P, J, K, and $H=P 0$ are replaced by P, r, s, and M.
\star For a single particle, α, the generators are written in lower case:

$$
\mathbf{p}_{\alpha}, \quad \mathbf{j}_{\alpha}=\mathbf{s}_{\alpha}+\mathbf{r}_{\alpha} \times \mathbf{p}_{\alpha}, \quad h_{\alpha}=\sqrt{m_{\alpha}^{2}+\mathbf{p}_{\alpha}^{2}}, \quad \mathbf{k}_{\alpha}=-\frac{1}{2}\left\{h_{\alpha}, \mathbf{r}_{\alpha}\right\}-\frac{\mathbf{p}_{\alpha} \times \mathbf{s}_{\alpha}}{m_{\alpha}+h_{\alpha}}
$$

with inverse relations

$$
\begin{aligned}
& m_{\alpha}=\sqrt{h_{\alpha}^{2}-\mathbf{p}_{\alpha}^{2}}, \quad \mathbf{r}_{\alpha}=-\frac{1}{2}\left\{h_{\alpha}^{-1}, \mathbf{k}_{\alpha}\right\}-\frac{\mathbf{p}_{\alpha} \times\left(h_{\alpha} \mathbf{j}_{\alpha}-\mathbf{p}_{\alpha} \times \mathbf{k}_{\alpha}\right)}{m_{\alpha} h_{\alpha}\left(m_{\alpha}+h_{\alpha}\right)}, \\
& \mathbf{s}_{\alpha}=m_{\alpha}^{-1}\left(h_{\alpha} \mathbf{j}_{\alpha}-\mathbf{p}_{\alpha} \times \mathbf{k}_{\alpha}\right)-\frac{\mathbf{p}_{\alpha}\left(\mathbf{p}_{\alpha} \cdot \mathbf{j}_{\alpha}\right)}{m_{\alpha}\left(m_{\alpha}+h_{\alpha}\right)}
\end{aligned}
$$

with non-zero commutators

$$
\left[r_{\alpha}^{i}, p_{\alpha}^{j}\right]=i \delta^{i j}, \quad\left[s_{\alpha}^{i}, s_{\alpha}^{j}\right]=i \varepsilon^{i j k} s_{\alpha}^{k}
$$

*B. Bakamjian and H. L. Thomas, Phys. Rev. 92, 1300 (1953)

Bakamjian-Thomas for $n>1$

* Proceed in 4 steps

1. Construct total $\boldsymbol{P}^{\mu}, \mathbf{J}$ and K by adding generators for each particle $\quad P^{\mu}=\sum_{\alpha} p_{\alpha}^{\mu}, \quad \mathbf{J}=\sum_{\alpha} \mathbf{j}_{\alpha}, \quad \mathbf{K}=\sum_{\alpha} \mathbf{k}_{\alpha}$
2. Construct the operators M_{0}, R and S (together with P, already constructed) using the inverse relations (previous slide)
3. Add the interactions to $M_{0}, M=M_{0}+V$. Require that V commute with M_{0}, P, R and S
4. Construct the new generators H, J and K as functions of M, P, R and S. This completes the construction. All interactions are in the mass operator.

Exercise: think about this and work through the relations

The mass operator

* To achieve manifest covariance without negative energy states, introduce the mass operator

$$
M=M_{0}+U=\left(\left(H_{0}+H_{I}\right)^{2}-\mathbf{P}^{2}\right)^{1 / 2} \Rightarrow M^{2}=M_{0}^{2}+V
$$

where $V=H_{0} H_{I}+H_{I} H_{0}+H_{I}^{2}$

* Following the steps we used with the hamiltonian, we have

$$
\left(M_{0}^{2}-M_{i}^{2}\right) \Psi_{i}=V \Psi_{i} \Rightarrow \Psi_{i}=\phi_{i}+\frac{1}{M_{0}^{2}-M_{i}^{2}} V \Psi_{i}
$$

* Solving by iteration, the scattering amplitude becomes
$M_{k i}=\left\langle\phi_{k} V \Psi_{i}\right\rangle=V_{k i}+\sum_{j \neq i} V_{k j} \frac{1}{M_{j}^{2}-M_{i}^{2}} V_{j i}+\sum_{\substack{j^{\prime} \neq i \\ j \neq i}} V_{k^{\prime}}\left(\frac{1}{M_{j^{\prime}}^{2}-M_{i}^{2}}\right) V_{j^{\prime} j}\left(\frac{1}{M_{j}^{2}-M_{i}^{2}}\right) V_{j i}+\cdots$ where, for the second order bubble $\begin{gathered}\substack{j \neq i \neq i} \\ j \neq i \\ M_{i}\end{gathered}$

$$
M_{k}^{2}-M_{i}^{2}=\left(E_{+}+E_{-}\right)^{2}-P_{0}^{2}
$$

* This agrees with the covariant result.

Comparison with Field form: ϕ^{4} theory in $1+1$ dimensions

* Consider scattering from the 2nd order bubble

* In field theory (Feynman diagrams) this is

$$
\begin{aligned}
B(s) & =i \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{\lambda^{2}}{\left(m_{1}^{2}+\mathbf{k}_{+}^{2}-\left(\frac{1}{2} P+k_{0}\right)^{2}-i \varepsilon\right)\left(m_{2}^{2}+\mathbf{k}_{-}^{2}-\left(\frac{1}{2} P-k_{0}\right)\right.} \\
& =-\lambda^{2} \int \frac{d k_{z}}{(2 \pi)}\left(\frac{1}{4 E_{+} E_{-}}\right)\left(\frac{1}{E_{+}+E_{-}-P}+\frac{1}{E_{+}+E_{-}+2 P-P}\right)
\end{aligned}
$$

* Conclusion 1: Manifest covariance obtained when BOTH positive and negative energy contributions are included.
* Conclusion 2: ONE Feynman diagram is the sum of ALL possible time-ordered graphs.

Overview of relativistic methods: Two "schools"

Cluster separability -- 3-body example

* Definition: when one particle is far away, the interaction between the other two is the same as it would be without the third particle

* If $P=p_{1}+p_{2}+p_{3}=0$, and $p_{1} \neq 0$, then the 23 amplitude is in a moving frame. The boost depends on the mass of the 2-body system.
\star Hamiltonian dynamics is off-energy shell, $E_{2}+E_{3} \neq \sqrt{M_{23}^{2}+\mathbf{p}_{1}^{2}}$. The energies of particles and subsystems do not match the free particle energies, and under boosts the cluster property is not easy to implement.
\star Field dynamics is off-mass shell, $p_{0} \neq \sqrt{m^{2}+\mathbf{p}^{2}}$. Energy is conserved so boosts and cluster properties are easily satisfied, but off-mass shell \Rightarrow negative energy states.

Research study: How is separability handled by the two schools; Can you support my claim that here off-mass shell techniques work better?

Conclusions and comparison

* Hamiltonian dynamics
- Advantages:
- Real quantum mechanics
- No negative energy states
- Disadvantages
- More ambiguities; no direct connection to field theory
- Difficulties with cluster separability (?)
\star Field Dynamics
- Advantages
- Manifest covariance and cluster separability easily implemented
- Close connection to field theory guides the construction of interactions and currents
- Disadvantages
- Not conventional quantum mechanics; a new approach (if you think that 1951 is new?) still requiring conceptual development
- Singularities, and need to treat negative energy states is more work

Exercise: What's your opinion?

[^0]: *O. W. Greenberg's "n-quantum approximation"

