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QFT is solved when all of its n-point Green’s functions are known
see, e.g., Streater & Wightman, “PCT, spin and statistics, and all that,” 1989.

Dyson-Schwinger equations allow, in principle, to find all the n-point
Green’s functions of the QFT.

Method based on the DSEs may serve as a strong tool to study the
nonperturbative QCD effects (see, e.g., Roberts & Williams, Prog. Part. Nucl. Phys.33, 477).

The infinite tower of DSEs is hard to study for n > 3. However, the
symmetries and the renormalizability of the theory can serve as a
strong constraints on the ansatz for the omitted function(s).

It is important to have an alternative nonperturbative approach to
provide more insight into the form of these higher n-point functions.
Lattice gauge theory is one of the examples.

We will show that AdS/QCD model can serve as another continuous
nonperturbative approach to QCD. We also believe that it can be used
to complement the DSE approach for large n.



Formulation of Conjecture

The AdS/CFT correspondence conjectures the equivalence of gravity
theory (Type IIB string theory) on AdS5 × S5, and strongly coupled
(N = 4 SYM) CFT4. (Maldacena, 1997)

AdS/CFT says that for ∀O(x) ∈ {CFT operator},
∃!φ(x, z) ∈ {5D bulk field} s.t. φ(x, 0) = φ0(x), x ∈ ∂AdS5.

Let S5[φ0(x)] is the gravity or string action of φ(x, z) with
φ(x, 0) = φ0(x), then the correspondence takes the form

〈exp(i
∫

d4xφ0(x)O(x))〉CFT = exp(iS5[φ0(x)]) ,

(Witten, 1998)



Addition of IR Brane

Addition of the IR brane, corresponds to deformation of the CFT leading to
a breakdown of conformal invariance in the IR.

Now, we have both particles and S-matrix elements.

In particular, the KK-like gravitons in the gravity side can be interpreted in
the 4D theory as resonances.



Initial Setup

We will use the (hard-wall) model proposed by Erlich, Katz, Son and
Stephanov (EKSS) PRL95, 2005.

The slice of AdS5 is defined according to:

ds2 =
1
z2

(
ηµνdxµdxν − dz2) , 0 < z ≤ z0 ,

ηµν = Diag (1,−1,−1,−1) and z0 ∼ 1/ΛQCD is the IR scale.

The holographic dictionary for vector sector is:

Ja
µ(x) = q̄γµtaq(x) ↔ Aa

M(x, z) ,

so that Aa
M(x, 0) is the source for Ja

µ(x).



The 5D Gauge Action

The 5D gauge action in AdS5 space for the vector field is:

SAdS = − 1
4g2

5

∫
d4x dz

√
g Tr

(
FMNFMN)

,

where FMN = ∂MAN − ∂NAM − i[AM,AN ], A = Aata,
(ta ∈ SU(2), a = 1, 2, 3) and M,N = 0, 1, 2, 3, z.

4D Global Chiral SU(2)↔ 5D Local Gauge SU(2)

We take our field to be non-Abelian, since later we are interested in
calculating the 3-point function.



Equation of Motion

We work in Az = 0 gauge with Fourier-transformed gauge field

Aµ(q, z) = Ãµ(q)
V(q, z)
V(q, ε)

|ε→0 .

The boundary condition at z = z0:

∂zV(q, z0) = 0 ⇒ Fµz(x, z0) = 0 gauge invariant condition.

The e.o.m. for the bulk-to-boundary propagator is

z∂z

(
1
z
∂zV(q, z)

)
+ q2V(q, z) = 0 ⇒

V(q, z) ∝ qz(Y0(qz0)J1(qz)− J0(qz0)Y1(qz)) ,



Two-point Function

The 2-point function defined from the relation:∫
d4x eiq·x〈Jµ(x)Jν(0)〉 =

(
gµν −

qµqν

q2

)
Σ(q2)

AdS/QCD predicts for the scalar part of the 2-point function:

Σ(q2) = − 1
g2

5

(
1
z
∂zV(q, z)
V(q, ε)

)∣∣∣∣
z=ε→0

⇒
∞∑

n=1

f 2
n

q2 −M2
n
,

where Mn = γ0n/z0 and

f 2
n =

2M2
n

g2
5z2

0J2
1(γ0,n)

,

since: 〈0|Ja
µ|ρb

n〉 = δabfnεµ.



Two-point Function

In the limit qz0 � 1

Σ(q2) =
1

2g2
5

q2 ln(q2ε2) ,

by matching with QCD, one finds (EKSS): g2
5 = 12π2/Nc.

For Nc = 3 to get M1 ≡ Mexp
ρ = 775.8 MeV, we take 1

z0
= 323 MeV .

As a result: f1 ≡ fρ = (392 MeV)2

N.B. f exp
ρ = (401± 4 MeV)2 (PDG, 2007)



Three-point Function of Vector Currents

For the scalar part of 〈Jα
a (p1)J

β
b (−p2)J

µ
c (q)〉 the AdS/QCD predicts

T(p2
1, p

2
2,Q

2) =
∞∑

n,k=1

fn fkFnk(Q2)(
p2

1 −M2
n
) (

p2
2 −M2

k

) ,
where

Fnk(Q2) =

∫ z0

0

dz
z
J (Q, z)ψn(z)ψk(z)

correspond to form factors for n → k transitions, where

J (Q, z) ≡ V(iQ, z)
V(iQ, ε)

|ε→0 = Qz
[

K1(Qz) + I1(Qz)
K0(Qz0)

I0(Qz0)

]
.

(HRG, Radyushkin, PLB650, 2007)



Eigenfunctions

The eigenfunctions ψn(z) obey the equation

z∂z

(
1
z
∂zψn(z)

)
+ M2

n ψn(z) = 0 ,

with the b.c.

ψn(0) = 0 , ∂zψn(z0) = 0 ,

and normalized according to∫ z0

0

dz
z
|ψn(z)|2 = 1 .



Three-point Function of Vector Currents

The tensor structure of the 3-pt function is

Tαβµ = ηαµ(q− p1)
β − ηβµ(p2 + q)α + ηαβ(p1 + p2)

µ .

Figure: Schematic representation for the 3-point function



Wave functions

Define “φ wave functions” as

φn(z) ≡
1

Mnz
∂zψn(z) ,

then:

φn(0) = g5fn/Mn , φn(z0) = 0 ,∫ z0

0
dz z |φn(z)|2 = 1 ,

⇒ φ w.f. are analogous of bound state w.f. in QM.

The form factor in terms of φ is

Fnn(Q2) =
1

1 + Q2/2M2
n

∫ z0

0
dz zJ (Q, z) |φn(z)|2 .
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Figure: Plots of F11(Q2) and Q2F11(Q2) as a function of Q2 (GeV2).



Form Factors

In general

〈ρ+(p2, ε
′)|Jµ

EM(0)|ρ+(p1, ε)〉

= −ε′βεα
[
ηαβ(pµ

1 + pµ
2 ) G1(Q2)

+(ηµαqβ − ηµβqα)(G1(Q2) + G2(Q2))

− 1
M2 qαqβ(pµ

1 + pµ
2 ) G3(Q2)

]
.

AdS/QCD model predicts G(n)
1 (Q2) = G(n)

2 (Q2) = Fnn(Q2), and
G(n)

3 (Q2) = 0 for form factors G(n)
i (Q2) of nth bound state.



Form Factors

Electric GC, magnetic GM and quadrupole GQ form factors are

G(n)
C (Q2) ≡ G(n)

1 +
Q2

6M2
n

G(n)
Q =

(
1− Q2

6M2
n

)
Fnn(Q2) ,

G(n)
M (Q2) ≡ G(n)

1 + G(n)
2 = 2Fnn(Q2) ,

G(n)
Q (Q2) ≡

(
1 +

Q2

4M2
n

)
G(n)

3 − G(n)
2 = −Fnn(Q2) .

For ρ meson (n = 1)

e ≡ G(1)
C (0) = 1 ,

µ ≡ G(1)
M (0) = 2 ,

DM2
ρ ≡ G(1)

Q (0) = −1 .

these are canonical values for a vector particle (Brodsky, PRD46, 1992).
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Figure: Plots of GC(Q2) and Q2GC(Q2) as a function of Q2 (GeV2).



Light-Cone Formalism vs. Holography

The light-cone form factor is:

F(Q2) ≡ G1(Q2) +
Q2

2M2 G2(Q2)−
(

Q2

2M2

)2

G3(Q2)

=

∫ z0

0
dz zJ (Q, z) |φn(z)|2 .

This is a “+ + +” component of the 3-point correlator obtained by convoluting it with nαnβnµ , where

n2 = 0, (np1) = 1, (nq) = 0, (Radyushkin, PLB642, 2006).



Low-Q2 behavior.

The electric form factor in the Qz0 � 1 limit is

G(1)
C (Q2) ≈ 1− 1.359

Q2

M2 + 1.428
Q4

M4 +O(Q6) .

For the electric radius of the ρ-meson this gives

〈r2
ρ〉C = 0.53 fm2 .

This value is very close to the results from DSE approach (Bhagwat,
2006) and lattice calculations (Lasscock, 2006).



VMD pattern

The F11(Q2) form factor can be written in the generalized VMD
representation

F11(Q2) =
∞∑

m=1

Fm,11

1 + Q2/M2
m
,

with the coefficients Fm,11 = {1.237, −0.239, 0.002, ...}.

At Q2 = 0 the normalization of the ρ meson form factor is almost
completely saturated by the first two bound states:

F11(0) = F1,11 + F2,11 + ... = 0.998 + ...



Summary I

We described the formalism that allows to study form factors of vector
mesons in the AdS/QCD model with hard-wall cutoff (HRG, Radyushkin, PLB650,

2007).

Analogous formalism for the soft-wall model (Karch, Katz, Son and Stephanov, PRD74,

2006) with dilatonic field χ(z) = z2 was developed in (HRG, A. Radyushkin, PRD76,

2007).

We introduced “φ wave functions” that have the properties necessary
for the light-cone interpretation proposed in (Brodsky, PRL96, 2006) and
discussed in (Radyushkin, PLB642, 2006).

The calculated electric radius is: 〈r2
ρ〉C = 0.53 fm2.

AdS/QCD model predicts a very specific VMD pattern. Form factors
are given by contributions due to the first two bound states.

The addition of dimension six terms gives three different form factors
and more realistic values for µ and D (HRG, 2007).



Pion in AdS/QCD

We describe a formalism to calculate the pion form factor in the
chiral limit of QCD with Nf = 2.

We also study the behavior of the fπ and 〈r2
π〉C in various regions

of the holographic parameters space (z0, σ).

The holographic dictionary in the axial gauge (Az = 0) is:

Ja
Aµ(x) = q̄(x)γµγ5taq(x) → Aa

µ(x, z)

Σαβ(x) = 〈q̄α
L (x)qβ

R(x)〉 → 2
z

Xαβ(x, z)



Initial Setup

Axial-vector and pseudoscalar sectors of the hard-wall model (EKSS)
are described by the action

SA
AdS = Tr

∫
d4x dz

√
g

[
|DX|2 + 3|X|2 − 1

4g2
5

F2
A

]
,

where DX = ∂X − iALX + iXAR, (AL(R) = V ± A) and

X(x, z) =
1
2

v(z)U(x, z) ,

U(x, z) = exp (2itaπa(x, z)) ,

v(z) = mqz + σz3 ,

mq– quark mass and σ– quark condensate.



Initial Setup

Expanding U(x, z)⇒

SA (2)
AdS = Tr

∫
d4x dz

[
− 1

4g2
5z

AMNAMN +
v2(z)
2z3 (Aa

M − ∂Mπ
a)2

]
In general A = A⊥ + A‖, where A⊥ and A‖ are transverse and
longitudinal components of the axial-vector field.

SSB causes A‖ to be physical and associated with the GB – pion.

The || component may be written as

Aa
M‖(x, z) = ∂Mψ

a(x, z)⇒ ψa(x, z)↔ pion field



Equations of Motion

Varying the action with respect to Aa
⊥µ(x, z) and representing the

Fourier image of Aa
⊥µ(x, z) as Ãa

⊥µ(p, z) = A(p, z)Aa
µ(p) we will get[

z3∂z

(
1
z
∂zA

)
+ p2z2A− g2

5v2A
]

= 0 ,

with b.c. A(p, 0) = 1 and A′(p, z0) = 0. Remember that v(z) = σz3.
Variation with respect to the longitudinal component ∂µψ

a gives

z3∂z

(
1
z
∂zψ

a
)
− g2

5v2 (ψa − πa) = 0 .

Finally, varying with respect to Az produces

p2z2∂zψ
a − g2

5v2∂zπ
a = 0 ,

with b.c. ∂zψ(z0) = 0, ψ(ε) = 0 and π(ε) = 0.



Equations of Motion

In the chiral limit, the equation for ψ becomes

z3∂z

(
1
z
∂zΨ

)
− g2

5v2Ψ = 0

where Ψ ≡ ψ − π and since π = −1 ⇒ Ψ(ε) = 1 and Ψ′(z0) = 0 ⇒

Ψ(z) = A(0, z) .

It is useful to define the conjugate w.f. Φ(z) as

Φ(z) = − 1
g2

5f 2
π

(
1
z
∂zΨ(z)

)
,

then Φ(0) = 1 and Φ(z0) = 0.



Definitions

The spectrum in the axial-current channel consists of the pion

〈0|Jα
A |π(p)〉 = ifπpα

and axial-vector mesons

〈0|Jα
A |An(p, σ)〉 = FA,nε

α
n (p, σ) ,

where FA,n correspond to the nth axial-vector meson decay constant.



Two-point Function

The two-point function for the axial-vector currents can be written as

〈 Jα
A (p)Jβ

A (−p) 〉 = pαpβ f 2
π

p2 +

(
−ηαβ +

pαpβ

p2

) ∑
n

F2
A,n

p2 −M2
A,n

+ · · · ,

in which the second term on the rhs is explicitly transverse to p.

As noted in AdS/QCD model (EKSS):

f 2
π = − 1

g2
5

(
1
z
∂zA(0, z)

)
z=ε→0

.



Three-Point Function

To obtain the pion form factor, we need to calculate three-point
correlation function.

Correlator should include the external EM current Jel
µ (0) and currents

Ja
5α(x1), J

a†
5β(x2) having nonzero projection onto the pion states ⇒

Tµαβ(p1, p2) =

∫
d4x1

∫
d4x2 eip1x1−ip2x2 〈0|T J†5β(x2)Jel

µ (0)J5α(x1)|0〉 ,

The momentum transfer carried by the EM source is q = p2 − p1
(q2 = −Q2 ≤ 0).



Three-Point Function

The spectral representation for the three-point function is

T µαβ(p1, p2) = pα
1 pβ

2 (p1 + p2)
µ f 2

π Fπ(Q2)

p2
1p2

2
+

∑
n,m

(⊥ terms) + · · · ,

1st term is longitudinal to pα
1 and pβ

2 and contains pion form factor

〈π(p1)|Jel
µ (0)|π(p2)〉 = Fπ(q2)(p1 + p2)µ .

Other pole terms are transverse to pα
1 or pβ

2 ⇒

p1αp2βT µαβ(p1, p2)|p2
1=0,p2

2=0 = (p1 + p2)
µf 2

π Fπ(Q2) .



Three-Point Function

To obtain form factor from the holographic model, we need the action
at the third order in the fields.

There are two types of terms contributing to the pion electromagnetic
form factor: |DX|2 term and F2 terms.

The part of F2 term which contributes to 〈J5αJµJ5β〉 is:

W3 =
i

g2
5

Tr
∫

d4x dz
1
z

(Vµν [Aµ,Aν ] + Aµν [Vµ,Aν ]) .

Similarly, the relevant part from |DX|2 has the form:

U3 = εabc

∫
d4x dz

[
v2(z)

z3 (Aa
M − ∂Mπ

a)πb Vc M
]
,



Three-Point Function

Varying W3 and U3 terms with respect to the sources and representing

〈Jµ
V,a(q)Jα

‖A,b(p1)J
β
‖A,c(−p2)〉 =

= i(2π)4δ(4)(q + p1 − p2) εabcT µαβ(p1, p2) ,

we get for the total form factor:

Fπ(Q2) =
1

g2
5f 2

π

∫ z0

0
dz zJ (Q, z)

[(
∂zΨ

z

)2

+
g2

5v2

z4 Ψ2(z)

]
.

(HRG, Radyushkin, PRD76, 2007)



Form Factor

It can be shown that

Fπ(Q2) = −
∫ z0

0
dz J (Q, z) ∂z

(
Ψ(z) Φ(z)

)
⇒

Fπ(0) = −
∫ z0

0
dz ∂z

(
Ψ(z) Φ(z)

)
= Ψ(0) Φ(0) = 1 ,

since J (0, z) = 1 and other BC. We can also write Fπ(Q2) as

Fπ(Q2) =

∫ z0

0
dz zJ (Q, z)

[
g2

5f 2
πΦ2(z) +

σ2

f 2
π

z2 Ψ2(z)
]

≡
∫ z0

0
dz z J (Q, z) ρ(z) ,

and interpret the function ρ(z) as the radial distribution density.



Form Factor

The function φπ(z) ≡ g5fπΦ(z) is an analog of ρ−meson w.f.

Figure: Contributions to the Q2Fπ(Q2) from Ψ-term (lower curve), from
Φ-term (middle curve) and total contribution (upper curve).



Density Function

a(z0, α) ≡ αz3
0 = 1

3 g5σz3
0, a0 ≡ a(z0 = 1

323 , α = 424) = 2.26

Figure: Function ρ(ζ, a) for a = 0, a = 1, a = 2.26, a = 5 and a = 10.



Density Function

Figure: Densities ρ(ζ, 2.26) for pion and ρρ(ζ) for ρ-meson in the hard-wall
model.



Decay Constant

Explicitly

Φ(z) = − 1
g2

5f 2
π

(
1
z
∂zΨ(z)

)

=
3 z2

g2
5f 2

π

Γ [2/3]

(
α4

2

)1/3
[
−I2/3

(
αz3) + I−2/3

(
αz3) I2/3

(
αz3

0

)
I−2/3

(
αz3

0

)]
,

where α = g5σ/3 ≈ 1.481σ (g5 =
√

2π).

The formula Φ(z0) = 0 establishes the relation

f 2
π = 3 · 21/3 Γ[2/3]

Γ[1/3]

I2/3
(
αz3

0

)
I−2/3

(
αz3

0

) α2/3

g2
5



Decay Constant

For sufficiently large values of the confinement radius, z0 & 1/α1/3,

fπ|z0→∞ ≈ α1/3

3.21
.

Requiring that fπ|z0→∞ = f exp
π ≈ 131 MeV ⇒ α1/3 ≈ 420 MeV.

To get fπ ≈ 131 MeV from the exact formula for 1/z0 = 323 MeV,
we should take α1/3 ≈ 424 MeV ≡ α

1/3
0 .

Define a ≡ αz3
0 = 1

3 g5σz3
0 ⇒ a = 2.26 ≡ a0 for

α
1/3
0 = 424 MeV and 1/zρ

0 = 323 MeV.



Decay Constant

fπ
∣∣
a&2≈ 0.311α1/3 , fπ

∣∣∣∣
a.1
≈ 0.338

a
z0
.

Figure: Pion decay constant fπ as a function of a for fixed α1/3 = 424 MeV.



Electric Radius

The Q2-expansion of the vector source takes a form

J (Q, ζ, z0) = 1− Q2

4
z2

0 ζ
2
[

1− 2 ln ζ
]

+ . . .

Using it, we obtain for the pion charge radius:

〈r2
π〉 =

4
3

z2
0

{
1− a2

4
+O(a4)

}
.



Electric Radius

For fixed z0 and small a � 1, the radius is determined by z0 alone.

〈r2
π〉|α=0 =

4
3

z2
0 .

For z0 = zρ
0 ≈ 1/323 MeV = 0.619 fm ⇒ 〈r2

π〉 = 0.51 fm2.

Increasing α pion becomes smaller. The experimental value of
0.45 fm2 is reached for a ∼ 0.9. However, the corresponding value
fπ ≈ 80 MeV is too small!

If we take a = a0 = 2.26, then 〈r2
π〉 = 0.34 fm2. The pion radius is

smaller than the experimental value.



Electric Radius

Figure: 〈r2
π〉 in fm2 as a function of a for z0 = zρ

0 ≈ 0.619 fm.



Electric Radius

For large a, it follows

〈r2
π〉

∣∣∣
a&2

=
3

2π2f 2
π

[
1 +

1
3

ln
(
αz3

0
2.54

)]
.

In the limit z0 →∞, we have 〈r2
π〉 → ∞⇐ mπ = 0.

In SU(2) ChPT, the radius is

〈r2
π〉ChPT =

1
8π2f 2

π

(
¯̀6 − 1

)
+O(m2

π) ,

where ¯̀6 ' 16.5± 1.1 (from 〈r2
π〉exp) and ¯̀6 ' 13.0 (NJL).

(Tarrach, Z.Phys.C2, 1979; Hippe, PRC52, 1995.)



Form Factor at Large Q2

The large-Q2 behavior of Fπ(Q2) is determined by

Fπ(Q2) → 2 ρ(0)

Q2 =
4π2f 2

π

Q2 .

AdS/QCD predicts Q2Fπ(Q2) → 4π2f 2
π ≈ 0.68 GeV2.

However, JLab experiment gives Q2Fexp
π (Q2) ≈ 0.4 GeV2 !

This may be a signal that we are reaching a region where AdS/QCD
models should not be expected to work.

Q2Fπ(Q2) → 4π2f 2
π ≈ 0.68 GeV2, (0.4 GeV2 if fπ ≈ 101 MeV) ⇒

a = 1.26 ⇒ 〈r2
π〉 = 0.43 fm2.



Experimental Data

Figure: The plot is taken from T. Horn et al. [Jefferson Lab F(pi)-2 Collaboration], “Determination of the Charged Pion

Form Factor at Q2 = 1.60 and 2.45 (GeV/c)2 ,” Phys. Rev. Lett. 97, 192001 (2006).



Summary II

We described a formalism that allows to extract pion form factor
in the framework of the AdS/QCD model (HRG, Radyushkin, PRD76, 2007).

a = g5σz3
0/3 determines regions where pion is either governed

by confinement or by ChSB (a0 = 2.26).

E.g. for a > 2 ⇒ fπ = fπ(σ) and f 2
π〈r2

π〉 depends only on ln a/a0

For a < 1 ⇒ fπ ∼ a/z0 and 〈r2
π〉 = 4

3 z2
0.

In AdS/QCD 〈r2
π〉 = 0.34 fm2 < 0.45 fm2 (experimental).

“Softening” the IR wall can solve the problem.

The model is not good for Q2 above 1 GeV2. We think this is due
to the possibility that for Q2 > 1 GeV2, the quark substructure of
the pion may be resolved by the electromagnetic probe.



Anomalous Amplitude

It is known from (Witten, 1983) that π → γγ anomalous decay
can be incorporated into the low energy theory by gauging the
WZW term Γ(U,AL,AR) with AL = AR = QA, where
Q = diag{2/3, −1/3}.

On the other hand the WZW term naturally arises from the
suitably compactified 5D theory with CS term built of YM gauge
fields (Hill, PRD73, 2006).

Then it is expected that 5D holographic dual model of QCD with
CS term, should naturally reproduce the anomaly.

Since the CS (WZW) term for SU(2) gauge (global) group is
vanishing, the flavor symmetry is extended to U(2)L × U(2)R.
Therefore, we can write fields as: Bµ = taBa

µ + 1
2 B̂µ.



Initial Setup

The 4D isovector J{I=1},a
µ (x) and isosinglet vector J{I=0}

µ (x) currents
correspond to:

J{I=1},3
µ =

1
2

(
ūγµu− d̄γµd

)
= q̄γµ

σ3

2
q → V3

µ(x, z) ,

J{I=0}
µ =

1
2

(
ūγµu + d̄γµd

)
=

1
2

q̄γµ1q → V̂µ(x, z) ,

and the electromagnetic current

JEM
µ = J{I=1},3

µ +
1
3

J{I=0}
µ

has both isovector (“ρ-type”) and isosinglet (“ω-type”) terms.
The matrix element 〈0|JEMJEM|π0〉 is nonzero since it contains
〈0|J{I=1},3J{I=0}|π0〉 ↔ 〈0|J{I=1},3J{I=0}J3

A|0〉 ∼ Tr(σ3σ3) part.



Anomalous Form Factor

The π0γ∗γ∗ form factor is defined by∫
〈π, p|T {Jµ

EM(x) Jν
EM(0)} |0〉e−iq1xd4x

= εµναβq1 αq2 β Fγ∗γ∗π0

(
Q2

1,Q
2
2
)
.

Its value for real photons

Fγ∗γ∗π0(0, 0) =
Nc

12π2fπ

is related in QCD to the axial anomaly.



Holographic Action with CS Term

The O(B3) part of the 5D CS action, in the axial gauge Bz = 0 can be
written as

S(3)
CS [B] = k

Nc

48π2 ε
µνρσTr

∫
d4x dz (∂zBµ)

[
FνρBσ + BνFρσ

]
,

where k = 2 to reproduce the QCD anomaly result.
Then, in the AdS/QCD model (cnf. Domokos and Harvey, PRL99, 2007)
the CS term is:

SAdS
CS [BL,BR] = S(3)

CS [BL]− S(3)
CS [BR] .



Holographic Action with CS Term

Taking into account that BL,R = V ±A, and keeping only the
longitudinal component of the axial-vector field A = A‖ (that brings
in the pion), for which FA

µν = 0, we will have

SAdS
CS =

Nc

12π2 ε
µνρσ

∫
d4x

∫ z0

0
dz

×
[(
∂ρVa

µ

) (
Aa
‖σ
↔
∂z V̂ν

)
+

(
∂ρV̂µ

) (
Aa
‖σ
↔
∂z Va

ν

)]
,

where
↔
∂z≡

→
∂z −

←
∂z. After integration by parts, taking appropriate care

on the IR boundary, we get:

S = − Nc

4π2 ε
µνρσ

∫
d4x

∫ z0

0
dz

(
∂zAa
‖σ

) (
∂ρVa

µ

)
V̂ν .



Anomalous Holographic Form Factor

Varying S we get the 3-point function:

〈JA,3
α (−p)JEM

µ (q1)JEM
ν (q2)〉 = Tαµν(p, q1, q2) i(2π)4δ(4)(q1 + q2 − p) ,

where

Tαµν(p, q1, q2) =
Nc

12π2
pα

p2 εµνρσ qρ
1qσ

2 K(Q2
1,Q

2
2)

and

K(Q2
1,Q

2
2) = −

∫ z0

0
J (Q1, z)J (Q2, z) ∂zψ(z) dz .

Here, p is the momentum of the pion and q1, q2 are the momenta of
photons (ψ(z) is the pion wave function).
(HRG, Radyushkin, in preparation)



Conforming to Anomaly

From QCD, we expect KQCD(0, 0) = 1. However, AdS/QCD gives:

Kb(0, 0) = −
∫ z0

0
∂zψ(z) dz = −ψ(z0) =

[
1−Ψ(z0)

]
,

Ψ(z0) =

√
3 Γ (2/3)

πI−2/3(a)

(
1

2a2

)1/3

.

For a = a0 = 2.26, we have Ψ(z0) = 0.14 (e.g., Ψ(z0)|a=4 ≈ 0.02).

N.B. Plot of Ψ(ζ = z/z0, a) for: a = 0 (uppermost line), a = 1, a = 2.26, a = 5, a = 10 (lowermost line) is given below.



Conforming to Anomaly

Since Ψ(z0) 6= 0, for finite a, it seems to be impossible to reproduce
exactly the anomaly of QCD.
To fix this problem, we add an IR surface term, such that,

K(Q2
1,Q

2
2) = Ψ(z0)J (Q1, z0)J (Q2, z0)

−
∫ z0

0
J (Q1, z)J (Q2, z) ∂zΨ(z) dz .

In this case, we have K(0, 0) = 1!

Notice, that for large Qz0 � 1, we have

J (Q, z0) =
1

I0(Qz0)
∼ e−Qz0 .



Small Virtualities

For Q2
1 = 0 and Q2

2 = Q2 � 1/z2
0

K(0,Q2) ' 1− 0.66
Q2z2

0
4

' 1− 0.96
Q2

m2
ρ

.

The predicted slope is ' 1/m2
ρ which is expected from naive VMD.

Experimentally, the slope for small timelike Q2 is measured through
the Dalitz decay π0 → e+e−γ.



Predictions

The usual representation of the results is

aπ ≡ −m2
π

(
dK(0,Q2)

dQ2

)
Q2→0

.

For the Q2-slope AdS/QCD model predicts: aπ ≈ 0.031.

This number is not very far from the central values of two last
experiments, aπ = 0.026± 0.024± 0.0048 (Farzanpay, 1992),
aπ = 0.025± 0.014± 0.026 (Meijer, Drees, 1992), but the
experimental errors are rather large.

The CELLO collaboration (Behrend, 1990) gives the value
aπ = 0.0326± 0.0026 that is very close to our result.
In the spacelike region, the data are available only for the values Q2 & 0.5 GeV2 (CELLO, Behrend, 1990) and

Q2 & 1.5 GeV2 (CLEO, Gronberg, 1997) which cannot be treated as very small.



PRIMEX experiment at JLab

It would be interesting to have data on the slope from the spacelike
region of very small Q2, which may be obtained by modification of
the PRIMEX experiment at JLab.

The aim of the Primakoff Experiment (PRIMEX) is to perform a precise measurement of π0 lifetime from the Primakoff effect

(using the small angle coherent photoproduction of the π0 in the Coulomb field of a nucleus). The figure is taken from

www.jlab.org/primex/.



From Small to Large Virtualities

Function Q2K(0,Q2) in AdS/QCD model (solid curve, red online) and in
local quark hadron duality model, coinciding with Brodsky-Lepage
interpolation formula 1/(1 + Q2/s0), where s0 = 0.68 GeV2 (dashed curve,
blue online). The monopole fit of CLEO data is shown by dash-dotted curve
(black online).



From Small to Large Virtualities

Form factor K(Q2,Q2) in AdS/QCD model (solid curve, red online)
compared to the local quark-hadron duality model prediction (dashed curve,
blue online).



Summary III

We showed (HRG, Radyushkin ’08) that by including the 5D CS
term into the holographic action and extending the symmetry
group with appropriately defined dictionary the anomalous decay
amplitude of the pion can be incorporated.

Although we get non zero result for the anomalous amplitude,
the existence of the IR wall at finite z spoils the normalization of
form factor. However, when the wall is taken to infinity, the
normalization is recovered.

The slope predicted from the AdS/QCD model is in a good
agreement with experiment.

Surprisingly, it appears that the predictions of the AdS/QCD
model are almost perfect in the domain of pQCD.



Baryon as a Skyrmion

In the large Nc limit, two flavor QCD only describes weakly
interacting pions, with the coupling constant g ∼ 1/

√
Nc. In this limit

baryons may only appear non-perturbatively as solitonic objects, with
masses M ∼ 1/g2 ∼ Nc.
The leading order non-linear σ−model lagrangian

L2 =
f 2
π

4
Tr

(
∂µU∂µU†

)
,

doesn’t give stable solitonic solution (Hobart-Derrick theorem). One
of the ways to fix the problem is to add the “Skyrme quartic term”

Lsk =
1

32e2 Tr
[
U†∂µU,U†∂νU

]2
.



Baryon as a Skyrmion

In order for the action to be finite, the chiral fields should satisfy the
following conditions at spacial infinity |x| → ∞: U(x) → 1.
These conditions describe topologically non trivial mapping
R3 → S3 → SU(2) which is characterized by the homotopy group
π3(SU(2)) = Z.
The ansatz for the chiral field (Skyrme, 54) is:

U(x) = eiτax̂aF(r) ,

where x̂a = xa/r, r =
√
|x|2, F(0) = π and F(∞) = 0.

Defining Li = U†∂iU, the topological charge which identified with
the baryon number B is

B =
1

24π2

∫
d3xεijk Tr (LiLjLk) .



Holographic Baryons

Here, we will show how to derive the Skyrme lagrangian from the 5D
YM theory. For this consider the action:

SYM = − 1
4g2

5

∫
d5x
√

g Tr
[

LMNLMN + RMNRMN
]
,

The gauge fields transform according to

LM(x, z) → gLLMg−1
L (x, z) + igL∂Mg−1

L (x, z) ,

RM(x, z) → gRRMg−1
R (x, z) + igR∂Mg−1

R (x, z) ,

where gL,R(x, z) ∈ SU(Nf )L,R.
Define Lµ(x, 0) = `µ(x) and Rµ(x, 0) = rµ(x), where `µ(x) and rµ(x)
are the sources for the left- and right- 4D currents.



Holographic Baryons

In order for the action to be finite at z = 0,

LM(x, z → 0) = i U†L(x)∂MUL(x) ,

where UL(x) ∈ SU(Nf ) (the same for RM). Therefore, we can
partially fix the gauge, so that

LM(x, z → 0) = 0 , RM(x, z → 0) = 0 .

Nothing changes if we perform additional gauge transformations s.t.

∂Mgres(x, z → 0) = 0 .

That is: gres(x, z) goes to constant matrix gL,R ∈ SU(Nf )L,R at z = 0.
In the holographic model (gL, gR) ∈ SU(Nf )L × SU(Nf )R corresponds
to global chiral symmetry of QCD, at z = 0.



Holographic Baryons

It is convenient to define the following path ordered Wilson line:

ξ̃A(x, z) = P exp
{

i
∫ z

z0

dz′Az(x, z′)
}
,

where by A = (L,R). Two other objects of immediate interest are
defined as: ξ̃A(x, 0) = ξA(x), that is:

ξL(x) = P exp
{
−i

∫ z0

0
dz′Lz(x, z′)

}
,

ξR(x) = P exp
{
−i

∫ z0

0
dz′Rz(x, z′)

}
.

Here ξL,R transform with the gauge function gres(x, z) as

ξL,R = gL,R ξL,R h(x)† ,

where h(x) ≡ gres(x, z = z0) is the element of SU(Nf ) local gauge
symmetry on the 4D IR brane.



Holographic Baryons

Notice, that requiring gres
L (x, z = z0) = gres

R (x, z = z0) = h(x), we
broke the gauge symmetry in the bulk.
This prescription is similar to the one proposed by (Hirn and Sanz,
2005), where the chiral symmetry is broken by the b.c.

Lµ(x, z0)− Rµ(x, z0) = 0 ,

from which it automatically follows that the gauge transformations
should satisfy the condition: h(x) = gL(x) = gR(x). The other b.c.
condition, of this model we will adopt is:

Lzµ(x, z0) + Rzµ(x, z0) = 0 ,



Holographic Baryons

The chiral field can be written as

U(x) = ξR(x)ξ−1
L (x) ,

which transforms as: U(x) → gRU(x)g−1
L , the same way as the chiral

field in the non-linear sigma model with respect to the global chiral
transformations.
Therefore, the pion field is a product of the Wilson lines extending
from one boundary to the other.
If the vacuum corresponds to U = 1, then it is invariant under (gL, gR)
transformations, only if gL = gR, that is when the chiral symmetry is
broken down to its vector subgroup.



Holographic Baryons

To redefine fields, consider the following combinations of gauge fields

V̂M, ÂM ≡ i
2

{
ξ̃†L (∂M − iLM) ξ̃L ± (L → R)

}
,

where V̂z = 0, Âz = 0.
In order to separate the dynamical fields and external sources, define

Vµ (x, z) ≡ V̂µ (x, z)− V̂µ (x, 0) ,

Aµ (x, z) ≡ Âµ (x, z)− α (z) Âµ (x, 0) .

The b.c. on this redefined field have the following form:

Vµ(x, 0) = 0 , ∂zVµ(x, z0) = 0 ,

Aµ(x, 0) = 0 , Aµ(x, z0) = 0 .



Holographic Baryons

To avoid mixing between the pion and the axial resonances:

∂z (
√

ggµνgzz∂zα(z)) = 0 .

To satisfy b.c. for A, α (0) = 1, α (z0) = 0, therefore,

α (z) = 1− z2

z2
0
.

Finally, notice, that these redefined fields transform homogeneously
under the adjoint representation of h (x)

Vµ (x, z) 7−→ h (x) Vµ (x, z) h (x)† ,

Aµ (x, z) 7−→ h (x) Aµ (x, z) h (x)† .



Holographic Baryons

It is useful to define, the following 4D fields:

uµ (x) ≡ i
{
ξ†RDµξR − ξ†LDµξL

}
= i

{
ξ†R (∂µ − irµ) ξR − ξ†L (∂µ − i`µ) ξL

}
.

One can show, that this field transforms as: uµ → huµh†.
The other useful object is

Γµ (x) ≡ 1
2

{
ξ†R (∂µ − irµ) ξR + ξ†L (∂µ − i`µ) ξL

}
,

Γµ 7−→ hΓµh† + ih∂µh†,

which transforms as a connection for the 4D transformation h (x).



Holographic Baryons

The O(p4) lagrangian is obtained from the terms with two 4D indices
in the YM action

2 Tr (RµνRρσ + LµνLρσ) = Tr (F+µνF+ρσ + F−µνF−ρσ) ,

where, in case, `µ = rµ = 0 and Aµ = Vµ = 0, we have F−µν = 0,

uµ (x) = i
{
ξ†R∂µξR − ξ†L∂µξL

}
,

Γµ (x) =
1
2

{
ξ†R∂µξR + ξ†L∂µξL

}
,

Lzµ = −1
2

(∂zα) ξLuµξ
†
L , Rzµ =

1
2

(∂zα) ξRuµξ
†
R ,

F+µν = i
1− α2

2
[uµ, uν ] .



The Holographic Skyrme Model

Notice, that

ξRuµξ
†
R = −iU∂µU† ,

ξLuµξ
†
L = −iU†∂µU .

Integrating over the z, we get:

S =

∫
d4x Tr

{
a2

1

(
∂µU†∂µU

)
+ a2

2

[
U†∂µU,U†∂νU

]2
}
,

This establishes the relation between the 5D AdS/QCD and the 4D
Skyrme models for the two flavors. Note that correspondence of the
coefficients should be:

a2
1 =

f 2
π

4
, a2

2 =
1

32e2 .



The Holographic Skyrme Model

As a result, we get:

f 2
π =

1
g2

5

∫ z0

0

dz
z

(∂zα)2 =
2

g2
5z2

0
,

1
e2 =

1
g2

5

∫ z0

0

dz
z

(
1− α2)2

=
11

24g2
5
.

Therefore, fπ ' 72.7 MeV and e ' 3.3 (z0 is determined from the fit
to the ρ-meson physical mass for which z0 = 1/(323 MeV).
As it is known, for example, from the (Adkins, Nappi, Witten, 1983), the
best fit to the hadron masses is for e = 5.45 and fπ = 64.5 MeV (the
experimental value is fπ = 92.4MeV).



Summary IV

Here we showed how to reproduce the Skyrme lagrangian from
the holographic model.

One can also incorporate vector and axial mesons in the Skyrme
lagrangian.

The physical observables such as magnetic moments and square
radii can be calculated similar to (Adkins, Nappi, Witten),
expressed in terms of the fπ and e.
(HRG, Erlich, Carone, in progress)



THE END


