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Introduction into the AdS/QCD model.
@ Vector meson form factors and associated observables.

Pion form factor in the chiral limit.

@ Anomalous pion decay and related form factor.

Baryon as skyrmion in the holographic model.



@ QFT is solved when all of its n-point Green’s functions are known

see, e.g., Streater & Wightman, “PCT, spin and statistics, and all that,” 1989.

@ Dyson-Schwinger equations allow, in principle, to find all the n-point
Green’s functions of the QFT.

@ Method based on the DSEs may serve as a strong tool to study the
nOnperturbatiVe QCD effeCtS (see, e.g., Roberts & Williams, Prog. Part. Nucl. Phys.33, 477).

@ The infinite tower of DSEs is hard to study for n > 3. However, the
symmetries and the renormalizability of the theory can serve as a
strong constraints on the ansatz for the omitted function(s).

@ It is important to have an alternative nonperturbative approach to
provide more insight into the form of these higher n-point functions.
Lattice gauge theory is one of the examples.

@ We will show that AdS/QCD model can serve as another continuous
nonperturbative approach to QCD. We also believe that it can be used
to complement the DSE approach for large n.



Formulation of Conjecture

The AdS/CFT correspondence conjectures the equivalence of gravity
theory (Type IIB string theory) on AdSs x Ss, and strongly coupled
(N =4 SYM) CFTy. (Maldacena, 1997)

AdS/CFT says that for VO(x) € {CFT operator},
lp(x,z) € {5D bulk field} s.t. p(x,0) = ¢o(x), x € DAdSs.

Let Ss[¢o(x)] is the gravity or string action of ¢(x, z) with
&(x,0) = ¢o(x), then the correspondence takes the form

(exp(i / d*x0(x)O()))crr = exp(iSs[do(x)])

(Witten, 1998)



Addition of IR Brane

Addition of the IR brane, corresponds to deformation of the CFT leading to
a breakdown of conformal invariance in the IR.

Now, we have both particles and S-matrix elements.

In particular, the KK-like gravitons in the gravity side can be interpreted in
the 4D theory as resonances.

J(x) oo

4D QCD




Initial Setup

We will use the (hard-wall) model proposed by Erlich, Katz, Son and
Stephanov (EKSS) PRL95, 2005.

The slice of AdSs is defined according to:
ds* = 2 (nuddds — dZ? <
s—Z—z(nwx X —dz°) 0<z<x2,

nw = Diag (1, —1,—1,—1) and zg ~ 1/Agcp is the IR scale.

The holographic dictionary for vector sector is:

Ju(x) = gut®q(x) < Ay(x,2) ,

so that Af(x, 0) is the source for Jj(x).



The 5D Gauge Action

The 5D gauge action in AdSs space for the vector field is:
1
SAdS = _rgz /d4x dZ \/g Tr (FMNFMN) 5
5

where Fyny = 8MAN — 8NAM — i[AM,AN], A = A%,
(1 € SU(2), a=1,2,3)and M,N =0, 1,2,3, 2.

4D Global Chiral SU(2) < 5D Local Gauge SU(2)

‘We take our field to be non-Abelian, since later we are interested in
calculating the 3-point function.



Equation of Motion

We work in A; = 0 gauge with Fourier-transformed gauge field

Au(g,2) = AM(Q)M|6—>O :

V(g,e)

The boundary condition at z = zy:
0;V(¢,20) = 0= F,,;(x,z0) = 0 gauge invariant condition.

The e.o.m. for the bulk-to-boundary propagator is
1 2
W0: | Z0:V(g:2) | +4V(g,2) =0 =

V(g 2) o qz(Yo(qz0)J1(gz) — Jo(qz0)Y1(qz2)) ,



Two-point Function

The 2-point function defined from the relation:

/ d*x (], (x)J,(0)) = (g,w - q’; Z”) (4%

AdS/QCD predicts for the scalar part of the 2-point function:

1 (18.V(g,2) —  f?
-4 () _-Eeln
(@) g2 \z V(ge) :;CIZW

7=e—0
where M,, = o, /20 and

2M?
f112 = 5
SZoJ (’YOn)

since: <0|Jﬁ|pz> = e,



Two-point Function

In the limit gzp > 1

1
Y(q%) = fgzqz In(¢*€) ,
5

by matching with QCD, one finds (EKSS): g2 = 127%/N...
For N, =3 to get M, = MEXP = 775.8 MeV, we take % = 323 MeV .
As aresult: fi = f, = (392 MeV)?

N.B.£,"? = (401 & 4 MeV)? (PDG, 2007)



Three-point Function of Vector Currents

For the scalar part of (J¢ (pl)Jf (—p2)J¥(q)) the AdS/QCD predicts

(e 9]

fnkonk(Qz)
T(p1,p3, Q%) = :
Wi Q)= 2 i

where

2 ©dz
Fu(@) = [ F (0.0 uld)
0
correspond to form factors for n — k transitions, where

V(iQ,z)
V(iQ, €)

(HRG, Radyushkin, PLB650, 2007)

Ko(Qz0)

J(Q.7) = 1p(Qz0)

kaQ%@Wﬂ@@



Eigenfunctions

The eigenfunctions 1,(z) obey the equation

1
20, <Zazwn(z)> +Mr21 wn(Z) =0,
with the b.c.

1/1;1(0) =0, 8zwn(ZO) =0,

and normalized according to

20 dZ )
[ Snar =1



Three-point Function of Vector Currents

The tensor structure of the 3-pt function is

7% = (g — p1)” — 0™ (p2 + ¢)* + 0"’ (p1 + p2)* .

uv
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Figure: Schematic representation for the 3-point function




Wave functions

Define “¢ wave functions” as

1

¢n(Z) = M,z

0:n(2) ,
then:

¢n(0) = gan/Mn s an(ZO) =0,

/ZO dzz|n(z)P =1,
0

= ¢ w.f. are analogous of bound state w.f. in QM.
The form factor in terms of ¢ is

1

Fu(0%) = 110 /2m2

/O Y 2 70.2) ()P
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Figure: Plots of F};(Q?) and Q?F};(Q?) as a function of Q? (GeV?).



In general
(0" (P2, €)TEm(0) 1P (P11 €))
= —egea 17 (P} + P5) G1(Q?)

+(" " = "Pq*)(G1(Q%) + G2(Q?))

1
—pd" (P +15) G () ]

AdS/QCD model predicts G\ (0?) = G (0?) = F,,(0?). and
Gg") (Q*) = 0 for form factors GE") (Q?) of n™ bound state.



Electric G¢, magnetic Gy and quadrupole G form factors are

n n Q2 n Q2
G(C)(Qz) = G(l : + 6M,21 G(Q) - <1 B 6]\/[2> an(QZ) ’

(0% =6\ + G = 2F,,(0?) |

n Q2 n n
G40 = (1 + 4M%) GV — G = —Fou(0?) .

For p meson (n = 1)

e=GW0)=1,
pn=G60)=2,
DM2 =GY)(0) = 1.
these are canonical values for a vector particle (Brodsky, PRD46, 1992).
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Figure: Plots of G¢(Q?) and Q*>G¢(Q?) as a function of Q2 (GeV?).




Light-Cone Formalism vs. Holography

The light-cone form factor is:

2 2\2
Q) = Gi(@) + 073 Go(0) ~ (o) G(@?)

— /OZO dzz J(Q,2) |6a(2)|* -

This is a “+ + 4" component of the 3-point correlator obtained by convoluting it with nqngn,,, where

n? =0, (npy) = 1, (ng) = 0. (Radyushkin, PLB642, 2006).



Low-Q? behavior.

The electric form factor in the Qz¢ < 1 limit is
2 4
1 0 0
GN(Q%) ~ 1 - 1.359 o H 1428 5 1 0(Q°).
For the electric radius of the p-meson this gives

(rh)c =0.53fm* .

This value is very close to the results from DSE approach (Bhagwat,
2006) and lattice calculations (Lasscock, 2006).



VMD pattern

The F11(Q?) form factor can be written in the generalized VMD

representation
o0
Fim 11
Fu(@) =2 1o
2T+ 02/M3

with the coefficients F,, ;; = {1.237, —0.239, 0.002, ...}.

At 0% = 0 the normalization of the p meson form factor is almost
completely saturated by the first two bound states:

Fi1(0) = Fy 11 + Faqp + ... = 0.998 + ...



@ We described the formalism that allows to study form factors of vector
mesons in the AdS/QCD model with hard-wall cutoff (urc, radyusikin, PLB630,
2007).

"] AnalOgOuS formalism fOl‘ the SOft-WaH mOdel (Karch, Katz, Son and Stephanov, PRD74,
2006) with dilatonic field x(z) = z> was developed in (4rG, 4. Radyushkin, PRD76,
2007).

@ We introduced “¢ wave functions” that have the properties necessary
for the light-cone interpretation proposed in (srodsky, PrL96, 2006) and
discussed in (Radyushkin, PLB642, 2006).

@ The calculated electric radius is: (rf,)c = 0.53 fm?.

@ AdS/QCD model predicts a very specific VMD pattern. Form factors
are given by contributions due to the first two bound states.

@ The addition of dimension six terms gives three different form factors
and more realistic values for p and D (ura, 2007).



Pion in AdS/QCD

@ We describe a formalism to calculate the pion form factor in the
chiral limit of QCD with Ny = 2.

@ We also study the behavior of the f;. and (r2)c in various regions
of the holographic parameters space (zo, o).

o The holographic dictionary in the axial gauge (A, = 0) is:
Ji(x) = g(x)yustiq(x) — AL(x,2)

£e(3) = @) — X(x,2)



Initial Setup

Axial-vector and pseudoscalar sectors of the hard-wall model (EKSS)
are described by the action

1
Sﬁds = Tr/d4x dZ \/g |:|D)(|2 + 3|X|2 — 4g2F'§:| s
5

where DX = 0X — iALX + iXAg, (Ay(ry = V £ A) and

X(x,2) = %v(z)U(x, 2,

U(x,z) = exp (2it“n%(x,2)) ,
v(z) = myz + 07,

my— quark mass and o— quark condensate.



Initial Setup

Expanding U(x, z) =
N :Tr/d4xdz _ L vy, +£(AM Oym)?
A 4g52 273

In general A = A; +A), where A| and A are transverse and
longitudinal components of the axial-vector field.

SSB causes A to be physical and associated with the GB — pion.
The || component may be written as

Afy (x,2) = On?(x, 2) = ¢*(x, z) < pion field



Equations of Motion

Varying the action with respect to A9 L (x, z) and representing the
Fourier image of A9 (x, z) as Ai#(p, z) = A(p, 2)Aj,(p) we will get

1
{faz (ZaZA> +p*P A~ ggva] =0,

with b.c. A(p,0) = 1 and A'(p, z0) = 0. Remember that v(z) = o7z’
Variation with respect to the longitudinal component 9,9 gives

20, <i 3Zw“> - g%v2 (P —74)=0.
Finally, varying with respect to A, produces
PP — gh?om =0,
with b.c. 9;1(z0) = 0, ¥(€) = 0 and 7(e) = 0.
I



Equations of Motion

In the chiral limit, the equation for ) becomes
3 1 2.2
770, | -0V ) —g5v¥ =0
z
where W =9 — mand sincem = —1 = W(e) = 1 and V'(z9) = 0 =

V(z) = A(0,z) .

It is useful to define the conjugate w.f. ®(z) as

o0 = (L) |

g2 \z

then ®(0) = 1 and ®(z9) = 0.



The spectrum in the axial-current channel consists of the pion

(OlF[m(p)) = ifxp®

and axial-vector mesons

<0|JXC |An(Pv U)> = FA,nEg(P? U) )

where Fy ,, correspond to the n™ axial-vector meson decay constant.



Two-point Function

The two-point function for the axial-vector currents can be written as

2
fz p°p° 3 Fin
Japjﬁ_p pap,BW+ _naﬁ+ , 4+
< A( )A( )> p pz - pz_MiJl

in which the second term on the rhs is explicitly transverse to p.
As noted in AdS/QCD model (EKSS):

=t ( 9.0, z)> .
g5 z=e—0



Three-Point Function

To obtain the pion form factor, we need to calculate three-point
correlation function.

Correlator should include the external EM current JZI(O) and currents

J2¢ . (x1), J;’L (x2) having nonzero projection onto the pion states =

Tuas(P1,p2) = / d'xi / d*xy € (O[T L (302 (0)5a(31)[0)

The momentum transfer carried by the EM source is ¢ = p» — p1
(¢* =—-0*<0).



Three-Point Function

The spectral representation for the three-point function is

TWB(PMPZ) Ple(Pl + p2)t fﬂ at +Z terms) + - - -,

n,m
1* term is longitudinal to p{* and pzﬁ and contains pion form factor
(w1 0)7(p2)) = Fx(a®)(p1 + P2)u

Other pole terms are transverse to p{* or pg =

P1ap2sT " (p1,2)l 0 =0 = (1 + 2)'f7 F(Q?)



Three-Point Function

To obtain form factor from the holographic model, we need the action
at the third order in the fields.

There are two types of terms contributing to the pion electromagnetic
form factor: |DX|? term and F? terms.

The part of F term which contributes to (JsqJ,,J53) is:
[ 1
Wy = — Tr /d4x d — (Vi [A", A7) + Ay [V*, A7)
85

Similarly, the relevant part from [DX|? has the form:

2
Us = eabc/d4x dz [v (32) (A% — Oum®) P yeM |
Z



Three-Point Function

Varying W3 and U3 terms with respect to the sources and representing
(T (@) (P12} =

= i(2n)*6W (g + p1 — p2) € TP (p1,p2)

we get for the total form factor:

F(Q%) = 5f7r/ dzz J(0,z)

(HRG, Radyushkin, PRD76, 2007)

(%) v




It can be shown that

(@)= - [ 70.90.(v0) ) =

0
Fr(0) = — /O " &zo. (Vo)) = w(0)6(0) =1
since J(0,z) = 1 and other BC. We can also write F,(Q?) as
r(@) = [ #2g(0.9 @0 + % 2w

= [0,

and interpret the function p(z) as the radial distribution density.



The function ¢ (z) = g5fx®(z) is an analog of p—meson w.f.
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Figure: Contributions to the Q*F,(Q?) from W-term (lower curve), from
®-term (middle curve) and total contribution (upper curve).



Density Function

a(z0,) = azl = 185023, ao = a(z0 = 553, = 424) = 2.26

p, a)
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N B~ O 0

02 04 06 038 1{

Figure: Function p(¢,a) fora=0,a=1,a =2.26,a = 5 and a = 10.



Density Function

p, a)
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Figure: Densities p((, 2.26) for pion and p,(() for p-meson in the hard-wall
model.



Decay Constant
Explicitly

o) = 51/*’2 ( V(e ))

_ 3z NPT 8 12/3(az8)]
szr[z/:s]( ) [12/3 (az’) +1 /3 (az)1_2/3 @) |

where o = gso/3 ~ 1.481 0 (g5 = V/2n).

The formula ®(z9) = 0 establishes the relation

5173 T2/3] Dy (az) o/

3.
fr = F[1/3] 155 (azd) g2



Decay Constant

For sufficiently large values of the confinement radius, zo > 1/ al/3,

al/3

Frleg—oo ® 357

Requiring that fy |, 0o = fo? ~ 131 MeV = a!/3 ~ 420 MeV.

To get f ~ 131 MeV from the exact formula for 1/z9p = 323 MeV,

we should take o'/ ~ 424 MeV = oz(l)/ 3,

Define a = azg = %gsazg = a=226=aqy for
ay? = 424 MeV and 1/2 = 323 MeV.



Decay Constant
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Figure: Pion decay constant f; as a function of a for fixed o!/3 = 424 MeV.



Electric Radius

The Q?-expansion of the vector source takes a form

2

J(0,¢z0)=1— Tz%)gz [1 —21In g} ...

Using it, we obtain for the pion charge radius:

(r2) = gzg {1 —Cf+(’)(a4)} .



Electric Radius

For fixed zp and small a < 1, the radius is determined by z( alone.

4
(a0 = 53

For zo = 2 ~ 1/323MeV = 0.619 fm = (r2) = 0.51 fm?.

Increasing o pion becomes smaller. The experimental value of
0.45 fm? is reached for a ~ 0.9. However, the corresponding value
+ ~ 80MeV is too small!

If we take @ = ap = 2.26, then (r2) = 0.34 fm?. The pion radius is
smaller than the experimental value.



Electric Radius
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Figure: (rZ) in fm? as a function of a for zo = z{) ~ 0.619 fm.



Electric Radius

For large a, it follows

(r2)

OZZO
2.54

In the limit zop — oo, we have (r2) — oo < m, = 0.

3
a>2 2772f7%

In SU(2) ChPT, the radius is
5 1
(rz)cher = 822 ( 1) + O(m?),

where g =~ 16.5 £ 1.1 (from (r2)exp) and £ ~ 13.0 (NJL).

(Tarrach, Z.Phys.C2, 1979; Hippe, PRC52, 1995.)



Form Factor at Large Q°

The large-Q? behavior of F(Q?) is determined by

2p(0) _ 4n’f7
0 @
AdS/QCD predicts Q*F,(Q?) — 4m%f? ~ 0.68 GeV>.

Fr(0*) —

However, JLab experiment gives Q*Fy " (Q?) ~ 0.4 GeV? |

This may be a signal that we are reaching a region where AdS/QCD
models should not be expected to work.

Q’F(Q?) — 47%f? ~ 0.68 GeV?, (0.4GeV? if f, ~ 101 MeV) =
a=126= (r2) = 0.43 fm>.
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Figure: The plot is taken from T. Horn ef al. [Jefferson Lab F(pi)-2 Collaboration], “Determination of the Charged Pion
Form Factor at Q° = 1.60 and 2.45 (GCV/C)Z,” Phys. Rev. Lett. 97, 192001 (2006).



Summary II

@ We described a formalism that allows to extract pion form factor
in the framework of the AdS/ QCD model (HrG, Radyushkin, PRD76, 2007).

@ a=gs azg /3 determines regions where pion is either governed
by confinement or by ChSB (ag = 2.26).

e E.g. fora > 2= f; = fr(c) and f2(r2) depends only on Ina/ag
e Fora < 1= fz ~a/zoand (r2) = 323

o In AdS/QCD (r2) = 0.34 fm* < 0.45 fm? (experimental).
“Softening” the IR wall can solve the problem.

@ The model is not good for Q% above 1 GeV?. We think this is due
to the possibility that for 0> > 1 GeV?, the quark substructure of
the pion may be resolved by the electromagnetic probe.



Anomalous Amplitude

o It is known from (Witten, 1983) that m — ~~ anomalous decay
can be incorporated into the low energy theory by gauging the
WZW term (U, A, Ag) with Ap = Ag = QA, where
Q0 = diag{2/3, —1/3}.

@ On the other hand the WZW term naturally arises from the

suitably compactified 5D theory with CS term built of YM gauge
fields (Hill, PRD73, 2006).

@ Then it is expected that 5D holographic dual model of QCD with
CS term, should naturally reproduce the anomaly.

@ Since the CS (WZW) term for SU(2) gauge (global) group is
vanishing, the flavor symmetry is extended to U(2),, x U(2)g.
Therefore, we can write fields as: B, = By, + 1B,.



Initial Setup

The 4D isovector J, ,EIZI}’“ (x) and isosinglet vector J, ,EIZO} (x) currents

correspond to:

sl _ o
Jlgl_l},s _ 5 (WY/M _ dfyud) = q’Y“?q — Vi(x, 7),
o1 - 1 0
JA{LLO} =5 (”’Yu” + d'Yud) = ECWMIq = Vulx,2)

and the electromagnetic current

1

EM _ ;{I=1}3
JEM = =1 +3

1=0
J{=0

has both isovector (“p-type”) and isosinglet (“w-type”) terms.
The matrix element (O[JEMJEM|7%) is nonzero since it contains
(O U=113 JU=0}70) s (0JU=1137U=03 7310} ~ Tr(c?0?) part.



Anomalous Form Factor

The 799*~* form factor is defined by

[ pIT Utag(x) SO0} 0}

= 1025 Fyeye (01, 03) -

Its value for real photons

N,

(0,0) = 1272f,

Foyeemd

is related in QCD to the axial anomaly.



Holographic Action with CS Term

The O(B?) part of the 5D CS action, in the axial gauge B, = 0 can be
written as

N

S(3)[B] 6MVpaTr/d4xdz (0:B,) [prB(, —i—Bl,]:pJ] ,

871'2

where k = 2 to reproduce the QCD anomaly result.
Then, in the AdS/QCD model (cnf. Domokos and Harvey, PRL99, 2007)
the CS term is:

SAS[BL, Br] = SCo[BL] — SCI[Br]



Holographic Action with CS Term

Taking into account that B, g = V £ A, and keeping only the
longitudinal component of the axial-vector field A = A (that brings
in the pion), for which Fﬁy = 0, we will have

AdS N ,uzzpo/ 4 /ZO
Scs” = 7127r26 d’x dz
X [(apvg) < i 8 v, ) +(9,V,) < ', 0 V>]

—

where 0, = 0, — 0,. After integration by parts, taking appropriate care
on the IR boundary, we get:

N, Z .
S = — 5 / & /0 az (949, ) (0,V5) V.



Anomalous Holographic Form Factor

Varying S we get the 3-point function:
A3 (=) M (g1)IEM(92)) = Tap (P, 01, 42) i(27)*6W (g1 + g2 — p) |
where
Touw (P q1,42) = ljzvczpz €pwpo 4795 K (O, Q3)
and

Q17Q2 / J(01,2)T(Q2,z2) 0-9(z) dz

Here, p is the momentum of the pion and ¢, ¢ are the momenta of
photons ()(z) is the pion wave function).

(HRG, Radyushkin, in preparation)



Conforming to Anomaly

From QCD, we expect K2P(0,0) = 1. However, AdS/QCD gives:

K(0.0) =~ [ 2006 di = ~(a0) = |1 - V()]

e = SICA (LY

Tl _53(a)
For a = ayp = 2.26, we have W(z9) = 0.14 (e.g., W(z0)|a=4 =~ 0.02).
N.B. Plot of W({ = z/z9, a) for: a = 0 (uppermost line), a = 1,a = 2.26,a = 5, a = 10 (lowermost line) is given below.
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Conforming to Anomaly

Since W(z9) # 0, for finite a, it seems to be impossible to reproduce
exactly the anomaly of QCD.
To fix this problem, we add an IR surface term, such that,

K(Q7,03) = V(20) T (Q1,20)T (02, 20)

/ J(01,2)T(02,2) 0.V(z) dz .

In this case, we have K(0,0) = 1!
Notice, that for large Qzp > 1, we have

1
1o(Qz0)

~ e~ Q%0

(Q7 ZO)



Small Virtualities

For 0? =0 and 05 =0’ < 1/7}

22 2
K(0,0%) ~ 1 —0.66 =2 Q —0.96 Q— .
m>3
p
The predicted slope is ~ 1/ m% which is expected from naive VMD.

Experimentally, the slope for small timelike Q? is measured through
the Dalitz decay 7° — ete ™.



The usual representation of the results is

— 2 dK(()? QZ)
ar = _mTr < sz >Q2_>O .

For the Q*-slope AdS/QCD model predicts: a, ~ 0.031.

This number is not very far from the central values of two last
experiments, a,; = 0.026 = 0.024 4 0.0048 (Farzanpay, 1992),
ar = 0.025 + 0.014 + 0.026 (Meijer, Drees, 1992), but the
experimental errors are rather large.

The CELLO collaboration (Behrend, 1990) gives the value
ar = 0.0326 £ 0.0026 that is very close to our result.
In the spacelike region, the data are available only for the values Q° >0.5 GeV? (CELLO, Behrend, 1990) and

0% > 1.5 GeV? (CLEO, Gronberg, 1997) which cannot be treated as very small.



PRIMEX experiment at JLab

It would be interesting to have data on the slope from the spacelike
region of very small O, which may be obtained by modification of
the PRIMEX experiment at JLab.

The aim of the Primakoff Experiment (PRIMEX) is to perform a precise measurement of 70 lifetime from the Primakoff effect
(using the small angle coherent photoproduction of the 7 in the Coulomb field of a nucleus). The figure is taken from

www.jlab.org/primex/.




From Small to Large Virtualities

Function Q*°K (0, Q%) in AdS/QCD model (solid curve, red online) and in
local quark hadron duality model, coinciding with Brodsky-Lepage
interpolation formula 1/(1 + Q?/s), where 5o = 0.68 GeV? (dashed curve,
blue online). The monopole fit of CLEO data is shown by dash-dotted curve
(black online).
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From Small to Large Virtualities

Form factor K(Q?, Q*) in AdS/QCD model (solid curve, red online)
compared to the local quark-hadron duality model prediction (dashed curve,
blue online).
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Summary 11

@ We showed (HRG, Radyushkin *08) that by including the 5D CS
term into the holographic action and extending the symmetry
group with appropriately defined dictionary the anomalous decay
amplitude of the pion can be incorporated.

@ Although we get non zero result for the anomalous amplitude,
the existence of the IR wall at finite z spoils the normalization of
form factor. However, when the wall is taken to infinity, the
normalization is recovered.

@ The slope predicted from the AdS/QCD model is in a good
agreement with experiment.

@ Surprisingly, it appears that the predictions of the AdS/QCD
model are almost perfect in the domain of pQCD.



Baryon as a Skyrmion

In the large N, limit, two flavor QCD only describes weakly
interacting pions, with the coupling constant g ~ 1/+/N.. In this limit
baryons may only appear non-perturbatively as solitonic objects, with
masses M ~ 1/g*> ~ N..

The leading order non-linear 0 —model lagrangian

2
Ly =" Tr (Buuorut) |
doesn’t give stable solitonic solution (Hobart-Derrick theorem). One
of the ways to fix the problem is to add the “Skyrme quartic term”

Ly = 32%% [UTa u,U'a, U}



Baryon as a Skyrmion

In order for the action to be finite, the chiral fields should satisfy the
following conditions at spacial infinity |x| — co: U(x) — 1.

These conditions describe topologically non trivial mapping

R? — §3 — SU(2) which is characterized by the homotopy group
m3(SU(2)) = Z.

The ansatz for the chiral field (Skyrme, 54) is:

U(X) — ei‘ra,%,,F(r) ,
where X, = x,/r, r = \/|x|?, F(0) = 7 and F(c0) = 0.

Defining L; = UT,U, the topological charge which identified with
the baryon number B is

1
B=2,— / dxej Tr (LiLiLy) -



Holographic Baryons

Here, we will show how to derive the Skyrme lagrangian from the 5D
YM theory. For this consider the action:

1
Syy = v / dx\/g Tr [LMNLMN + RMNRMN] ,
5

The gauge fields transform according to

Ly(x,2) — giLmgy ' (x,2) + igrOmgr ' (x.2)
Ru(x,2) — grRumgx ' (x,2) + igrOmgr ' (x,2)

where g7 r(x,2) € SU(Nf)Lr.
Define L,,(x,0) = ¢,(x) and R,,(x,0) = r,(x), where £,,(x) and r,,(x)
are the sources for the left- and right- 4D currents.



Holographic Baryons

In order for the action to be finite at z = 0,
Ly(x,z — 0) = i U} (x)OnUL(x) ,

where U (x) € SU(Ny) (the same for Ry). Therefore, we can
partially fix the gauge, so that

Ly(x,z—0)=0, Ry(x,z—0)=0.
Nothing changes if we perform additional gauge transformations s.t.
omg(x,z—0)=0.

That is: g"**(x, z) goes to constant matrix g; g € SU(Ny)rr atz = 0.
In the holographic model (g, gr) € SU(Ny)r x SU(Ny)g corresponds
to global chiral symmetry of QCD, at z = 0.



Holographic Baryons

It is convenient to define the following path ordered Wilson line:
- Z
£a(x,z) = Pexp {l/ d7' A, (x, zl)} ,
20

where by A = (L, R). Two other objects of immediate interest are
defined as: £4(x,0) = &4(x), that is:

£1(x) = Pexp {—i /O Y L, z’)} ,
£r(x) = Pexp {—i/ozo d7'R,(x, z’)} .

FKS(

Here ¢; g transform with the gauge function g"*(x, z) as

€Lk = gLr LR h(X)T,

where h(x) = g"*(x,z = zo) is the element of SU(Ny) local gauge
symmetry on the 4D IR brane.



Holographic Baryons

res res

Notice, that requiring g7 (x,z = z0) = g§
broke the gauge symmetry in the bulk.
This prescription is similar to the one proposed by (Hirn and Sanz,
2005), where the chiral symmetry is broken by the b.c.

(x,z = z0) = h(x), we

LM(X, Zo) — RM(X, Z()) =0,

from which it automatically follows that the gauge transformations
should satisfy the condition: h(x) = gz(x) = gr(x). The other b.c.
condition, of this model we will adopt is:

Lzu(xa ZO) + Rzu(xv ZO) =0,



Holographic Baryons

The chiral field can be written as
U(x) = &r(x)é; ' (x)

which transforms as: U(x) — grU(x)g; ', the same way as the chiral
field in the non-linear sigma model with respect to the global chiral
transformations.

Therefore, the pion field is a product of the Wilson lines extending
from one boundary to the other.

If the vacuum corresponds to U = 1, then it is invariant under (g, , gr)
transformations, only if g; = gg, that is when the chiral symmetry is
broken down to its vector subgroup.



Holographic Baryons

To redefine fields, consider the following combinations of gauge fields
NN i (= .
VM,AM = E {5{ (8M — lLM) fL + (L — R)} y

where V, = 0,A, = 0.
In order to separate the dynamical fields and external sources, define

Vi(x2) = Vu(xz) =Vl 0) .
A, (x,z) = Au (x,2) —« (z) u(x,0) .
The b.c. on this redefined field have the following form:

Vu(x,0) =0, 0.Vu(x,20) =0,
Au(x,0) =0, Au(x,20)=0.



Holographic Baryons

To avoid mixing between the pion and the axial resonances:

9: (Vg g 0.a(z)) = 0.

To satisfy b.c. for A, a (0) = 1, a(z9) = 0, therefore,

Finally, notice, that these redefined fields transform homogeneously
under the adjoint representation of / (x)

Vi(r2) w— h(@)Vu(x2)h()',
Ay (x,2) — h(X)AL(x2)h(x)".



Holographic Baryons

It is useful to define, the following 4D fields:
uu(x) = i{ekDue —€lDueL
= i{{; (Op — iry) €r — f}i (O — ity) gL} :

One can show, that this field transforms as: u,, — hu,h'.
The other useful object is

1 . .
() = {&@ -in)+e @ -t} .
M, +—— KCLAT + ihd,hT,

which transforms as a connection for the 4D transformation / (x).



Holographic Baryons

The O(p*) lagrangian is obtained from the terms with two 4D indices
in the YM action

2Tr (RuwRpo + LuwLpo) = Tr (FypwFoypo + FoyF—po)
where, in case, {,, = r, =0and A, =V, = 0, we have F_,,, = 0,
uy (x) = i{ ITeaugR - daﬂﬁ} )

() = 5 {ehouea+elone}

1 1
Lzu = ) (aza) gLu,ugl]i , Rz,u = P (aza) 5RWL££ >

1—a?
Fip=i—

2 [ul“ uV] .



The Holographic Skyrme Model

Notice, that
Erup&h = —ivo, U
USR (A
Euuél = —iUto,U .

Integrating over the z, we get:
2
S— /d“xTr{a% (auUt0"v) + & [Uto,U, U0, U] } ,

This establishes the relation between the 5D AdS/QCD and the 4D
Skyrme models for the two flavors. Note that correspondence of the

coefficients should be:

A0
—

f

2 2
Cllzz, a, =




The Holographic Skyrme Model

As aresult, we get:

B g% 2z 8520
11 m&( 2)2 11
S Cy e
e gty z 24g2

Therefore, f;: ~ 72.7 MeV and e ~ 3.3 (z is determined from the fit

to the p-meson physical mass for which zop = 1/(323 MeV).

As it is known, for example, from the (Adkins, Nappi, Witten, 1983), the
best fit to the hadron masses is for e = 5.45 and f;; = 64.5 MeV (the

experimental value is f; = 92.4MeV).



Summary IV

o Here we showed how to reproduce the Skyrme lagrangian from
the holographic model.

@ One can also incorporate vector and axial mesons in the Skyrme
lagrangian.

@ The physical observables such as magnetic moments and square
radii can be calculated similar to (Adkins, Nappi, Witten),
expressed in terms of the f; and e.

(HRG, Erlich, Carone, in progress)



THE END



