Meson spectrum and coupling to photons from Lattice QCD

> | collaborations with: |
| :---: |
| Robert Edwards (JLab) |
| Nilmani Mathur (Tata) |
| David Richards (JLab) |
| Ermal Rrapaj (ODU u.grad) |
| Christopher Thomas (JLab) |

meson photocouplings

radiative transitions
CLEO-C, BES III

meson photocouplings

radiative transitions
CLEO-c, BES III
basic object: $\left\langle\gamma m^{\prime} \mid m\right\rangle$
$\left\langle m^{\prime}\right| \bar{\psi} \gamma^{\mu} \psi|m\rangle\langle\gamma| A_{\mu}|0\rangle$

extract from three-point correlators

$$
C\left(t_{f}, t, t_{i}\right)=\langle 0| \Phi^{\prime}\left(t_{f}\right)\left[\bar{\psi} \gamma^{\mu} \psi\right](t) \Phi\left(t_{i}\right)|0\rangle
$$

$$
C\left(t_{f}, t, t_{i}\right)=\sum_{\mathfrak{n}, \mathfrak{m}}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle e^{-E_{\mathfrak{n}}\left(t_{f}-t\right)}\langle\mathfrak{n}|\left[\bar{\psi} \gamma^{\mu} \psi\right](0)|\mathfrak{m}\rangle e^{-E_{\mathfrak{m}}\left(t-t_{i}\right)}\langle\mathfrak{m}| \Phi(0)|0\rangle
$$

extract from three-point correlators

$$
C\left(t_{f}, t, t_{i}\right)=\langle 0| \Phi^{\prime}\left(t_{f}\right)\left[\bar{\psi} \gamma^{\mu} \psi\right](t) \Phi\left(t_{i}\right)|0\rangle
$$

$$
C\left(t_{f}, t, t_{i}\right)=\sum_{\mathfrak{n}, \mathfrak{m}}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle e e^{-E_{n}}\left(t_{f}-t\right)\langle\mathfrak{n}|\left[\bar{\psi} \gamma^{\mu} \psi\right](0)|\mathfrak{m}\rangle e^{-E_{\mathfrak{n}}}\left(t-t_{i}\right)\langle\mathfrak{m}| \Phi(0)|0\rangle
$$

extract from three-point correlators

$$
C\left(t_{f}, t, t_{i}\right)=\langle 0| \Phi^{\prime}\left(t_{f}\right)\left[\bar{\psi} \gamma^{\mu} \psi\right](t) \Phi\left(t_{i}\right)|0\rangle
$$

extract from three-point correlators

$$
C\left(t_{f}, t, t_{i}\right)=\langle 0| \Phi^{\prime}\left(t_{f}\right)\left[\bar{\psi} \gamma^{\mu} \psi\right](t) \Phi\left(t_{i}\right)|0\rangle
$$

so we need to know the spectrum \& vacuum matrix elements of operators first
extract from three-point correlators

$$
C\left(t_{f}, t, t_{i}\right)=\langle 0| \Phi^{\prime}\left(t_{f}\right)\left[\bar{\psi} \gamma^{\mu} \psi\right](t) \Phi\left(t_{i}\right)|0\rangle
$$

$$
\begin{gathered}
\epsilon_{i j k} \bar{\psi} \gamma^{j} \gamma^{k}\left(\partial^{i}-A^{i}\right) \psi \\
\epsilon_{i j k} \bar{\psi} \gamma^{i} \psi F^{j k}
\end{gathered}
$$

basic object is two-point correlator

$$
C(t)=\langle 0| \Phi^{\prime}(t) \Phi(0)|0\rangle
$$

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

meson spectrum

basic object is two-point correlator

$$
C(t)=\langle 0| \Phi^{\prime}(t) \Phi(0)|0\rangle
$$

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

each operator will have different 'overlap' on to the tower of pseudoscalar states
basic object is two-point correlator

$$
C(t)=\langle 0| \Phi^{\prime}(t) \Phi(0)|0\rangle
$$

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

each operator will have different 'overlap' on to the tower of pseudoscalar states sampling the 'wavefunction' of the states
some linear combination of the operators is optimal for a certain state

$$
\Omega_{\mathfrak{n}}=v_{1}^{\mathfrak{n}} \Phi_{1}+v_{2}^{\mathfrak{n}} \Phi_{2}+\ldots
$$

basic object is two-point correlator

$$
C(t)=\langle 0| \Phi^{\prime}(t) \Phi(0)|0\rangle
$$

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

each operator will have different 'overlap' on to the tower of pseudoscalar states

some linear combination of the operators is optimal for a certain state

$$
\Omega_{\mathfrak{n}}=v_{1}^{\mathfrak{n}} \Phi_{1}+v_{2}^{\mathfrak{n}} \Phi_{2}+\ldots
$$

meson spectrum

basic object is two-point correlator

$$
C(t)=\langle 0| \Phi^{\prime}(t) \Phi(0)|0\rangle
$$

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

each operator will have different 'overlap' on to the tower of pseudoscalar states

some linear combination of the operators is optimal for a certain state

$$
\Omega_{\mathrm{n}}=v_{1}^{\mathrm{n}} \Phi_{1}+v_{2}^{\mathrm{n}} \Phi_{2}+\ldots
$$

variational analysis

matrix of correlators	$C(t)=\left[\begin{array}{ccc}\langle 0\| \Phi_{1}(t) \Phi_{1}(0)\|0\rangle & \langle 0\| \Phi_{1}(t) \Phi_{2}(0)\|0\rangle & \ldots \\ \langle 0\| \Phi_{2}(t) \Phi_{1}(0)\|0\rangle & \langle 0\| \Phi_{2}(t) \Phi_{2}(0)\|0\rangle & \ldots \\ \vdots & & \ddots\end{array}\right]$

variational analysis

matrix of correlators	$C(t)=\left[\begin{array}{ccc}\langle 0\| \Phi_{1}(t) \Phi_{1}(0)\|0\rangle & \langle 0\| \Phi_{1}(t) \Phi_{2}(0)\|0\rangle & \ldots \\ \langle 0\| \Phi_{2}(t) \Phi_{1}(0)\|0\rangle & \langle 0\| \Phi_{2}(t) \Phi_{2}(0)\|0\rangle & \ldots \\ \vdots & & \ddots\end{array}\right]$

$$
C(t) v^{\mathfrak{n}}=\lambda_{\mathfrak{n}}(t) C\left(t_{0}\right) v^{\mathfrak{n}}
$$

variational analysis

$$
\begin{gathered}
\text { e.g. } \bar{\psi} \gamma^{5} \psi \\
\epsilon_{i j k} \bar{\psi} \gamma^{j} \gamma^{k}\left(\partial^{i}-A^{i}\right) \psi \\
\epsilon_{i j k} \bar{\psi} \gamma^{i} \psi F^{j k}
\end{gathered}
$$

variational solution $=$ generalised eigenvalue problem

$$
C(t) v^{\mathbf{n}}=\lambda_{\mathbf{n}}(t) C\left(t_{0}\right) v^{\mathbf{n}}
$$

$$
\lambda_{\mathfrak{n}}(t) \rightarrow e^{-E_{\mathfrak{n}}\left(t-t_{0}\right)}
$$

variational analysis

$$
\begin{aligned}
& \hline \text { egg. } \bar{\psi} \gamma^{5} \psi \\
& \epsilon_{i j k} \bar{\psi} \gamma^{j} \gamma^{k}\left(\partial^{i}-A^{i}\right) \psi \\
& \epsilon_{i j k} \bar{\psi} \gamma^{i} \psi F^{j k}
\end{aligned}
$$

$$
\text { variational solution = generalised eigenvalue problem } \quad C(t) v^{\mathfrak{n}}=\lambda_{\mathfrak{n}}(t) C\left(t_{0}\right) v^{\mathfrak{n}}
$$

```
eigenvalues give spectrum
```

$$
\lambda_{\mathfrak{n}}(t) \rightarrow e^{-E_{\mathfrak{n}}\left(t-t_{0}\right)}
$$

eigenvectors give the 'optimal' operators

$$
\Omega_{\mathfrak{n}}=v_{1}^{\mathfrak{n}} \Phi_{1}+v_{2}^{\mathfrak{n}} \Phi_{2}+\ldots
$$

variational analysis

$$
\begin{array}{lc}
\hline \text { egg. } \bar{\psi} \gamma^{5} \psi \\
\epsilon_{i j k} \bar{\psi} \gamma^{j} \gamma^{k}\left(\partial^{i}-A^{i}\right) \psi \\
\epsilon_{i j k} \bar{\psi} \gamma^{i} \psi F^{j k}
\end{array}
$$

variational solution $=$ generalised eigenvalue problem $\quad C(t) v^{\mathfrak{n}}=\lambda_{\mathfrak{n}}(t) C\left(t_{0}\right) v^{\mathfrak{n}}$
eigenvalues give spectrum

$$
\lambda_{\mathfrak{n}}(t) \rightarrow e^{-E_{\mathfrak{n}}\left(t-t_{0}\right)}
$$

eigenvectors give the 'optimal' operators

$$
\Omega_{\mathfrak{n}}=v_{1}^{\mathfrak{n}} \Phi_{1}+v_{2}^{\mathfrak{n}} \Phi_{2}+\ldots
$$

orthogonality of eigenvectors - required to extract near degenerate states
variational analysis

e.g. $\quad \bar{\psi} \gamma^{5} \psi$
$\epsilon_{i j k} \bar{\psi} \gamma^{j} \gamma^{k}\left(\partial^{i}-A^{i}\right) \psi$ $\epsilon_{i j k} \bar{\psi} \gamma^{i} \psi F^{j k}$
variational solution = generalised eigenvalue problem

$$
C(t) v^{\mathfrak{n}}=\lambda_{\mathfrak{n}}(t) C\left(t_{0}\right) v^{\mathfrak{n}}
$$

eigenvalues give spectrum

$$
\lambda_{\mathfrak{n}}(t) \rightarrow e^{-E_{\mathfrak{n}}\left(t-t_{0}\right)}
$$

eigenvectors give the 'optimal' operators

$$
\Omega_{\mathfrak{n}}=v_{1}^{\mathfrak{n}} \Phi_{1}+v_{2}^{\mathfrak{n}} \Phi_{2}+\ldots
$$

orthogonality of eigenvectors - required to extract near degenerate states

* how big does the basis need to be ?

vector spectrum

e.g. charmonium vector spectrum
3770
3686
are tough to fit

3686
gh to fit

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

e.g. in two dimensions: $\psi_{J}(\theta)=e^{i J \theta}$
so under the allowed $\pi / 2$ rotations, $J=0,4,8 \ldots$ indistinguishable

vector spectrum

e.g. charmonium vector spectrum

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

e.g. in two dimensions: $\psi_{J}(\theta)=e^{i J \theta}$
so under the allowed $\pi / 2$ rotations, $J=0,4,8 \ldots$ indistinguishable

vector spectrum

e.g. charmonium vector spectrum

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

e.g. in two dimensions: $\psi_{J}(\theta)=e^{i J \theta}$
so under the allowed $\pi / 2$ rotations, $J=0,4,8 \ldots$ indistinguishable

more spectrum

$a_{s}=0.1 \mathrm{fm}$

more spectrum

$a_{s}=0.1 \mathrm{fm}$

$X_{C(0,1,2)}\left[{ }^{3} P_{J}\right]$

more spectrum

$$
a_{s}=0.1 \mathrm{fm}
$$

somewhat limited by the size of operator basis have subsequently expanded

```
first attempt - little systematic control
```

quenched - no light quarks at all (like models)
one lattice spacing $\boldsymbol{a}=\mathbf{0 . 1} \mathbf{f m}$ (anisotropic, $\boldsymbol{a}_{\mathbf{t}}=\mathbf{0 . 0 3 3} \mathbf{f m}$)
box possibly too small for highly excited states (1.2 fm)
only connected diagrams

OZI justification?
allowed us to get high statistics (1000 gauge field configs)
and most importantly to 'try things out'
Monte-Carlo - statistical error from finite number of samples
all of these 'lattice issues' are systematically improvable: see papers by Fermilab/MILC \& HPQCD

vector states

Level	Mass/MeV	Suggested state	Model assignment
0	$3106(2)$	J / ψ	$1^{3} S_{1}$
1	$3746(18)$	$\psi^{\prime}(3686)$	$2^{3} S_{1}$
2	$3846(12)$	ψ_{3}	Lattice artifact
3	$3864(19)$	$\psi^{\prime \prime}(3770)$	$1^{3} D_{1}$
4	$4283(77)$	$\psi(" 4040 ")$	$3^{3} S_{1}$
5	$4400(60)$	$Y ?$	Hybrid

masses systematically high:
quenched?
finite volume?

> vacuum matrix elements compared to potential model : PRD78:094504 (2008)
extract from three-point correlators

$$
C\left(t_{f}, t, t_{i}\right)=\langle 0| \Phi^{\prime}\left(t_{f}\right)\left[\bar{\psi} \gamma^{\mu} \psi\right](t) \Phi\left(t_{i}\right)|0\rangle
$$

$$
C\left(t_{f}, t, t_{i}\right)=\sum_{\mathfrak{n}, \mathfrak{m}}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle e^{-E_{\mathfrak{n}}\left(t_{f}-t\right)}\langle\mathfrak{n}|\left[\bar{\psi} \gamma^{\mu} \psi\right](0)|\mathfrak{m}\rangle e^{-E_{\mathfrak{m}}\left(t-t_{i}\right)}\langle\mathfrak{m}| \Phi(0)|0\rangle
$$

extract from three-point correlators

$$
C\left(t_{f}, t, t_{i}\right)=\langle 0| \Phi^{\prime}\left(t_{f}\right)\left[\bar{\psi} \gamma^{\mu} \psi\right](t) \Phi\left(t_{i}\right)|0\rangle
$$

$$
C\left(t_{f}, t, t_{i}\right)=\sum_{\mathfrak{n}, \mathfrak{m}}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle e^{-E_{\mathfrak{n}}\left(t_{f}-t\right)}\langle\mathfrak{n}|\left[\bar{\psi} \gamma^{\mu} \psi\right](0)|\mathfrak{m}\rangle e^{-E_{\mathfrak{m}}\left(t-t_{i}\right)}\langle\mathfrak{m}| \Phi(0)|0\rangle
$$

```
eigenvectors give the 'optimal' operators
```

$$
\Omega_{\mathfrak{n}}=v_{1}^{\mathfrak{n}} \Phi_{1}+v_{2}^{\mathfrak{n}} \Phi_{2}+\ldots
$$

extract from three-point correlators

$$
C\left(t_{f}, t, t_{i}\right)=\langle 0| \Phi^{\prime}\left(t_{f}\right)\left[\bar{\psi} \gamma^{\mu} \psi\right](t) \Phi\left(t_{i}\right)|0\rangle
$$

$$
C\left(t_{f}, t, t_{i}\right)=\sum_{\mathfrak{n}, \mathfrak{m}}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle e^{-E_{\mathfrak{n}}\left(t_{f}-t\right)}\langle\mathfrak{n}|\left[\bar{\psi} \gamma^{\mu} \psi\right](0)|\mathfrak{m}\rangle e^{-E_{\mathfrak{m}}\left(t-t_{i}\right)}\langle\mathfrak{m}| \Phi(0)|0\rangle
$$

eigenvectors give the 'optimal' operators

$$
\Omega_{\mathfrak{n}}=v_{1}^{\mathfrak{n}} \Phi_{1}+v_{2}^{\mathfrak{n}} \Phi_{2}+\ldots
$$

compute for multiple operators \& project with eigenvectors

$$
v^{\mathfrak{p}} C\left(t_{f}, t, t_{i}\right)=\sum_{\mathfrak{m}}\langle 0| \Omega^{\mathfrak{p}}(0)|\mathfrak{p}\rangle e^{-E_{\mathfrak{p}}\left(t_{f}-t\right)}\langle\mathfrak{p}|\left[\bar{\psi} \gamma^{\mu} \psi\right](0)|\mathfrak{m}\rangle e^{-E_{\mathfrak{m}}\left(t-t_{i}\right)}\langle\mathfrak{m}| \Phi(0)|0\rangle
$$

vector - pseudoscalar (M1)

$Y ? ~$
$\psi^{\prime \prime \prime} \longleftarrow$
$\psi^{\prime \prime} \square$
$\psi^{\prime} \square$
$\Longrightarrow \eta_{\mathrm{c}}{ }^{\prime}$

$\hat{V} \propto\langle J / \psi| \bar{\psi}^{\mu} \psi\left|\eta_{c}\right\rangle \propto \Gamma^{1 / 2} \begin{gathered} \\ J / \psi \rightarrow \eta_{c} \gamma\end{gathered}$

vector - pseudoscalar (M1)

$\hat{V} \propto\langle J / \psi| \bar{\psi} \gamma^{\mu} \psi\left|\eta_{c}\right\rangle \propto \Gamma_{J / \psi \rightarrow \eta_{c} \gamma}^{1 / 2}$
in quark-potential models:

$$
\text { quark spin flip } \sim \frac{\sigma}{m_{c}}
$$

$$
V \sim \frac{1}{m_{c}} \int r^{2} d r R_{f}(r) j_{0}(|\vec{q}| r) R_{i}(r)
$$

'Higher Charmonia'
(Barnes, Godfrey, Swanson)

$$
\Gamma \sim 2.4-2.9 \mathrm{keV} \text { vs. exptal }(\text { CLEO-c })=1.85(30) \mathrm{keV}
$$

vector - pseudoscalar (M1)

vector - pseudoscalar (M1)

in quark-potential models:
'hindered': orthogonal (2S, 1S) wavefunctions

$$
V \sim \frac{1}{m_{c}} \int r^{2} d r R_{f}(r)\left(1+\mathcal{O}\left(|\vec{q}|^{2} r^{2}\right)\right) R_{i}(r)
$$

relativistic corrections at the same order
frame (in)dependence of non-rel wavefunctions
'Higher Charmonia' (Barnes, Godfrey, Swanson)

$$
\Gamma \sim 4-10 \mathrm{keV} \text { vs. exptal }(\text { CLEO-c })=1.37(20) \mathrm{keV}
$$

vector - pseudoscalar (M1)

vector - pseudoscalar (M1)

vector - pseudoscalar (M1)

vector - pseudoscalar (M1)

tensor - vector (E1,M2,E3)

experimental results from angular dependence of radiative decay events

> suppressed magnetic quadrupole of right sign, but too large in magnitude

tensor - vector (E1,M2,E3)

experimental results from angular dependence of radiative decay events

> suppressed magnetic quadrupole of right sign, but too large in magnitude
\square
relativistic correction in quark models - rather model dependent
electric octopole consistent with zero

tensor - vector (E1,M2,E3)

excited tensor states?

Belle $\gamma \gamma \rightarrow D \bar{D}$

excited tensor states?

Belle $\gamma \gamma \rightarrow D \bar{D}$

excited tensor states?

Belle $\gamma \gamma \rightarrow D \bar{D}$

Belle experiment

excited tensor states?

Belle $\gamma \gamma \rightarrow D \bar{D}$

our calculation finds the F-wave lighter may be artifact of small box 'squeezing'

exotics

$J P C=1^{++}$not accessible to ci pair
we find state at about 4.3 GeV

exotics

${ }^{P C}=1^{+}+$not accessible to \mathbf{c} pair
we find state at about 4.3 GeV

$\eta_{c 1} \rightarrow J / \psi \gamma \quad$ magnetic dipole transition

exotics

${ }^{P C}=1^{+}+$not accessible to \mathbf{c} pair
we find state at about 4.3 GeV

$$
\eta_{c 1} \rightarrow J / \psi \gamma
$$

magnetic dipole transition

$$
\begin{aligned}
& \text { compare with } \mathrm{J} / \psi \rightarrow \eta_{\mathrm{c}} \gamma \sim 1 \mathrm{keV} \\
& \text { quark spin flip } \sim \frac{\sigma}{m_{c}}
\end{aligned}
$$

exotics

$J^{P C}=1^{+}+$not accessible to cć pair
we find state at about 4.3 GeV

$$
\eta_{c 1} \rightarrow \mathrm{~J} / \psi \gamma
$$

magnetic dipole transition

perhaps this is not spin-flip?

exotics

$J^{P C}=1^{+}+$not accessible to cć pair
we find state at about 4.3 GeV

$\eta_{c 1} \rightarrow \mathrm{~J} / \psi \gamma$

magnetic dipole transition

$$
\eta_{c 1} \rightarrow \mathrm{~J} / \psi \gamma
$$

magnetic dipole transition

supports models in which the exotic has $S_{q \bar{q}}=1$

$$
\eta_{c 1} \rightarrow \mathrm{~J} / \psi \gamma
$$

magnetic dipole transition

supports models in which the exotic has $S_{q \bar{q}}=1$
e.g. flux-tube model, Coulomb gauge ...

exciting?

charmonium exotic (probably) has negligible radiative relative to hadronic width

exciting?

charmonium exotic (probably) has negligible radiative relative to hadronic width
but ... if this large number is duplicated in the light meson case:

peripheral photoproduction
GlueX
plenty of exotic photoproduction?

exciting?

charmonium exotic (probably) has negligible radiative relative to hadronic width
but ... if this large number is duplicated in the light meson case:

peripheral photoproduction
GlueX
plenty of exotic photoproduction?
our group's current aim :
perform similar calculations with much lighter quarks - say something useful for GlueX

exciting?

charmonium exotic (probably) has negligible radiative relative to hadronic width
but ... if this large number is duplicated in the light meson case:

summary

reliable techniques for extraction of excited states in lattice field theory
now applied to radiative matrix element calculations
initial trials with quenched studies of charmonium - compare with potential models
I have emphasized the exceptions - but actually potential
models agree rather well with many results I have not presented
exotic (hybrid?) to conventional meson radiative transitions are large
same techniques can be used in baryon sector - applications to CLAS electroproduction program (some first attempts from Huey-Wen Lin et.al.)

summary

reliable techniques for extraction of excited states in lattice field theory
now applied to radiative matrix element calculations
initial trials with quenched studies of charmonium - compare with potential models
I have emphasized the exceptions - but actually potential
models agree rather well with many results I have not presented
exotic (hybrid?) to conventional meson radiative transitions are large
same techniques can be used in baryon sector - applications to CLAS electroproduction program (some first attempts from Huey-Wen Lin et.al.)
for more information attend Christopher Thomas's talk at 4.30pm in the 'Charm Spectroscopy' parallel session

