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meson spectrum

basic object is two-point correlator

e.g. pseudoscalars can be ‘made’ with 

each operator will have different ‘overlap’ on to the tower of pseudoscalar states

sampling the ‘wavefunction’ of the states

some linear combination of the operators is optimal for a certain state

within a finite basis of operators, our best estimate is from a variational solution
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variational analysis

matrix of correlators

eigenvectors give the ‘optimal’ operators

variational solution = generalised eigenvalue problem

eigenvalues give spectrum

orthogonality of eigenvectors - required to extract near degenerate states

*

* how big does the basis need to be ? 

e.g.
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e.g. charmonium vector spectrum
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somewhat limited by the size of operator basis - 
have subsequently expanded



the calculation

first attempt - little systematic control

quenched - no light quarks at all (like models)

one lattice spacing a = 0.1 fm (anisotropic, at = 0.033 fm )

box possibly too small for highly excited states (1.2 fm)

allowed us to get high statistics (1000 gauge field configs)
and most importantly to ‘try things out’

all of these ‘lattice issues’ are systematically improvable:
see papers by Fermilab/MILC & HPQCD

only connected diagrams
(a) (b) (c)

✘ ✘
Monte-Carlo - statistical error 
from finite number of samples

OZI justification ?



vector states

J/y

y ’
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Y?
y ’’’

masses systematically high:
quenched?
finite volume?

vacuum matrix elements 
compared to potential 
model : PRD78:094504 (2008)
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extract from three-point correlators

meson photocouplings in Euclidean time ( t → -i t )

compute for multiple operators & project with eigenvectors

now just a single state p contributing - can be an excited state

eigenvectors give the ‘optimal’ operators
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in quark-potential models:
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first lattice QCD extraction of a radiative 
transition involving an excited meson
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better than we could have hoped for - still a 
signal for our (technically) 5th excited state 
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HYBRID MESON: 
excited gluonic field

e.g. flux-tube model, Coulomb gauge ...
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charmonium exotic (probably) has negligible radiative relative to hadronic width

but ... if this large number is duplicated in the light meson case:

peripheral photoproduction

GlueX

g

p N

p1

r plenty of exotic photoproduction ?

our group’s current aim :
perform similar calculations with 
much lighter quarks - say 
something useful for GlueX

as part of larger HadSpec collaboration
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summary

reliable techniques for extraction of excited states in lattice field theory

now applied to radiative matrix element calculations

I have emphasized the exceptions - but actually potential 
models agree rather well with many results I have not presented

for more information attend Christopher Thomas’s talk at 
4.30pm in the ‘Charm Spectroscopy’ parallel session

initial trials with quenched studies of charmonium - compare with potential models

exotic (hybrid?) to conventional meson radiative transitions are large

same techniques can be used in baryon sector - applications to CLAS 
electroproduction program (some first attempts from Huey-Wen Lin et.al.)


