Excited meson spectroscopy and radiative transitions from LQCD

Christopher Thomas, Jefferson Lab

thomasc@jlab.org

DAMTP, Cambridge, September 2010

With Jo Dudek, Robert Edwards, Mike Peardon, David Richards and the Hadron Spectrum Collaboration

Outline

- Introduction and motivation
- Excited spectra from LQCD - method outline
- Results - isovector spectra
- Photocouplings - charmonium
- Summary and outlook

Motivation

Renaissance in excited charmonium spectroscopy
BABAR, Belle, BES, CLEO-c, ...
Upcoming experimental efforts (in charmonium and light meson sector)
GlueX (JLab), BESIII, PANDA, ...

Motivation

Renaissance in excited charmonium spectroscopy
BABAR, Belle, BES, CLEO-c, ...
Upcoming experimental efforts (in charmonium and light meson sector)
GlueX (JLab), BESIII, PANDA, ...

$$
\begin{array}{r}
\text { Exotics }\left(J^{P C}=1^{-+}, 2^{+-}, \ldots\right) ?-\text { can't just be a } q \bar{q} \text { pair } \\
\text { e.g. hybrids, multi-mesons }
\end{array}
$$

Motivation

Renaissance in excited charmonium spectroscopy
BABAR, Belle, BES, CLEO-c, ...
Upcoming experimental efforts (in charmonium and light meson sector)
GlueX (JLab), BESIII, PANDA, ...

Exotics $\left(\mathrm{J}^{\mathrm{PC}}=1^{-+}, 2^{+-}, \ldots\right)$? \quad can't just be a $q \bar{q}$ pair

e.g. hybrids, multi-mesons

Two spin-half fermions: $\quad{ }^{2 S+1} L_{J}$
Parity:

$$
P=(-1)^{(L+1)}
$$

Charge Conj Sym: $C=(-1)^{(L+S)}$

$$
\mathrm{JPC}^{\mathrm{PC}}=0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 2^{--}, 2^{++}, 2^{-+}, \ldots
$$

Motivation

Renaissance in excited charmonium spectroscopy

> BABAR, Belle, BES, CLEO-c, ...

Upcoming experimental efforts (in charmonium and light meson sector)
GlueX (JLab), BESIII, PANDA, ...

Exotics $\left(J^{\mathrm{PC}}=1^{-+}, 2^{+-}, \ldots\right) ? \quad$ can't just be a $q \bar{q}$ pair
 e.g. hybrids, multi-mesons

Photoproduction at GlueX (JLab 12 GeV upgrade)

Motivation

Renaissance in excited charmonium spectroscopy

> BABAR, Belle, BES, CLEO-c, ...

Upcoming experimental efforts (in charmonium and light meson sector)
GlueX (JLab), BESIII, PANDA, ...

Exotics $\left(\mathrm{J}^{\mathrm{PC}}=1^{-+}, 2^{+-}, \ldots\right)$? \quad can't just be a $q \bar{q}$ pair e.g. hybrids, multi-mesons
 Photoproduction at GlueX (JLab 12 GeV upgrade)

Use Lattice QCD to extract excited spectrum...
... and photocouplings (tested in charmonium)

QCD on a Lattice

Discretise on a grid (spacing = a) - regulator

Finite volume \rightarrow finite no. of d.o.f.

QCD on a Lattice

Discretise on a grid (spacing = a) - regulator

Finite volume \rightarrow finite no. of d.o.f.
Quarks fields on lattice sites $\quad \psi(x) \rightarrow \psi_{x}$
Gauge fields on links $A_{\mu}(x) \rightarrow U_{x, \mu}=e^{-a A_{x, \mu}}$

QCD on a Lattice

Discretise on a grid (spacing = a) - regulator

Finite volume \rightarrow finite no. of d.o.f.

Gauge fields on links $\int A_{\mu}(x) \rightarrow U_{x, \mu}=e^{-a A_{x, \mu}}$

Path integral formulation
$\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U f(\psi, \bar{\psi}, U) e^{i S[\psi, \bar{\psi}, U]}$

QCD on a Lattice

Discretise on a grid (spacing = a) - regulator

Finite volume \rightarrow finite no. of d.o.f.

Quarks fields on lattice sites

$$
\psi(x) \rightarrow \psi_{x}
$$

Gauge fields on links $A_{\mu}(x) \rightarrow U_{x, \mu}=e^{-a A_{x, \mu}}$

Path integral formulation

Euclidean time: $\mathrm{t} \rightarrow \mathrm{i} \mathrm{t}$

$$
\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U f(\psi, \bar{\psi}, U) e^{i S[\psi, \bar{\psi}, U]}
$$

$$
\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U f(\psi, \bar{\psi}, U) e^{-\tilde{S}[\psi, \bar{\psi}, U]}
$$

Do fermion integral analytically then use importance sampling Monte Carlo

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

$$
O(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x) \Gamma_{i} \overleftrightarrow{D}_{j} \overleftrightarrow{D}_{k} \ldots \psi(x) \quad(\mathrm{p}=0)
$$

More about operators later...
'Distillation' technology for constructing on lattice PR D80 054506 (2009)

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

$$
O(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x) \Gamma_{i} \overleftrightarrow{D}_{j} \overleftrightarrow{D}_{k} \ldots \psi(x) \quad(\mathrm{p}=0)
$$

More about operators later...
'Distillation' technology for constructing on lattice PR D80 054506 (2009)

$$
Z_{i}^{(n)} \equiv<0\left|O_{i}\right| n>
$$

$$
C_{i j}(t)=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|O_{i}(0)\right| n><n\left|O_{j}(0)\right| 0>
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

Eigenvectors \rightarrow optimal linear combination of operators to overlap on to a state

$$
\Omega^{(n)} \sim \sum_{i} v_{i}^{(n)} O_{i}
$$

$Z^{(n)}$ related to eigenvectors

$$
Z_{i}^{(n)} \equiv<0\left|O_{i}\right| n>
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

Eigenvectors \rightarrow optimal linear combination of operators to overlap on to a state

$$
\Omega^{(n)} \sim \sum_{i} v_{i}^{(n)} O_{i}
$$

$Z^{(n)}$ related to eigenvectors

$$
Z_{i}^{(n)} \equiv<0\left|O_{i}\right| n>
$$

Var. method uses orthog of eigenvectors; don't just rely on separating energies

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

In continuum:
Infinite number of irreps: $\mathrm{J}=0,1,2,3,4, \ldots$

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

In continuum:

Infinite number of irreps: $\mathrm{J}=0,1,2,3,4, \ldots$

On lattice:
Finite number of irreps: $A_{1}, A_{2}, T_{1}, T_{2}, E \quad$ (and others for half-integer spin)

Irrep	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	E
Dim	1	1	3	3	2

Cont. Spin	0	1	2	3	4	\ldots
Irrep(s)	A_{1}	T_{1}	$T_{2}+E$	$T_{1}+T_{2}+A_{2}$	$A_{1}+T_{1}+T_{2}+E$	\ldots

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$$
\begin{array}{|ccc}
\Gamma \times \mathrm{D} \times \mathrm{D} \times \ldots & \text { (up to } 3 \text { derivs) } \quad \text { Couple using SU(} \\
\langle\mathrm{O}| O^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \quad \text { definite JPC }
\end{array}
$$

Couple using SU(2) Clebsch Gordans

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$$
\begin{array}{lll}
\hline \Gamma \times \mathrm{D} \times \mathrm{D} \times \ldots & \text { (up to } 3 \text { derivs) } & \text { Couple using SU(: } \\
\langle\mathrm{O}| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \text { definite JPC }
\end{array}
$$

Couple using SU(2) Clebsch Gordans
'Subduce' operators into lattice irreps ($\mathrm{J} \rightarrow \Lambda$):

$$
\mathcal{O}_{\Lambda, \lambda}^{[J]}=\sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M} \mathcal{O}^{J, M}
$$

$$
\begin{aligned}
& \langle 0| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}} \\
& \text { e.g. } \quad \mathcal{O}^{[2]} \rightarrow T_{2} \text { and } \mathcal{O}^{[2]} \rightarrow E
\end{aligned}
$$

Up to 26 ops in Λ^{PC} channel

Given continuum op \rightarrow same Z in each Λ (ignoring lattice mixing)

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$\Gamma \times \mathrm{D} \times \mathrm{D} \times \ldots$ (up to 3 derivs) Couple using SU(2) Clebsch Gordans

$$
\langle 0| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

definite JPC
'Subduce' operators into lattice irreps $(\mathrm{J} \rightarrow \Lambda$):

$$
\mathcal{O}_{\Lambda, \lambda}^{[J]}=\sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M} \mathcal{O}^{J, M}
$$

$$
\langle\mathrm{O}| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}
$$

e.g. $\quad \mathcal{O}^{[2]} \rightarrow T_{2} \quad$ and $\mathcal{O}^{[2]} \rightarrow E$

Up to 26 ops in Λ^{PC} channel

Given continuum op \rightarrow same Z in each Λ (ignoring lattice mixing)
(1) Look for 'large' overlaps with $\mathcal{O}_{\Lambda, \lambda}^{[J]}$
(2) Compare Z's of same cont. op. subduced to different irreps

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

(2) Compare Z's of same cont. op. subauced to different irreps

Calculation details

- Dynamical calculation. Clover fermions
- Anisotropic $\left(a_{s} / a_{t}=3.5\right), a_{s} \sim 0.12 \mathrm{fm}, a_{t}^{-1} \sim 5.6 \mathrm{GeV}$
- Two volumes: $16^{3}\left(\mathrm{~L}_{\mathrm{s}} \approx 2.0 \mathrm{fm}\right)$ and $20^{3}\left(\mathrm{~L}_{\mathrm{s}} \approx 2.4 \mathrm{fm}\right)$

Calculation details

- Dynamical calculation. Clover fermions
- Anisotropic $\left(a_{s} / a_{t}=3.5\right), a_{s} \sim 0.12 \mathrm{fm}, a_{t}{ }^{-1} \sim 5.6 \mathrm{GeV}$
- Two volumes: $16^{3}\left(\mathrm{~L}_{\mathrm{s}} \approx 2.0 \mathrm{fm}\right)$ and $20^{3}\left(\mathrm{~L}_{\mathrm{s}} \approx 2.4 \mathrm{fm}\right)$

Lattice details in: PR D78 054501, PR D79 034502

- Only connected diagrams - Isovectors (I=1) and kaons
- As an example: three degenerate 'light' quarks ($\mathrm{N}_{\mathrm{f}}=3, \mathrm{M}_{\pi} \approx 700 \mathrm{MeV}$)
- Also $\left(\mathrm{N}_{\mathrm{f}}=2+1\right) \mathrm{M}_{\pi} \approx 520,440,400 \mathrm{MeV}$
~ 500 cfgs $x 9$ t-sources

0.6

Z values

This operator $\sim\left[D_{i}, D_{j}\right]$

This operator $\sim\left[D_{i}, D_{j}\right]$

Z values - spin 4

$$
\langle 0| o_{\left.\lambda,|,|]^{\prime}, M\right\rangle}^{[\mid]}=s_{\lambda, \lambda}^{J, M} Z^{[]]_{J, J^{\prime}}}
$$

Given continuum op \rightarrow same Z for each subduced irrep

Lower pion masses

Lower pion masses

Exotics summary

Exotics summary

Multi-particle states?

Multi-particle states?

Charmonium

"Hydrogen atom" of meson spectroscopy

Potential models, effective field theories, QCD sum rules, ...

New and improved measurements at BABAR, Belle, BES, CLEO-c

Charmonium

"Hydrogen atom" of meson spectroscopy

Potential models, effective field theories, QCD sum rules, ...

New and improved measurements at BABAR, Belle, BES, CLEO-c

New resonances not easily described by quark model

Theoretical speculation: hybrids, multiquark/molecular mesons, ...

As yet, no exotic J JPC observed $\left(1^{-+}, 0^{+-}, 2^{+-}\right)$

Charmonium radiative transitions

Below DD threshold radiative transitions have significant BRs

Charmonium radiative transitions

Below DD threshold radiative transitions have significant BRs

Meson - Photon coupling

Charmonium radiative transitions

Below DD threshold radiative transitions have significant BRs

Meson - Photon coupling

Photocouplings

Charmonium (quenched) - testing method

$$
C_{i j}\left(t_{f}, t, t_{i}\right)=<0\left|O_{i}\left(t_{f}\right) \bar{\psi}(t) \gamma^{\mu} \psi(t) O_{j}\left(t_{i}\right)\right| 0>
$$

Photocouplings

Charmonium (quenched) - testing method

$$
C_{i j}\left(t_{f}, t, t_{i}\right)=<0\left|O_{i}\left(t_{f}\right) \bar{\psi}(t) \gamma^{\mu} \psi(t) O_{j}\left(t_{i}\right)\right| 0>
$$

Conventional vector - pseudoscalar transition

Photocouplings

Much larger than other $1^{--} \rightarrow 0^{-+} \mathrm{M}_{1}$ transitions
$\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right) \sim 2 \mathrm{keV}$

Spectrum analysis
suggests a vector hybrid (spin-singlet)
c.f. flux tube model $30-60 \mathrm{keV}$

Photocouplings

Much larger than other $1^{--} \rightarrow 0^{-+} \mathrm{M}_{1}$ transitions
$\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right) \sim 2 \mathrm{keV}$

Spectrum analysis
suggests a vector hybrid (spin-singlet)
c.f. flux tube model $30-60 \mathrm{keV}$

- Usually $\mathrm{M}_{1} \rightarrow$ spin flip (e.g. $\left.{ }^{3} \mathrm{~S}_{1} \rightarrow{ }^{1} \mathrm{~S}_{0}\right) \rightarrow 1 / \mathrm{m}_{\mathrm{c}}$ suppression
- Spin-singlet hybrid \rightarrow extra gluonic degrees of freedom
$\rightarrow \mathrm{M}_{1}$ transition without spin flip \rightarrow not suppressed

Exotic meson photocoupling

Exotic meson photocoupling

Same scale as many measured conventional charmonium transitions
BUT very large for an M_{1} transition
$\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right) \sim 2 \mathrm{keV}$

Suggests a spin-triplet hybrid

Exotic meson photocoupling

Same scale as many measured conventional charmonium transitions

BUT very large for an M_{1} transition
$\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right) \sim 2 \mathrm{keV}$

Suggests a spin-triplet hybrid

- Usually $\mathrm{M}_{1} \rightarrow$ spin flip (e.g. ${ }^{3} \mathrm{~S}_{1} \rightarrow{ }^{1} \mathrm{~S}_{0}$) $\rightarrow 1 / \mathrm{m}_{\mathrm{c}}$ suppression
- Spin-triplet hybrid \rightarrow extra gluonic degrees of freedom

Exotic meson photocoupling

Same scale as many measured conventional charmonium transitions

BUT very large for an M_{1} transition
$\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right) \sim 2 \mathrm{keV}$

Suggests a spin-triplet hybrid

- Usually $\mathrm{M}_{1} \rightarrow$ spin flip (e.g. ${ }^{3} \mathrm{~S}_{1} \rightarrow{ }^{1} \mathrm{~S}_{0}$) $\rightarrow 1 / \mathrm{m}_{\mathrm{c}}$ suppression
- Spin-triplet hybrid \rightarrow extra gluonic degrees of freedom
$\rightarrow \mathrm{M}_{1}$ transition without spin flip \rightarrow not suppressed

More charmonium results

Tensor - Vector transitions $\quad \chi_{c 2}, \chi_{c 2}^{\prime}, \chi_{c 2}^{\prime \prime} \rightarrow J / \psi \gamma$
Identify $1^{3} P_{2}, 1^{3} F_{2}, 2^{3} P_{2}$ tensors from hierarchy of multipoles E_{1}, M_{2}, E_{3}

Vector - Psuedoscalar $J / \psi, \psi^{\prime}, \psi^{\prime \prime} \rightarrow \eta_{c} \gamma$
Scalar - Vector $\quad \chi_{c 0} \rightarrow J / \psi \gamma \quad \psi^{\prime}, \psi^{\prime \prime} \rightarrow \chi_{c 0} \gamma$
Axial - Vector $\quad \chi_{c 1}, \chi_{c 1}^{\prime} \rightarrow J / \psi \gamma$

Summary and Outlook

Summary

- Our first results on light mesons - technology and method work
- Spin identification is possible using operator overlaps
- First spin 4 meson extracted and confidently identified on lattice
- Exotics (and non-exotic hybrids)
- Isovectors and kaons

Summary and Outlook

Summary

- Our first results on light mesons - technology and method work
- Spin identification is possible using operator overlaps
- First spin 4 meson extracted and confidently identified on lattice
- Exotics (and non-exotic hybrids)
- Isovectors and kaons

Outlook - ongoing work

- Multi-meson operators - resonance physics
- Disconnected diagrams - isoscalars and multi-mesons
- Baryons
- Photocouplings
- Lighter pion masses and larger volumes

Extra Slides

Kaons

Lower the light quark mass $\left(\mathrm{N}_{\mathrm{f}}=2+1\right)-\mathrm{SU}(3)$ sym breaking

Kaons

Lower the light quark mass $\left(\mathrm{N}_{\mathrm{f}}=2+1\right)-\mathrm{SU}(3)$ sym breaking

M_{π} / MeV	700	520	440	400
$M_{\mathrm{K}} / \mathrm{M}_{\pi}$	1	1.2	1.3	1.4

c.f. physical
$M_{K} / M_{\pi}=3.5$

No longer is C-parity a good quantum number for kaons (or a gen. of C-parity)

Combine $\mathrm{J}^{\mathrm{P}+}$ and $\mathrm{J}^{\mathrm{P} \text { - operators }}$

Physically, axial kaons [$\left.\mathrm{K}_{1}(1270), \mathrm{K}_{1}(1400)\right]$ are a mixture Suggested mixing angle $\approx 45^{\circ}$ (combination of exp and models)

But...

Kaons

Kaons - Operator Overlaps

16^{3}
$M_{\pi} \approx 520 \mathrm{MeV}$
$M_{\mathrm{K}} / \mathrm{M}_{\pi} \approx 1.2$
$\left(\begin{array}{l}16^{3} \\ M_{\pi} \approx 400 \mathrm{MeV} \\ M_{K} / M_{\pi} \approx 1.4\end{array}\right.$

Kaons - Operator Overlaps

Kaons - Operator Overlaps

Kaons - spectrum

Kaons - Various pion masses

Kaons - Various pion masses

$$
\begin{array}{ccc|}
\hline K^{\star}\left(1^{-}\right)
\end{array}
$$

