Excited meson spectroscopy and radiative transitions from LQCD

Christopher Thomas, Jefferson Lab

thomasc@jlab.org

DAMTP, Cambridge, September 2010

With Jo Dudek, Robert Edwards, Mike Peardon, David Richards and the *Hadron Spectrum Collaboration*

Outline

- Introduction and motivation
- Excited spectra from LQCD method outline
- Results isovector spectra
- Photocouplings charmonium
- Summary and outlook

PR D79 094504 (2009) PRL 103 262001 (2009) PR D82 034508 (2010)

Renaissance in excited charmonium spectroscopy

BABAR, Belle, BES, CLEO-c, ...

Upcoming experimental efforts (in charmonium and light meson sector)

GlueX (JLab), BESIII, PANDA, ...

Renaissance in excited charmonium spectroscopy

BABAR, Belle, BES, CLEO-c, ...

Upcoming experimental efforts (in charmonium and light meson sector)

GlueX (JLab), BESIII, PANDA, ...

Exotics (J^{PC} = $\mathbf{1}^{-+}$, $\mathbf{2}^{+-}$, ...)? – can't just be a $q\bar{q}$ pair

e.g. hybrids, multi-mesons

Renaissance in excited charmonium spectroscopy

BABAR, Belle, BES, CLEO-c, ...

Upcoming experimental efforts (in charmonium and light meson sector)

GlueX (JLab), BESIII, PANDA, ...

Exotics (J^{PC} = $\mathbf{1}^{-+}$, $\mathbf{2}^{+-}$, ...)? – can't just be a $q\bar{q}$ pair

e.g. hybrids, multi-mesons

Two spin-half fermions: ^{2S+1}L₁

Parity: $P = (-1)^{(L+1)}$

Charge Conj Sym: $C = (-1)^{(L+S)}$

$$J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 2^{--}, 2^{++}, 2^{-+}, ...$$

Renaissance in excited charmonium spectroscopy

BABAR, Belle, BES, CLEO-c, ...

Upcoming experimental efforts (in charmonium and light meson sector)

GlueX (JLab), BESIII, PANDA, ...

Exotics (J^{PC} = $\mathbf{1}^{-+}$, $\mathbf{2}^{+-}$, ...)? – can't just be a $q\bar{q}$ pair

e.g. hybrids, multi-mesons

Photoproduction at GlueX (JLab 12 GeV upgrade)

Renaissance in excited charmonium spectroscopy

BABAR, Belle, BES, CLEO-c, ...

Upcoming experimental efforts (in charmonium and light meson sector)

GlueX (JLab), BESIII, PANDA, ...

Exotics (J^{PC} = $\mathbf{1}^{-+}$, $\mathbf{2}^{+-}$, ...)? – can't just be a $q\bar{q}$ pair

e.g. hybrids, multi-mesons

Photoproduction at GlueX (JLab 12 GeV upgrade)

Use Lattice QCD to extract excited spectrum...

... and photocouplings (tested in charmonium)

Discretise on a grid (spacing = a) – regulator

Finite volume → finite no. of d.o.f.

Path integral formulation

$$\int \mathcal{D}\psi \mathcal{D}ar{\psi}\mathcal{D}U f(\psi,ar{\psi},U) e^{iS[\psi,ar{\psi},U]}$$

Discretise on a grid (spacing = a) – regulator

Finite volume → finite no. of d.o.f.

Quarks fields on lattice sites $\psi(x) o \psi_x$

$$\psi(x) \to \psi_x$$

Gauge fields on links
$$A_{\mu}(x) o U_{x,\mu} = e^{-aA_{x,\mu}}$$

Path integral formulation

$$\int \mathcal{D}\psi \mathcal{D}ar{\psi}\mathcal{D}U f(\psi,ar{\psi},U) e^{iS[\psi,ar{\psi},U]}$$

Euclidean time: t → i t

$$\int \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}U f(\psi,\bar{\psi},U) e^{-\tilde{S}[\psi,\bar{\psi},U]}$$

Do fermion integral analytically then use importance sampling Monte Carlo

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

$$O(t) = \sum_{ec{x}} e^{iec{p}\cdotec{x}} \; ar{\psi}(x) \Gamma_i \overleftrightarrow{D}_j \overleftrightarrow{D}_k \ldots \psi(x)$$
 (p =

(p = 0)

More about operators later...

'Distillation' technology for constructing on lattice PR D80 054506 (2009)

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

$$O(t) = \sum_{ec{x}} e^{iec{p}\cdotec{x}} \; ar{\psi}(x) \Gamma_i \overleftrightarrow{D}_j \overleftrightarrow{D}_k \ldots \psi(x)$$
 (p =

(p = 0)

More about operators later...

'Distillation' technology for constructing on lattice PR D80 054506 (2009)

$$Z_i^{(n)} \equiv <0|O_i|n>$$

$$C_{ij}(t) = \sum_{n} \frac{e^{-E_n} t}{2 E_n} < 0 |O_i(0)| n > < n |O_j(0)| 0 >$$

Large basis of operators → matrix of correlators

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

Generalised eigenvector problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

Large basis of operators → matrix of correlators

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

Generalised eigenvector problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

Eigenvalues → energies

$$\lambda^{(n)}(t)
ightarrow e^{-E_n(t-t_0)}$$

 $(t >> t_0)$

Large basis of operators → matrix of correlators

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

Generalised eigenvector problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

Eigenvalues → energies

$$\lambda^{(n)}(t)
ightarrow e^{-E_n(t-t_0)}$$

$$(t >> t_0)$$

Eigenvectors → optimal linear combination of operators to overlap on to a state

$$\Omega^{(n)} \sim \sum_{i} v_i^{(n)} O_i$$

 $Z^{(n)}$ related to eigenvectors

$$Z_i^{(n)} \equiv <0|O_i|n>$$

Large basis of operators → matrix of correlators

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

Generalised eigenvector problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

Eigenvalues → energies

$$\lambda^{(n)}(t)
ightharpoonup e^{-E_n(t-t_0)}$$
 (t >> t₀)

Eigenvectors → optimal linear combination of operators to overlap on to a state

$$\Omega^{(n)} \sim \sum_{i} v_i^{(n)} O_i$$

 $Z^{(n)}$ related to eigenvectors

$$Z_i^{(n)} \equiv < 0|O_i|n>$$

Var. method uses orthog of eigenvectors; don't just rely on separating energies

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

In continuum:

Infinite number of *irreps*: J = 0, 1, 2, 3, 4, ...

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

In continuum:

Infinite number of *irreps*: J = 0, 1, 2, 3, 4, ...

On lattice:

Finite number of *irreps*: A_1 , A_2 , T_1 , T_2 , E (and others for half-integer spin)

Irrep	A ₁	A_2	T_1	T_2	Е
Dim	1	1	3	3	2

Cont. Spin	0	1	2	3	4	•••
Irrep(s)	A ₁	T ₁	T ₂ + E	$T_1 + T_2 + A_2$	$A_1 + T_1 + T_2 + E$	•••

Construct operators which only overlap on to one spin in the continuum limit

 $\Gamma \times D \times D \times ...$ (up to 3 derivs)

Couple using SU(2) Clebsch Gordans

$$\langle 0|\mathcal{O}^{J,M}|J',M'\rangle = Z^{[J]}\delta_{J,J'}\delta_{M,M'}$$

definite J^{PC}

Construct operators which only overlap on to one spin in the continuum limit

 $\Gamma \times D \times D \times ...$ (up to 3 derivs)

Couple using SU(2) Clebsch Gordans

$$\langle 0|\mathcal{O}^{J,M}|J',M'\rangle = Z^{[J]}\delta_{J,J'}\delta_{M,M'}$$

definite J^{PC}

'Subduce' operators into lattice irreps $(J \rightarrow \Lambda)$:

$$\mathcal{O}_{\Lambda,\lambda}^{[J]} = \sum_{M} \mathcal{S}_{\Lambda,\lambda}^{J,M} \mathcal{O}^{J,M}$$

$$\langle 0|\mathcal{O}_{\Lambda,\lambda}^{[J]}|J',M\rangle = \mathcal{S}_{\Lambda,\lambda}^{J,M}Z^{[J]}\delta_{J,J'}$$

Up to 26 ops in Λ^{PC} channel

e.g.
$$\mathcal{O}^{[2]} o T_2$$
 and $\mathcal{O}^{[2]} o E$

Given continuum op \rightarrow same Z in each Λ (ignoring lattice mixing)

Construct operators which only overlap on to one spin in the continuum limit

 $\Gamma \times D \times D \times ...$ (up to 3 derivs)

Couple using SU(2) Clebsch Gordans

$$\langle \mathbf{0} | \mathcal{O}^{J,M} | J', M' \rangle = Z^{[J]} \delta_{J,J'} \delta_{M,M'} \qquad \text{definite J}^{\mathrm{PC}}$$

'Subduce' operators into lattice irreps (J $\rightarrow \Lambda$):

$$\mathcal{O}_{\Lambda,\lambda}^{[J]} = \sum_{M} \mathcal{S}_{\Lambda,\lambda}^{J,M} \mathcal{O}^{J,M}$$

$$\langle 0|\mathcal{O}_{\Lambda,\lambda}^{[J]}|J',M\rangle = \mathcal{S}_{\Lambda,\lambda}^{J,M}Z^{[J]}\delta_{J,J'}$$

Up to 26 ops in Λ^{PC} channel

e.g.
$$\mathcal{O}^{[2]} \to T_2$$
 and $\mathcal{O}^{[2]} \to E$

Given continuum op → same Z in each Λ (ignoring lattice mixing)

- (1) Look for 'large' overlaps with $\mathcal{O}_{\Lambda}^{[J]}$
- Compare Z's of same cont. op. subduced to different irreps

Construct operators which only overlap on to one spin in the continuum limit

 $\Gamma x D x D x ...$

'Subduce' operat

 $\langle 0|\mathcal{O}_{\Lambda,\lambda}^{[J]}|J'$

(1) Look for 'large

Clebsch Gordans

 $\sum {\cal S}_{igwedge \lambda}^{J,M} {\cal O}^{J,M}$

ps in Λ^{PC} channel

ontinuum op 🔿 in each Λ g lattice mixing)

0.4 0.6 0.8 1.0

 $C_{ij}/\sqrt{C_{ii}C_{jj}}$

Compare Z's of same cont. op. subduced to different irreps

Calculation details

- Dynamical calculation. Clover fermions
- Anisotropic $(a_s/a_t = 3.5)$, $a_s \sim 0.12$ fm, $a_t^{-1} \sim 5.6$ GeV
- Two volumes: 16^3 (L_s ≈ 2.0 fm) and 20^3 (L_s ≈ 2.4 fm)

Lattice details in: PR D78 054501, PR D79 034502

Calculation details

- Dynamical calculation. Clover fermions
- Anisotropic ($a_s/a_t = 3.5$), $a_s \sim 0.12$ fm, $a_t^{-1} \sim 5.6$ GeV
- Two volumes: 16^3 (L_s ≈ 2.0 fm) and 20^3 (L_s ≈ 2.4 fm)

Lattice details in: PR D78 054501, PR D79 034502

- Only connected diagrams Isovectors (I=1) and kaons
- As an example: three degenerate 'light' quarks ($N_f = 3$, $M_{\pi} \approx 700$ MeV)
- Also $(N_f = 2+1) M_{\pi} \approx 520, 440, 400 MeV$

SU(3) sym

~ 500 cfgs x 9 t-sources

Method details and results: PRL 103 262001 (2009), PR D82 034508 (2010)

1.6 1.4 1.2 $\sigma m/m$ 1.0 0.8 0.6 A_1^{--} T_1^{--} T_2^{--} E^{--} A_2^{--}

Z values

Z values – spin 4

$$\langle 0|\mathcal{O}_{\Lambda,\lambda}^{[J]}|J',M\rangle = \mathcal{S}_{\Lambda,\lambda}^{J,M}Z^{[J]}\delta_{J,J'}$$

Given continuum op → same Z for each subduced irrep

Lower pion masses

Lower pion masses

Exotics summary

Exotics summary

Multi-particle states?

Finite box

- → discrete allowed momenta
- → discrete spectrum of multiparticle states

Multi-particle states?

Finite box

- → discrete allowed momenta
- → discrete spectrum of multiparticle states

Expect two-meson states above $2m_{\pi}$

 $2 m_{\pi} \sim 0.85 m_{\Omega}$

Where are they?

Charmonium

"Hydrogen atom" of meson spectroscopy

Potential models, effective field theories, QCD sum rules, ...

New and improved measurements at BABAR, Belle, BES, CLEO-c

Charmonium

"Hydrogen atom" of meson spectroscopy

Potential models, effective field theories, QCD sum rules, ...

New and improved measurements at BABAR, Belle, BES, CLEO-c

New resonances not easily described by quark model

Theoretical speculation: hybrids, multiquark/molecular mesons, ...

As yet, no exotic J^{PC} observed $(1^{-+}, 0^{+-}, 2^{+-})$

Charmonium radiative transitions

Below DD threshold radiative transitions have significant BRs

Charmonium radiative transitions

Below DD threshold radiative transitions have significant BRs

Meson – Photon coupling

Charmonium radiative transitions

Below DD threshold radiative transitions have significant BRs

Meson – Photon coupling

Charmonium (quenched) – testing method

$$C_{ij}(t_f, t, t_i) = <0|O_i(t_f)|\bar{\psi}(t)\gamma^{\mu}\psi(t)|O_j(t_i)|0>$$

Charmonium (quenched) – testing method

$$C_{ij}(t_f, t, t_i) = < 0 | O_i(t_f) \ \bar{\psi}(t) \gamma^{\mu} \psi(t) \ O_j(t_i) | 0 >$$

mm

Conventional vector – pseudoscalar transition

PR D79 094504 (2009)

Much larger than other $1^{--} \rightarrow 0^{-+} M_1$ transitions

 $\Gamma(J/\psi \to \eta_c \gamma) \sim 2 \text{ keV}$

Spectrum analysis suggests a vector hybrid (spin-singlet)

c.f. flux tube model 30 – 60 keV

Much larger than other $1^{--} \rightarrow 0^{-+} M_1$ transitions

$$\Gamma(J/\psi \to \eta_c \gamma) \sim 2 \text{ keV}$$

Spectrum analysis suggests a vector hybrid (spin-singlet)

c.f. flux tube model 30 – 60 keV

- Usually $M_1 \rightarrow spin flip (e.g. {}^3S_1 \rightarrow {}^1S_0) \rightarrow 1/m_c suppression$
- Spin-singlet hybrid → extra gluonic degrees of freedom
 → M₁ transition without spin flip → not suppressed

Same scale as many measured conventional charmonium transitions

BUT very large for an M₁ transition

$$\Gamma(J/\psi o \eta_c \gamma) \sim 2 \text{ keV}$$

Suggests a spin-triplet hybrid

Same scale as many measured conventional charmonium transitions

BUT very large for an M₁ transition

$$\Gamma(J/\psi o \eta_c \gamma) \sim$$
 2 keV

Suggests a spin-triplet hybrid

- Usually $M_1 \rightarrow spin flip (e.g. {}^3S_1 \rightarrow {}^1S_0) \rightarrow 1/m_c suppression$
- Spin-triplet hybrid → extra gluonic degrees of freedom
 → M₁ transition without spin flip → not suppressed

Same scale as many measured conventional charmonium transitions

BUT very large for an M₁ transition

$$\Gamma(J/\psi o \eta_c \gamma) \sim 2 \text{ keV}$$

Suggests a spin-triplet hybrid

- Usually $M_1 \rightarrow \text{spin flip (e.g. } {}^3S_1 \rightarrow {}^1S_0) \rightarrow 1/m_c \text{ suppression}$
- Spin-triplet hybrid → extra gluonic degrees of freedom
 → M₁ transition without spin flip → not suppressed

More charmonium results

Tensor – Vector transitions $\chi_{c2}, \chi'_{c2}, \chi''_{c2} \rightarrow J/\psi \gamma$ Identify 1³P_{2,} 1³F_{2,} 2³P₂ tensors from hierarchy of multipoles E₁, M₂, E₃

Vector – Psuedoscalar
$$J/\psi, \psi', \psi'' \to \eta_c \gamma$$

Scalar – Vector $\chi_{c0} \to J/\psi \gamma$ $\psi', \psi'' \to \chi_{c0} \gamma$
Axial – Vector $\chi_{c1}, \chi'_{c1} \to J/\psi \gamma$

Dudek, Edwards & CT, PR **D79** 094504 (2009)

Summary and Outlook

Summary

- Our first results on light mesons technology and method work
- Spin identification is possible using operator overlaps.
- First spin 4 meson extracted and confidently identified on lattice
- Exotics (and non-exotic hybrids)
- Isovectors and kaons

Summary and Outlook

Summary

- Our first results on light mesons technology and method work
- Spin identification is possible using operator overlaps
- First spin 4 meson extracted and confidently identified on lattice
- Exotics (and non-exotic hybrids)
- Isovectors and kaons

Outlook – ongoing work

- Multi-meson operators resonance physics
- Disconnected diagrams isoscalars and multi-mesons
- Baryons
- Photocouplings
- Lighter pion masses and larger volumes

Extra Slides

Kaons

Lower the light quark mass $(N_f = 2+1)$ — SU(3) sym breaking

M_{π} / MeV	700	520	440	400
M_{K}/M_{π}	1	1.2	1.3	1.4

c.f. physical $M_K/M_{\pi} = 3.5$

Kaons

Lower the light quark mass $(N_f = 2+1)$ — SU(3) sym breaking

${\rm M_\pi}$ / ${\rm MeV}$	700	520	440	400
M_V/M_{π}	1	1.2	1.3	1.4

c.f. physical $M_K/M_{\pi} = 3.5$

No longer is C-parity a good quantum number for kaons (or a gen. of C-parity)

Combine J^{P+} and J^{P-} operators

Physically, axial kaons $[K_1(1270), K_1(1400)]$ are a mixture Suggested mixing angle $\approx 45^{\circ}$ (combination of exp and models)

But...

Kaons

 M_{π}/M

 M_K/M_{\odot}

 $\mathcal{O}_{T_1^+}^{[1^{+-}]}$

No long

Combin

Physica Suggest

 16^3 $M_{\pi} \approx 400 \text{ MeV}$ $M_{K}/M_{\pi} \approx 1.4$

c.f. physical $M_K/M_{\pi} = 3.5$

or a gen. of C-parity)

odels)

But...

Kaons – Operator Overlaps

Kaons – Operator Overlaps

 $16^3 \\ M_\pi \approx 520 \; \text{MeV} \\ M_K / M_\pi \approx 1.2 \\$

 16^3 $M_{\pi} \approx 400 \text{ MeV}$ $M_{K}/M_{\pi} \approx 1.4$

Kaons – Operator Overlaps

Kaons - spectrum

Kaons – Various pion masses

Kaons – Various pion masses

