### **EMC and Polarized EMC Effects in Nuclei**

Ian Cloët Collaborators Wolfgang Bentz and Tony Thomas

September 26, 2006

# **Outline**

#### Outline

- **♦**DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

- Nuclear structure functions
  - Convolution formalism
- Nambu–Jona-Lasinio (NJL) model
  - Quark distributions
- Nucleon distributions in Nuclei
- Results
  - Quark distributions in nuclei
  - EMC effects
- Conclusion

## **Deep Inelastic Scattering**

#### ♦ Outline

#### ✤ DIS

- ♦ Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- **♦** Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions



### **Basic invariants**

$$q^{2} = (k - k')^{2} = -Q^{2} \le 0, \quad \nu = \frac{P \cdot q}{M_{A}},$$

$$x_A \equiv A \frac{Q^2}{2 M_A \nu}, \quad x = \frac{\overline{M}_N}{M_N} x_A, \quad (\overline{M}_N = M_A/A)$$

### **Hadronic Tensor**

#### Outline

**♦** DIS

- ♦ Hadronic Tensor
- ♦ Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- ♦ Quark Dis.
- ✤ Finite Density
- ✤ Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

- In Bjorken limit, assuming Callen-Gross relations (e.g.  $F_2 = 2x F_1$ )
  - For  $J = \frac{1}{2}$  target

$$W_{\mu\nu} = \left(g_{\mu\nu}\frac{P \cdot q}{q^2} + \frac{p_{\mu}p_{\nu}}{\nu}\right) F_2(x_A, Q^2) + i \frac{\varepsilon_{\mu\nu\lambda\sigma}q^{\lambda}s^{\sigma}}{\nu} g_1(x_A, Q^2)$$

For J = 1 target

$$W_{\mu\nu} = \left(g_{\mu\nu}\frac{P \cdot q}{q^2} + \frac{p_{\mu}p_{\nu}}{\nu}\right)F_2(x_A, Q^2) + i\frac{\varepsilon_{\mu\nu\lambda\sigma}q^{\lambda}s^{\sigma}}{\nu}g_1(x_A, Q^2) - r_{\mu\nu}b_1(x_A, Q^2)$$

For arbitrary J (2J + 1 structure functions)  $W^{H}_{\mu\nu} = \left(g_{\mu\nu}\frac{P \cdot q}{q^{2}} + \frac{p_{\mu}p_{\nu}}{\nu}\right)F^{JH}_{2}(x_{A},Q^{2}) + i\frac{\varepsilon_{\mu\nu\lambda\sigma}q^{\lambda}s^{\sigma}}{\nu}g^{JH}_{1}(x_{A},Q^{2})$ 

## **Quark/Probability Distributions**

#### Outline

- **♦** DIS
- Hadronic Tensor

#### ♦ Quark Dis.

- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

•  $q_s^{JH}(x_A)$ : probability to find a quark with momentum fraction  $x_A/A$  and spin-component  $s_z$  in nucleus with  $J_z = H$ .

- The familiar quark distributions are
  - $\ \, \blacklozenge \ \ \, q^{JH}(x) \ \ = q^{JH}_+(x) + q^{JH}_-(x) \ \ \, \mbox{unpolarized} \ \ \, \mbox{unpolarized} \ \ \, \end{tabular}$
  - $\label{eq:phi} \bullet \quad \Delta q^{JH}(x) = q_+^{JH}(x) q_-^{JH}(x) \quad \text{longitudinally polarized}$

### **Parton Model Structure Functions**

♦ Outline

- ♦ DIS
- Hadronic Tensor
- Quark Dis.
- ◆ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

Parton model expressions  $F_{2A}^{JH}(x) = \sum_{q} e_{q}^{2} x \left[ q_{A}^{JH}(x) + \overline{q}_{A}^{JH}(x) \right],$   $g_{1A}^{JH}(x) = \frac{1}{2} \sum_{q} e_{q}^{2} \left[ \Delta q_{A}^{JH}(x) + \Delta \overline{q}_{A}^{JH}(x) \right],$   $F_{2A}(x) \equiv \frac{1}{2J+1} \sum_{H=-J}^{J} F_{2A}^{JH}(x),$ 

$$F_2^{JH} = F_2^{J-H}, \quad g_1^{JH} = -g_1^{J-H}, \quad \left(q_s^{JH} = q_{-s}^{J-H}\right)$$

### 2J + 1 quark distributions & structure functions

# **Multipole Quark Distributions**

- Outline
- **♦** DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .

#### Multipoles

- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

Simplify analysis of DIS for target composed of nucleons.  $q_{jk}(x) \equiv \sum_{\substack{m=-j,...,j}} (-1)^{j-m} \sqrt{2k+1} \begin{pmatrix} j & j & k \\ m & -m & 0 \end{pmatrix} q^{jm}(x),$   $\Delta q_{jk}(x) \equiv \sum_{\substack{m=-j,...,j}} (-1)^{j-m} \sqrt{2k+1} \begin{pmatrix} j & j & k \\ m & -m & 0 \end{pmatrix} \Delta q^{jm}(x),$ 

Example: 
$$J = 3/2$$
  
 $q_{\frac{3}{2}0} = q^{\frac{3}{2}\frac{3}{2}} + q^{\frac{3}{2}\frac{1}{2}},$ 
 $q_{\frac{3}{2}2} = q^{\frac{3}{2}\frac{3}{2}} - q^{\frac{3}{2}\frac{1}{2}},$ 
 $\Delta q_{\frac{3}{2}1} = \frac{1}{\sqrt{5}} \left[ 3\Delta q^{\frac{3}{2}\frac{3}{2}} + \Delta q^{\frac{3}{2}\frac{1}{2}} \right],$ 
 $\Delta q_{\frac{3}{2}3} = \frac{1}{\sqrt{5}} \left[ \Delta q^{\frac{3}{2}\frac{3}{2}} - 3\Delta q^{\frac{3}{2}\frac{1}{2}} \right].$ 

## **New Sum Rules**

- Outline
- ♦ DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.
- Finite Density
- ♦ Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

### New multipole distribution sum rules

 $\int_0^A x^{n-1} q_{jk}(x) dx = 0, \quad k \text{ even}, \quad 2 \leqslant n < k,$  $\int_0^A x^{n-1} \Delta q_{jk}(x) dx = 0, \quad k \text{ odd}, \quad 1 \leqslant n < k.$ 

• Example: J = 3/2

$$\int_0^H dx \,\Delta q_{\frac{3}{2}3}(x) = 0.$$

R. L. Jaffe and A. Manohar, "Deep Inelastic Scattering From Arbitrary Spin Targets," Nucl. Phys. B **321**, 343 (1989).

# Why? — The EMC Effect



J. J. Aubert et al. [European Muon Collaboration], Phys. Lett. B 123, 275 (1983).

## **Calculation**

#### ♦ Outline

- ✤DIS
- ♦ Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why

#### Calculation

- NJL Model
- ♦ Nucleon . . .
- ♦ Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

### Definition: Nuclear quark distribution functions

$$\Delta q_A^{JH}(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{iP^+ x_A \xi^- / A} \\ \langle A, P, H | \overline{\psi}(0) \gamma^+ \gamma_5 \psi(\xi^-) | A, P, H \rangle$$

Using Convolution formalism

$$\Delta q_A^{JH}(x_A) = \sum_{\kappa,m} \int dy_A \int dx \,\,\delta(x_A - y_A \, x) \,\Delta f_{\kappa,m}^{(JH)}(y_A) \,\,\Delta q_\kappa(x) \,.$$

Diagrammatically



# **NJL Model**

- Outline
- ✤DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation

#### NJL Model

- Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

Investigate the role of quark degrees of freedom.

Low energy effective theory

Lagrangian has same symmetries as QCD:

0000000

- Importantly chiral symmetry and CSB,
  - → Dynamically generated quark masses,
- Lagrangian  $(\Gamma = Dirac, colour, isospin matrices)$

$$\mathcal{L}_{NJL} = \overline{\psi} \left( i \, \partial \!\!\!/ - m \right) \psi + G \left( \overline{\psi} \Gamma \psi \right)^2,$$

G

## Nucleon in the NJL model

- Outline
- ✤DIS
- Hadronic Tensor
- Quark Dis.
- Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- ♦ Quark Dis.
- Finite Density
- ♦ Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

- Nucleon is approximated as a quark-diquark bound state.
- We use a relativistic Faddeev approach to describe this bound state.
- First diquark bound state of two quarks:
- Solve Bethe-Salpeter equation for diquark.



We include scalar and axial-vector diquarks.

# **Nucleon quark distributions**

- ♦ Outline
- ✤DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .

#### ♦ Quark Dis.

- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

# 

q-k

$$q(x) \to \mathbf{X} = \gamma^+ \ \delta(x - \frac{k^+}{p^+})$$

• 
$$\Delta q(x) \rightarrow \mathbf{X} = \gamma^+ \gamma_5 \, \delta(x - \frac{k^+}{p^+})$$

### Formalism satisfies baryon and momentum sum rules

# $u_v(x)$ and $d_v(x)$ distributions



# $\Delta u_v(x)$ and $\Delta d_v(x)$ distributions



M. Hirai, S. Kumano and N. Saito, Phys. Rev. D 69, 054021 (2004).

# NJL Model at Finite Density

- Outline
- ✤DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.

#### Finite Density

- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

Re-calculate diagrams  $\mathcal{L} = \overline{\psi} \left( i \not \partial - M^* - \not V \right) \psi + \mathcal{L'}_I$ 

- Equivalent to:
  - Scalar field: via effective masses
  - Fermi motion: via convolution
  - Vector field: via scale transformation

Nuclear Matter (
$$\varepsilon_F = E_F + 3V_0$$
)

$$q_A(x_A) = \frac{\varepsilon_F}{E_F} q_{A0} \left(\frac{\varepsilon_F}{E_F} x_A - \frac{V_0}{E_F}\right)$$

Finite Nuclei 
$$(M_{N\kappa} = M_N - 3V_{\kappa})$$
  
 $q_{A,\kappa}(x_A) = \frac{\overline{M}_N}{\hat{M}_N} q_{A0,\kappa} \left(\frac{\overline{M}_{N\kappa}}{\hat{M}_{N\kappa}} x_A - \frac{V_{\kappa}}{\hat{M}_{N\kappa}}\right)$ 

## **Nucleon distribution functions**

#### Outline

- ✤DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

$$f_{\kappa m}(y_A) = \frac{\sqrt{2}\,\overline{M}_N}{A} \int \frac{d^3 p}{(2\pi)^3} \\ \delta(p^3 + \varepsilon_\kappa - \overline{M}_N \, y_A) \,\overline{\Psi}_{\kappa m}(\vec{p}) \, \gamma^+ \,\Psi_{\kappa m}(\vec{p}) \,,$$

Central Potential Dirac eigenfunctions  $\Psi_{\kappa m}(\vec{p}) = (-i)^{\ell} \begin{bmatrix} F_{\kappa}(p) \,\Omega_{\kappa m}(\theta,\phi) \\ -G_{\kappa}(p) \,\Omega_{-\kappa m}(\theta,\phi) \end{bmatrix},$ 

### Dirac Equation

Definition

 $\left[-i\,\vec{\alpha}\cdot\vec{\nabla}+\beta\left[M(r)-V_s(r)\right]+V_v(r)\right]\psi_\kappa(r)=\varepsilon_\kappa\,\psi_\kappa(r)$ 

## **Nucleon distributions: Results**

- ♦ Outline
- ✤DIS
- ✤ Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- **♦** Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.

### Expressions

- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

### Spin-independent nucleon distribution

$$f_{\kappa,m}(y_A) = \sum_{k=0,2,\dots,2j} (-1)^{j-m} \sqrt{2k+1} \begin{pmatrix} j & j & k \\ m & -m & 0 \end{pmatrix}$$
$$(-1)^{j+\frac{1}{2}} (2j+1)(2\ell+1)\sqrt{2k+1} \begin{pmatrix} \ell & k & \ell \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} \ell & k & \ell \\ j & s & j \end{cases}$$
$$\frac{\overline{M}_N}{16\pi^3} \int_{\Lambda}^{\infty} dp \ p \left[ F_{\kappa}(p)^2 + G_{\kappa}(p)^2 + \frac{2}{p} \left( \varepsilon_k - \overline{M}_N \ y_A \right) F_{\kappa}(p) G_{\kappa}(p) \right] P_k \left( \frac{\overline{M}_N \ y_A - \varepsilon_\lambda}{p} \right)$$

Infinite nuclear matter

$$f(y_A) = \frac{3}{4} \left(\frac{\varepsilon_F}{p_F}\right)^3 \left[ \left(\frac{p_F}{\varepsilon_F}\right)^2 - (1 - y_A)^2 \right].$$

## **Nucleon distributions:** <sup>11</sup>**B**



# **Nuclear Quark distributions**

♦ Outline

- ✤DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B

#### ♦ Nuclear Quark . . .

- EMC effect
- EMC Results
- Conclusions

### Putting it all together, an example

 $u_A^{JH}(x_A) = \sum_{\kappa,m} \left[ u_{p,\kappa}(x) \otimes f_{\kappa m}(y_A) \right] + \sum_{\kappa,m} \left[ u_{n,\kappa} \otimes f_{\kappa m}(y_A) \right]$ 

Recall

# **Up distribution in** <sup>11</sup>**B**



- ♦ DIS
- ✤ Hadronic Tensor
- ♦ Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- ✤ NJL Model
- Nucleon . . .
- ♦ Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions



# **Down distribution in** <sup>11</sup>**B**



- ♦ DIS
- ♦ Hadronic Tensor
- ♦ Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- ♦ Quark Dis.
- Finite Density
- ♦ Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B

#### ♦ Nuclear Quark . . .

- EMC effect
- EMC Results
- Conclusions



# **Spin-dependent distributions in** <sup>11</sup>**B**



# Spin-dependent 2<sup>nd</sup> multipole



Conclusions

# **EMC effect**

**EMC** ratio

#### ♦ Outline

- **♦**DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- **♦** Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .

#### EMC effect

- EMC Results
- Conclusions

$$R_{A} = \frac{F_{2A}}{F_{2A}^{\text{naive}}} = \frac{F_{2A}}{Z F_{2p} + (A - Z) F_{2n}}$$

### Polarized EMC ratio

$$R_{As}^{JH} = \frac{g_{1A}^{JH}}{g_{1A,\text{naive}}^{JH}} = \frac{g_{1A}^{JH}}{P_p^{JH} g_{1p} + P_n^{JH} g_{1n}}$$
$$R_{As}^{(J1)} = \frac{g_{1A}^{(J1)}}{P_p^{(J1)} g_{1p} + P_n^{(J1)} g_{1n}}.$$

Ratios equal 1 in non-rel. and no-medium limit.

# **EMC** ratios <sup>7</sup>Li



## **EMC** ratios <sup>11</sup>**B**



# **EMC** ratios $^{15}N$



# **EMC ratios**<sup>27</sup>**Al**



## **Nuclear Matter**



## **Conclusions**

#### Outline

- **♦** DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- **♦** Why
- Calculation
- NJL Model
- Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

- Effective chiral quark theories can be used to incorporate quarks into many-body physics.
- Binding of quarks to mean scalar and vector fields can largely explain the EMC effect.
  - Calculated the Polarized EMC effect in nuclei.
    - pEMC effect about twice EMC effect
    - Experimental conformation would yield important insights on quark dynamics in nuclear medium.

### **Spin sum rules: proton states**

- ♦ Outline
- **♦**DIS
- Hadronic Tensor
- ♦ Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.
- Finite Density
- ♦ Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

| Dis.            | $\Delta u$ | $\Delta d$ | $\Delta\Sigma$ | $g_A$ |  |
|-----------------|------------|------------|----------------|-------|--|
| free            | 0.967      | -0.300     | 0.667          | 1.267 |  |
| <sup>7</sup> Li | 0.882      | -0.280     | 0.602          | 1.162 |  |
| $^{11}B$        | 0.855      | -0.275     | 0.580          | 1.130 |  |
| $^{15}N$        | 0.833      | -0.268     | 0.565          | 1.100 |  |
| $^{27}AI$       | 0.844      | -0.271     | 0.573          | 1.116 |  |
| NM              | 0.740      | -0.253     | 0.487          | 0.990 |  |

### **Model Parameters**

#### Outline

- **♦**DIS
- Hadronic Tensor
- Quark Dis.
- Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

Free Parameters:  $\Lambda_{IR}$ ,  $\Lambda_{UV}$ ,  $M_0$ ,  $G_{\pi}$ ,  $G_s$  and  $G_a$ . Constraints:

•  $f_{\pi} = 93$  MeV,  $m_{\pi} = 140$  MeV and  $M_N = 940$  MeV

• 
$$(\rho, E_B/A) = (0.16 \, \text{fm}^{-3}, -15.7 \, \text{MeV})$$

• 
$$\int_0^1 dx \; (\Delta u_v(x) - \Delta d_v(x)) = g_A = 1.267$$

We obtain:

• 
$$\Lambda_{IR} = 240$$
 MeV,  $\Lambda_{UV} = 644$  MeV,  $M_0 = 400$  MeV

- ♦  $G_{\pi} = 19 \text{ GeV}^{-2}, G_s = 7.5 \text{ GeV}^{-2}, G_a = 2.8 \text{ GeV}^{-2}$ 
  - $M_s = 690 \text{ MeV}, M_a = 990 \text{ MeV},$

## **Quark/Probability Distributions**

#### Outline

- ✤ DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- ♦ Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

•  $q_s^{JH}(x_A)$ : probability to find a quark with momentum fraction  $x_A$  and spin-component  $s_z$  in nucleus with  $J_z = H$ .

- The familiar quark distributions are
  - $q^{JH}(x) = q^{JH}_+(x) + q^{JH}_-(x)$  unpolarized
- There are 2J + 1 independent quark distributions

## Regularization

#### ♦ Outline

- ✤DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- ♦ Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

### Proper-time regularization

$$\frac{1}{X^n} = \frac{1}{(n-1)!} \int_0^\infty d\tau \, \tau^{n-1} \, e^{-\tau \, X}$$
$$\longrightarrow \quad \frac{1}{(n-1)!} \int_{1/(\Lambda_{UV})^2}^{1/(\Lambda_{IR})^2} d\tau \, \tau^{n-1} \, e^{-\tau \, X}.$$

- *IR*-cutoff eliminates unphysical thresholds for hadrons decaying into quarks and mesons.  $\longrightarrow$  simulates confinement.
- Need this to obtain nuclear matter saturation. W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)

# **Dirac Equation**

#### Outline

- **♦**DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- Nucleon . . .
- ♦ Quark Dis.
- ✤ Finite Density
- ♦ Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

Spherically potentials:  $V_s(r)$ ,  $V^{\mu}(r) = (V_v(r), \vec{0})$  $\left[-i \vec{\alpha} \cdot \vec{\nabla} + \beta \left[M(r) - V_s(r)\right] + V_v(r)\right] \psi_{\kappa}(r) = \varepsilon_{\kappa} \psi_{\kappa}(r),$ 

Use Woods-Saxon potentials

$$S_N(r) = \frac{S_0}{1 + \exp\left(\frac{r - R_0}{a_0}\right)}, \quad V_N(r) = \frac{V_0}{1 + \exp\left(\frac{r - R_0}{a_0}\right)},$$

- Standard values:  $a_0 = 1.2 \text{ fm and } r_0 = 0.65 \text{ fm}$ , where  $R_0 = r_0 A^{1/3}$ .
- Nuclear matter:  $S_0 = -194 \text{ MeV}$  and  $V_0 = 133 \text{ MeV}$ .

# **Quark distributions in the Proton**

### Spin-independent

- Outline
- **♦**DIS
- ✤ Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- **♦** Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

$$u_{v}(x) = f_{q/P}^{s}(x) + \frac{1}{2} f_{q(D)/P}^{s}(x) + \frac{1}{3} f_{q/P}^{a}(x) + \frac{5}{6} f_{q(D)/P}^{a}(x),$$
  
$$d_{v}(x) = \frac{1}{2} f_{q(D)/P}^{s}(x) + \frac{2}{3} f_{q/P}^{a}(x) + \frac{1}{6} f_{q(D)/P}^{a}(x),$$

### Spin-dependent

$$\begin{split} \Delta \, u_v(x) &= f_{q/P}^s(x) + \frac{1}{2} \, f_{q(D)/P}^s(x) + \frac{1}{3} \, f_{q/P}^a(x) \\ &\quad + \frac{5}{6} \, f_{q(D)/P}^a(x) + \frac{1}{2\sqrt{3}} \, f_{q(D)/P}^m(x), \\ \Delta \, d_v(x) &= \frac{1}{2} \, f_{q(D)/P}^s(x) + \frac{2}{3} \, f_{q/P}^a(x) \\ &\quad + \frac{1}{6} \, f_{q(D)/P}^a(x) - \frac{1}{2\sqrt{3}} \, f_{q(D)/P}^m(x), \end{split}$$

## **Dirac Equation cont'd**

Outline

- ♦ DIS
- ✤ Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- Nucleon . . .
- ♦ Quark Dis.
- Finite Density
- Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

 $\left[-i\,\vec{\alpha}\cdot\vec{\nabla}+\beta\left[M(r)-V_s(r)\right]+V_v(r)\right]\psi_\kappa(r)=\varepsilon_\kappa\,\psi_\kappa(r),$ 

### Nucleon mass and vector potential

$$M_{N\kappa} = \int d^3r \,\psi_{\kappa}^{\dagger}(r) \,M_N(r)\psi_{\kappa}(r),$$
$$V_{N\kappa} = \int d^3r \,\psi_{\kappa}^{\dagger}(r) \,V_N(r)\psi_{\kappa}(r).$$

• Example <sup>12</sup>C (All units are in MeV.)

| $\kappa$ | Level               | Energy     | $M_N$      | $V_N$         |
|----------|---------------------|------------|------------|---------------|
| -1<br>-2 | $s_{1/2} \ p_{3/2}$ | 908<br>925 | 793<br>828 | 100.8<br>76.5 |
|          | $p_{1/2}$           | 927        | 829        | 76.0          |

### **Interaction Lagrangians**

- ♦ Outline
- ✤DIS
- Hadronic Tensor
- Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- ♦ Why
- Calculation
- NJL Model
- Nucleon . . .
- ♦ Quark Dis.
- Finite Density
- ♦ Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

Using Fierz transformation can decompose  $\mathcal{L}_I$  into sum of qq interaction terms.

$$\mathcal{L}_{I,s} = G_s \left( \overline{\psi} \gamma_5 C \tau_2 \beta^A \overline{\psi}^T \right) \left( \psi^T C^{-1} \gamma_5 \tau_2 \beta^A \psi \right),$$
$$\mathcal{L}_{I,a} = G_a \left( \overline{\psi} \gamma_\mu C \vec{\tau} \tau_2 \beta^A \overline{\psi}^T \right) \left( \psi^T C^{-1} \gamma_\mu \vec{\tau} \tau_2 \beta^A \psi \right).$$

### Solving BS equation gives

$$\begin{aligned} \tau_s(q) &= \frac{4iG_s}{1+2\,G_s\,\Pi_s(q^2)} &\longrightarrow 4iG_s - \frac{ig_s}{q^2 - M_s^2 + i\varepsilon} \\ \tau_a^{\mu\nu}(q) &= 4\,i\,G_a\,\left[g^{\mu\nu} - \frac{2G_a\Pi_a(q^2)}{1+2G_a\Pi_a(q^2)}\left(g^{\mu\nu} - \frac{q^\mu\,q^\nu}{q^2}\right)\right], \\ &\longrightarrow 4\,i\,G_a\,-\frac{ig_a}{q^2 - M_a^2}\left(g^{\mu\nu} - \frac{q^\mu q^\nu}{M_a^2}\right) \end{aligned}$$

# **The Quark Distributions** f(x) and $\Delta f(x)$ .

#### ♦ Outline

#### ✤DIS

- Hadronic Tensor
- ♦ Quark Dis.
- ♦ Parton Model . . .
- Multipoles
- New Sum Rules
- **♦** Why
- Calculation
- NJL Model
- ♦ Nucleon . . .
- ♦ Quark Dis.
- Finite Density
- ♦ Nucleon Dis.
- Expressions
- ♦ Nucleon Dis. <sup>11</sup>B
- ♦ Nuclear Quark . . .
- EMC effect
- EMC Results
- Conclusions

$$q(x) = p_{-} \int \frac{d\xi^{-}}{2\pi} e^{i x p^{+} \xi^{-}} \langle p, s | \overline{\psi}(0) \gamma^{+} \psi(\xi^{-}) | p, s \rangle_{c},$$
$$\Delta q(x) = p_{-} \int \frac{d\xi^{-}}{2\pi} e^{i x p^{+} \xi^{-}} \langle p, s | \overline{\psi}(0) \gamma^{+} \gamma_{5} \psi(\xi^{-}) | p, s \rangle_{c}.$$

### Can show

Formally

$$f(x) = -i \int \frac{d^4k}{(2\pi)^4} \delta(x - \frac{k^+}{p^+}) \operatorname{Tr} \left[\gamma^+ M(p, k)\right],$$
$$\Delta f(x) = -i \int \frac{d^4k}{(2\pi)^4} \delta(x - \frac{k^+}{p^+}) \operatorname{Tr} \left[\gamma^+ \gamma_5 M(p, k)\right].$$