Progresses with
 Transverse Momentum Distributions

Alessandro Bacchetta
Jeffer son Lsyur felowship

Outline

Outline

- Some words about the relevance of TMDs

Outline

- Some words about the relevance of TMDs
- Some theory

Outline

- Some words about the relevance of TMDs
- Some theory
- Unpolarized TMDs

Outline

- Some words about the relevance of TMDs
- Some theory
- Unpolarized TMDs
- Sivers function (as an example of all other TMDs)

Outline

- Some words about the relevance of TMDs
- Some theory
- Unpolarized TMDs
- Sivers function (as an example of all other TMDs)
- Other TMDs

Some of EIC goals

Some of EIC goals

- Understand CONFINEMENT

Some of EIC goals

- Understand CONFINEMENT
- Study the structure of the proton (3D STRUCTURE, SPIN, FLAVOR...)

Some of EIC goals

- Understand CONFINEMENT
- Study the structure of the proton (3D STRUCTURE, SPIN, FLAVOR...)
- Test QCD in all its aspects (FACTORIZATION, EVOLUTION, LATTICE,...)

Some of EIC goals

- Understand CONFINEMENT
- Study the structure of the proton (3D STRUCTURE, SPIN, FLAVOR...)
- Test QCD in all its aspects (FACTORIZATION, EVOLUTION, LATTICE,...)

TMDs physics touches all this points

3D structure of the nucleon

3D structure of the nucleon

- 3D structure $=$ GPDs in impact parameter space

3D structure of the nucleon

- 3D structure $=$ GPDs in impact parameter space
- In general, parton distributions are 6 dimensional (Wigner distributions)

3D
 structure of the nucleon

- 3D structure $=$ GPDs in impact parameter space
- In general, parton distributions are 6 dimensional (Wigner distributions)
- 3 dim. in coordinate space (GPDs)

3D
 structure of the nucleon

- 3D structure = GPDs in impact parameter space
- In general, parton distributions are 6 dimensional (Wigner distributions)
- 3 dim . in coordinate space (GPDs)
- 3 dim. in momentum space (TMDs)
X. Ji, PRL 91 (03), see talk by M. Schlegel for even more dim. (8), see Collins, Rogers, Stasto, PRD77 (08)

6D structure of the nucleon

- 3D structure $=$ GPDs in impact parameter space
- In general, parton distributions are 6 dimensional (Wigner distributions)
- 3 dim . in coordinate space (GPDs)
- 3 dim. in momentum space (TMDs)
X. Ji, PRL 91 (03), see talk by M. Schlegel for even more dim. (8), see Collins, Rogers, Stasto, PRD77 (08)

New dimensions

Transverse position

Transverse momentum

QCDSF/UKQCD, PRL 98 (07)

A.B., F. Conti, M. Radici, in preparation

Momentum distributions

Fig. 6. Chemical bonding in momentum space. In the top panel we show the momentum density distribution of the bonding orbital for a hydrogen molecule oriented along the x axis. As the electrons become more delocalized along the x axis the distribution becomes narrower along the p_{x} axis. At large distances the electrons probe the attractive potential of two protons screened by one electron. The resulting momentum distribution for the bonding orbital is then between those of the $1 s$ orbital of the hydrogen atom and the $1 s$ orbital of helium. The antibonding orbital peaks at larger momentum values and thus has more kinetic energy.

Fig. 7. Experimental momentum-density profiles for the hydrogen atom, the hydrogen molecule and the helium atom. The curves are calculated from the exact solution of the Schrödinger equation for the hydrogen atom and SCF approximations for the two-electron cases. The data are arbitrarily normalized to the same zero-momentum value.

Vos, McCarthy, Am. J. Phys. 65 (97)

Momentum distributions

Fig. 6. Chemical bonding in momentum space. In the top panel we show the momentum density distribution of the bonding orbital for a hydrogen molecule oriented along the x axis. As the electrons become more delocalized along the x axis the distribution becomes narrower along the p_{x} axis. At large distances the electrons probe the attractive potential of two protons screened by one electron. The resulting momentum distribution for the bonding orbital is then between those of the $1 s$ orbital of the hydrogen atom and the $1 s$ orbital of helium. The antibonding orbital peaks at larger momentum values and thus has more kinetic energy.

Fig. 7. Experimental momentum-density profiles for the hydrogen atom, the hydrogen molecule and the helium atom. The curves are calculated from the exact solution of the Schrödinger equation for the hydrogen atom and SCF approximations for the two-electron cases. The data are arbitrarily normalized to the same zero-momentum value.

Vos, McCarthy, Am. J. Phys. 65 (97)

In scattering experiments, measuring momentum distributions is the closest we get to "imaging" a quantum object

Theory background

SIDIS

SIDIS cross section

$$
\begin{aligned}
& \overline{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}} \\
& =\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right. \\
& \quad+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& \quad+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& \quad+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right. \\
& \quad+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}} \\
& \left.\quad+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.\left.\quad+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

SIDIS cross section

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}} F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right) \\
& =\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right. \\
& \quad+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& \quad+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& \quad+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right. \\
& \quad+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}} \\
& \left.\quad+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.\left.\quad+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

High and low transverse momentum

$$
\begin{aligned}
Q & =\text { photon virtuality } \\
M & =\text { hadron mass } \\
P_{h \perp} & =\text { hadron transverse momentum } \quad q_{T}^{2} \approx P_{h \perp}^{2} / z
\end{aligned}
$$

High and low transverse momentum

$$
\begin{aligned}
Q & =\text { photon virtuality } \\
M & =\text { hadron mass } \\
P_{h \perp} & =\text { hadron transverse momentum } \quad q_{T}^{2} \approx P_{h \perp}^{2} / z
\end{aligned}
$$

High and low transverse momentum

$$
\begin{aligned}
Q & =\text { photon virtuality } \\
M & =\text { hadron mass } \\
P_{h \perp} & =\text { hadron transverse momentum } \quad q_{T}^{2} \approx P_{h \perp}^{2} / z
\end{aligned}
$$

High and low transverse momentum

$$
\begin{aligned}
Q & =\text { photon virtuality } \\
M & =\text { hadron mass } \\
P_{h \perp} & =\text { hadron transverse momentum } \quad q_{T}^{2} \approx P_{h \perp}^{2} / z
\end{aligned}
$$

High and low transverse momentum

$$
\begin{aligned}
Q & =\text { photon virtuality } \\
M & =\text { hadron mass } \\
P_{h \perp} & =\text { hadron transverse momentum } \quad q_{T}^{2} \approx P_{h \perp}^{2} / z
\end{aligned}
$$

High and low transverse momentum

$$
\begin{aligned}
Q & =\text { photon virtuality } \\
M & =\text { hadron mass } \\
P_{h \perp} & =\text { hadron transverse momentum } \quad q_{T}^{2} \approx P_{h \perp}^{2} / z
\end{aligned}
$$

High and low transverse momentum

$$
\begin{aligned}
Q & =\text { photon virtuality } \\
M & =\text { hadron mass } \\
P_{h \perp} & =\text { hadron transverse momentum } \quad q_{T}^{2} \approx P_{h \perp}^{2} / z
\end{aligned}
$$

High and low transverse momentum

$$
\begin{aligned}
Q & =\text { photon virtuality } \\
M & =\text { hadron mass } \\
P_{h \perp} & =\text { hadron transverse momentum } \quad q_{T}^{2} \approx P_{h \perp}^{2} / z
\end{aligned}
$$

Predictions in intermediate region

observable	low- q_{T} calculation			high- q_{T} calculation			powers match
	twist	order	power	twist	order	power	
$F_{U U, T}$	2	α_{s}	$1 / q_{T}^{2}$	2	α_{s}	$1 / q_{T}^{2}$	yes
$F_{U U, L}$	4			2	α_{s}	$1 / Q^{2}$?
$F_{U U}^{\cos \phi_{h}}$	3	α_{s}	$1 /\left(Q q_{T}\right)$	2	α_{s}	$1 /\left(Q q_{T}\right)$	yes
$F_{U U}^{\cos 2 \phi_{h}}$	2	α_{s}	$1 / q_{T}^{4}$	2	α_{s}	$1 / Q^{2}$	no
$F_{L U}^{\sin \phi_{h}}$	3	α_{s}^{2}	$1 /\left(Q q_{T}\right)$	2	α_{s}^{2}	$1 /\left(Q q_{T}\right)$	yes
$F_{U L}^{\sin \phi_{h}}$	3	α_{s}^{2}	$1 /(Q q T)$?
$F_{U L}^{\sin 2 \phi_{h}}$		α_{s}	$1 / q_{T}^{4}$				
$F_{L L}$	2	α_{s}	$1 / q_{T}^{2}$	2	α_{s}	$1 / q_{T}^{2}$	yes
$F_{L L}^{\cos \phi_{h}}$	3	α_{s}	$1 /\left(Q q_{T}\right)$	2	α_{s}	$1 /\left(Q q_{T}\right)$	yes
$F_{U T, T}^{\sin \left(\phi_{n}-\phi_{s}\right)}$	2	α_{s}	$1 / q_{T}^{3}$	3	α_{s}	$1 / q_{T}^{3}$	yes
$F_{U T, L}^{\sin \left(\phi_{h}-\phi_{s}\right)}$	4			3	α_{s}	$1 /\left(Q^{2} q_{T}\right)$?
$F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}$	2	α_{s}	$1 / q_{T}^{3}$	3	α_{s}	$1 / q_{T}^{3}$	yes
$F_{U T}^{\sin \left(3 \phi_{h}-\phi_{s}\right)}$	2	α_{s}^{2}	$1 / q_{T}^{3}$	3	α_{s}	$1 /\left(Q^{2} q_{T}\right)$	no
$F_{U T}^{\sin \phi_{S}}$	3	α_{s}	$1 /\left(Q q_{T}^{2}\right)$	3	α_{s}	$1 /\left(Q q_{T}^{2}\right)$	yes
$F_{U T}^{\sin \left(2 \phi_{h}-\phi_{s}\right)}$	3	α_{s}	$1 /\left(Q q_{T}^{2}\right)$	3	α_{s}	$1 /\left(Q q_{T}^{2}\right)$	yes
$F_{L T}^{\cos \left(\phi_{h}-\phi_{s}\right)}$	2	α_{s}	$1 / q_{T}^{3}$?
$F_{L T}^{\text {cos } \phi_{S}}$		α_{s}	$1 /\left(Q q_{T}^{2}\right)$				
$F_{L T}^{\cos \left(2 \phi_{h}-\phi_{s}\right)}$		α_{s}	$1 /\left(Q q_{T}^{2}\right)$?

k_{T} factorization

$$
\begin{aligned}
& F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}\left[f_{1} D_{1}\right] \\
& =\int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right) \\
& \quad x \sum_{a} e_{a}^{2} f_{1}^{a}\left(x, p_{T}^{2}, \mu^{2}\right) D_{1}^{a}\left(z, k_{T}^{2}, \mu^{2}\right) U\left(l_{T}^{2}, \mu^{2}\right) H\left(Q^{2}, \mu^{2}\right)
\end{aligned}
$$

Collins, Soper, NPB 193 (81) Ji, Ma, Yuan, PRD 71 (05)

k_{T} factorization

$$
F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}\left[f_{1} D_{1}\right]
$$

$$
=\int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right)
$$

TMD PDF
TMD FF Soft factor
Hard part
Collins, Soper, NPB 193 (81)
Ji, Ma, Yuan, PRD 71 (05)

Collins-Soper evolution equations

$\zeta \frac{\partial}{\partial \zeta} \mathcal{Q}\left(x, k_{\perp}, x \zeta\right)=\int[K+G] \otimes \mathcal{Q}\left(x, k_{\perp}, x \zeta\right)$
$\zeta \frac{\partial}{\partial \zeta} \mathcal{Q}(x, b, x \zeta)=[K(b, \mu, \rho)+G(x \zeta, \mu, \rho)] \times \mathcal{Q}(x, b, x \zeta)$
k_{T} space
b space

Collins, Soper, NPB 193 (81)
Ji, Ma, Yuan, PRD 70 (04)

Fig 3 Broadening of the Q_{T} distribution
Collins, Soper, Sterman, talk at Fermilab Workshop on Drell-Yan Process, Batavia, Ill., Oct 7-8, 1982

Collins-Soper evolution equations

$$
\begin{aligned}
\zeta \frac{\partial}{\partial \zeta} \mathcal{Q}\left(x, k_{\perp}, x \zeta\right) & =\int[K+G] \otimes \mathcal{Q}\left(x, k_{\perp}, x \zeta\right) & & \text { kT space } \\
\zeta \frac{\partial}{\partial \zeta} \mathcal{Q}(x, b, x \zeta) & =[K(b, \mu, \rho)+G(x \zeta, \mu, \rho)] \times \mathcal{Q}(x, b, x \zeta) & & \text { b space }
\end{aligned}
$$

Collins, Soper, NPB 102

Fig 3 Broadening of the Q_{T} distribution

Collins, Soper, Sterman, talk at Fermilab Workshop on Drell-Yan
Process, Batavia, Ill., Oct 7-8, 1982

Resummation

$$
F_{U U, T}\left(x, z, b, Q^{2}\right)=x \sum_{a} e_{a}^{2}\left(f_{1}^{i} \otimes \mathcal{C}_{i a}\right)\left(\mathcal{C}_{a j} \otimes D_{1}^{j}\right) e^{-S_{\text {nonpert. }}} e^{-S_{\text {pert. }}}
$$

The calculation automatically fulfills ${ }^{\text {C }}$ Collins-Soper evolution and requires:

- collinear PDFs
- calculable pQCD contributions
- nonperturbative part of TMDs

Here we measure hadronic properties

Resummation results

http://hep.pa.msu.edu/resum/index.html

Resummation results

http://hep.pa.msu.edu/resum/index.html

Resummation results

http://hep.pa.msu.edu/resum/index.html

Resummation results

http://hep.pa.msu.edu/resum/index.html

Resummation results

http://hep.pa.msu.edu/resum/index.html

Resummation results

Most studies done for Drell-Yan
http://hep.pa.msu.edu/resum/index.html

Theoretical activity

Theoretical activity

- Issues related to k_{T}-factorization in $p p$ collisions

Collins, Qiu, PRD75 (07)
Qiu,Vogelsang, Yuan, PRD76 (07)
Bomhof, Mulders, Pijlman, A.B., PRD72 (05)

Theoretical activity

- Issues related to k_{T}-factorization in $p p$ collisions

Collins, Qiu, PRD75 (07)
Qiu,Vogelsang, Yuan, PRD76 (07)
Bomhof, Mulders, Pijlman, A.B., PRD72 (05)

- Issues related to resummation in other structure functions

Boer, Vogelsang, PRD74 (06)
Berger, Qiu, Rodriguez-Pedraza, PRD76 (07)
A.B., Boer, Diehl, Mulders, 0803.0227

Theoretical activity

- Issues related to k_{T}-factorization in $p p$ collisions

Collins, Qiu, PRD75 (07)
Qiu,Vogelsang, Yuan, PRD76 (07)
Bomhof, Mulders, Pijlman, A.B., PRD72 (05)

- Issues related to resummation in other structure functions

Boer, Vogelsang, PRD74 (06)
Berger, Qiu, Rodriguez-Pedraza, PRD76 (07)
A.B., Boer, Diehl, Mulders, 0803 กาค

Unpolarized TMDs

Nonperturbative transverse momentm

$$
F_{U U, T}\left(x, z, b, Q^{2}\right)=x \sum_{a} e_{a}^{2}\left(f_{1}^{i} \otimes \mathcal{C}_{i a}\right)\left(\mathcal{C}_{a j} \otimes D_{1}^{j}\right) e^{-S_{\text {nonpert. }}} e^{-S_{\text {pert. }} .}
$$

The nonperturbative part has to be fitted to data Usually assumed to be Gaussian

Available extractions

- In b space

$$
\begin{aligned}
& \left.\exp \left[-g_{2} b^{2} \ln \left(\frac{Q}{2 Q_{0}}\right)-g_{1} b^{2}+g_{1} g_{3} b^{2} \ln \left(100 x_{A} x_{B}\right)\right)\right] \\
& g_{1}=0.21 \pm 0.01 \mathrm{GeV}^{2} \\
& g_{2}=0.68 \pm 0.02 \mathrm{GeV}^{2} \\
& g_{3}=-0.60{ }_{-0.04}^{+0.05} \mathrm{GeV}^{2} \\
& Q_{0}=1.6 \mathrm{GeV}
\end{aligned}
$$

Brock, Landry, Nadolsky, Yuan, PRD67 (03)

Is it sufficient?

$f_{1}^{d}\left(\mathbf{x}, \mathrm{p}_{\mathrm{T}}^{2}\right)$

Simple model calculation suggests

- flavor dependence
- deviation from a simple Gaussian (required also by orbital angular momentum)

EIC tasks

EIC tasks

- Gain better knowledge of the nonperturbative part (also for fragmentation functions)

EIC tasks

- Gain better knowledge of the nonperturbative part (also for fragmentation functions)
- Flavor separation (also for fragmentation functions)

EIC tasks

- Gain better knowledge of the nonperturbative part (also for fragmentation functions)
- Flavor separation (also for fragmentation functions)
- Unintegrated gluon distribution function

EIC tasks

- Gain better knowledge of the nonperturbative part (also for fragmentation functions)
- Flavor separation (also for fragmentation functions)
- Unintegrated gluon distribution function
- Global fits with unintegrated PDFs

EIC tasks

- Gain better knowledge of the nonperturbative part (also for fragmentation functions)
- Flavor separation (also for fragmentation functions)
- Unintegrated gluon distribution function
- Global fits with unintegrated PDFs
- Cleaner information from jet-SIDIS?

Longitudinal spin

Everything can be done also with helicity TMDs

Longitudinal spin

Everything can be done also with helicity TMDs

Longitudinal spin

Everything can be done also with helicity TMDs

Impossible to reproduce using simple Gaussians

Sivers function

Formalism

$$
F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\mathcal{C}\left[-\frac{\boldsymbol{p}_{T} \cdot \hat{h}}{M} f_{1 T}^{\perp}\left(x, p_{T}^{2}, \mu^{2}\right) D_{1}\left(z, k_{T}^{2}, \mu^{2}\right)\right]
$$

Formalism

$$
F_{U T, T}^{\sin \left(\phi_{\boldsymbol{h}}-\phi_{S}\right)}=\mathcal{C}\left[-\frac{\boldsymbol{p}_{T} \cdot \hat{h}}{M} f_{1 T}^{\perp}\left(x, p_{T}^{2}, \mu^{2}\right) D_{1}\left(z, k_{T}^{2}, \mu^{2}\right)\right]
$$

- Collins-Soper evolution always required. Not only for the Sivers function, but also for D_{1}

Formalism

$$
F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\mathcal{C}\left[-\frac{\boldsymbol{p}_{T} \cdot \hat{h}}{M} f_{1 T}^{\perp}\left(x, p_{T}^{2}, \mu^{2}\right) D_{1}\left(z, k_{T}^{2}, \mu^{2}\right)\right]
$$

- Collins-Soper evolution always required. Not only for the Sivers function, but also for D_{1}
- We are far from the sofistication reached for Fuu

Weighted asymmetries

Weighted asymmetries

- Not clear if it's possible to recover DGLAP-like evolution equations for Sivers, but certainly for D_{1}

Weighted asymmetries

$\left\langle\frac{P_{h \perp}}{z} \sin \left(\phi_{h}-\phi_{S}\right)\right\rangle=-x \sum_{a} e_{a}^{2} f_{1 T}^{\perp(1)}\left(x, \mu^{2}\right) D_{1}\left(z, \mu^{2}\right)$

- Not clear if it's possible to recover DGLAP-like evolution equations for Sivers, but certainly for D_{1}
- It's important that the structure function falls fast enough with transv. mom.

Sivers function - Torino

"Symmetric sea"
Free fit

Anselmino et al., 0805.2677

Sivers function - Bochum

FIGURE 7. The $x f_{1 T}^{\perp(1) a}(x)$ vs. x as extracted from preliminary HERMES and COMPASS data [10, 11]. (a) The flavours u and \bar{u}. (b) The flavours d and \bar{d}. (c) The flavours s and \bar{s} that were fixed to \pm positivity bounds (17) for reasons explained in Sec. 7, see also Eqs. (18, 19). The shaded areas in (a) and (b) show the respective $1-\sigma$-uncertainties.

Limits of the analyses

Limits of the analyses

- Evolution equations neglected (will be very relevant at EIC)

Limits of the analyses

- Evolution equations neglected (will be very relevant at EIC)
- Limited x range (EIC can improve on both sides)

Limits of the analyses

- Evolution equations neglected (will be very relevant at EIC)
- Limited x range (EIC can improve on both sides)
- 173 data points (cf. 467 points in Δq fits)

Gluon Sivers function

M. Burkardt, PRD69 (04)

Gluon Sivers function

$$
\text { for } \int_{0}^{4}
$$

M. Burkardt, PRD69 (04)

- Based on the Burkardt sum rule, the gluon Sivers function is claimed to be small

Gluon Sivers function

M. Burkardt, PRD69 (04)

- Based on the Burkardt sum rule, the gluon Sivers function is claimed to be small
- Limited x range

Gluon Sivers function

M. Burkardt, PRD69 (04)

- Based on the Burkardt sum rule, the gluon Sivers function is claimed to be small
- Limited x range
- There could be nodes in the function

Gluon Sivers function

M. Burkardt, PRD69 (04)

- Based on the Burkardt sum rule, the gluon Sivers function is claimed to be small
- Limited x range
- There could be nodes in the function
- Connection with orbital angular momentum is not straightforward

EIC tasks

EIC tasks

- Provide more data

EIC tasks

- Provide more data
- Measure weighted asymmetries

EIC tasks

- Provide more data
- Measure weighted asymmetries
- Extend x, Q range

EIC tasks

- Provide more data
- Measure weighted asymmetries
- Extend x, Q range
- Demand theory improvements

EIC tasks

- Provide more data
- Measure weighted asymmetries
- Extend x, Q range
- Demand theory improvements
- Explore gluon Sivers function

Connection with
orbital angular momentum

Connection with orbital angular momentum

- There is no direct connection between Sivers function and OAM

Connection with orbital angular momentum

- There is no direct connection between Sivers function and OAM
- Several TMD observables can help constrain models with OAM see also next talk by H. Avakian

Connection with orbital angular momentum

- There is no direct connection between Sivers function and OAM
- Several TMD observables can help constrain models with OAM see also next talk by H. Avakian
- Global effort to put together GPDs and TMDs information is required

Other observables

Leading-twist functions

Leading-twist functions

- There are 8 leading-twist TMDs

Leading-twist functions

- There are 8 leading-twist TMDs
- There are 8 leading-twist structure functions where the PDFs are connected with either D_{1} or Collins function

Leading-twist functions

- There are 8 leading-twist TMDs
- There are 8 leading-twist structure functions where the PDFs are connected with either D_{1} or Collins function
- 4 can be studies also through jet-SIDIS without fragmentation functions

EIC tasks

EIC tasks

- It's difficult to choose the most relevant measurements at the moment

EIC tasks

- It's difficult to choose the most relevant measurements at the moment
- Shall EIC measure them all?

$$
\begin{aligned}
& \text { see COMPASS Coll. } 0705.2402 \\
& \text { see also next talks }
\end{aligned}
$$

Post Scripłum

- I did not mention the issue of AdS/ QCD correspondence

see work of Brodsky, de Teramond

- EIC can map a new dimension: the distribution of parton in transverse momentum space
- EIC can map a new dimension: the distribution of parton in transverse momentum space
- It's a new dimension also in terms of theoretical complexity and offers new tests of QCD
- EIC can map a new dimension: the distribution of parton in transverse momentum space
- It's a new dimension also in terms of theoretical complexity and offers new tests of QCD
- With present experiments and phenomenology, we just scratched the surface
- EIC can map a new dimension: the distribution of parton in transverse momentum space
- It's a new dimension also in terms of theoretical complexity and offers new tests of QCD
- With present experiments and phenomenology, we just scratched the surface
- EIC will be a precision machine for TMDs

