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Momentum distributions
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Fig. 6. Chemical bonding in momentum space. In the top panel we show the
momentum density distribution of the bonding orbital for a hydrogen mol-
ecule oriented along the x axis. As the electrons become more delocalized
along the x axis the distribution becomes narrower along the p, axis. At
large distances the electrons probe the attractive potential of two protons
screened by one electron. The resulting momentum distribution for the
bonding orbital is then between those of the 1s orbital of the hydrogen atom
and the 1s orbital of helium. The antibonding orbital peaks at larger mo-
mentum values and thus has more kinetic energy.
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Fig. 7. Experimental momentum-density profiles for the hydrogen atom, the
hydrogen molecule and the helium atom. The curves are calculated from the
exact solution of the Schrodinger equation for the hydrogen atom and SCF
approximations for the two-electron cases. The data are arbitrarily normal-
ized to the same zero-momentum value.

Vos, McCarthy, Am. |. Phys. 65 (97)
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is the closest we get to “imaging” a quantum obiject
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SIDIS cross section
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Predictions in intermediate region

observable

low-gp calculation

twist order  power

high-g7 caleulation

twist order

power powers match
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kT factorization
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kT factorization
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Collins-Soper evolution equations

&
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_ Fermilab Workshop on Drell-Yan
Fig 3 Broadening of the Q, distribution PTOC@SS, Batavia, Ill, Oct 7_8, 1982
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Collms Soper NPB 1927

TMDs ar®
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Resummation

FUU,T(CIZ‘, 2, b, QQ) =z Z ei (ff ® Cia) (Caj ® D{) ¢~ Snonpert. .~ Spert.

The calculation automatically fulfills Collins-Soper evolution and requires:

e collinear PDFs

® calculable pQCD contributions
* nonperturbative part of TMDs
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Here we test pQCLC
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Unpolarized TMDs




Nonperturbative transverse momentm

The nonperturbative part has to be fitted to data
Usually assumed to be Gaussian




Available extractions

*In b space

exp [—ggb2 In (%) — g1b” + g193b” In(100x 40 )
0

g1 = 0.21 £ 0.01 GeV?,

g0 = 0.68 £0.02 GeV?,

gz = —0.60T51; GeV2,

Qo = 1.6 GeV 111 data points
(Drell-Yan)

Brock, Landry, Nadolsky, Yuan, PRD67 (03)




s it sufficient®

04 o
p} (GeV/c)
Simple model calculation suggests
e flavor dependence
e deviation from a simple Gaussian (required

also by orbital angular momentum)
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Flavor separation (also for fragmentation
functions)

Unintegrated gluon distribution function

Global fits with unintegrated PDFs

Cleaner information from jet-SIDIS?
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Everything can be done also with helicity TMDs

up, x=0.02 down, x=0.02

Signs of orbital ang. mom.

0.4
p% (GeV/c)

Impossible to reproduce using simple Gaussians
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Formalism

sin — D ]Az
Fop ¢S)=C[ L fir(z, p7, W?) D1 (2, k7, i)

M

e Collins-Soper evolution always required.
Not only for the Sivers function, but also

for Dj

e We are far from the sofistication reached
for Fuu




Weighted asymmetries




Weighted asymmetries

<PZL sin(¢n — ¢s) > = —51526 fir (@, 1*) D1 (2, p?)

e Not clear if it’s possible to recover
DGLAP-like evolution equations for
Sivers, but certainly for D;




Weighted asymmetries

e Not clear if it’s possible to recover
DGLAP-like evolution equations for
Sivers, but certainly for D;

e |t's important that the structure function
talls fast enough with transv. mom.




ivers function - Torino

“Symmetric sea” Free fit

X

Amnselmino et al., 0805.2677




Sivers function - Bochum

FIGURE7. Thex #1]‘1{1) vs. x as extracted from prelimmary HERMES and COMPASS data [10, 11].

(a) The flavours # and 7. (b) The flavours 4 and 4. (¢) The flavours s and T that were fixed to & positivity
bounds (17) for reasons explained m Sec. 7, see also Eqs. (18, 19). The shaded areas in (a) and (b) show

the respective 1-g-uncertainties.

Arnold et al. ,0805.2137
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Limits of the analyses

e Evolution equations neglected (will be
very relevant at EIC)

e Limited x range (EIC can improve on
both sides)

e 173 data points (cf. 467 points in Aqg fits)
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Gluon Sivers function

1 L L2
S [l =0, with f50) = [k (e )
a=q.q.9

M. Burkardt, PRD69 (04)

Based on the Burkardt sum rule, the gluon
Sivers function is claimed to be small

Limited x range
There could be nodes in the function

Connection with orbital angular momentum
is not straightforward
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EIC tasks

Provide more data

Measure weighted asymmetries
Extend x, Q range

Demand theory improvements

Explore gluon Sivers function
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Connection with
orbital angular momentum

¢ There is no direct connection between
Sivers function and OAM

e Several TMD observables can help
constrain models with OAM
see also next talk by H. Avakian

e Global effort to put together GPDs and
TMDs information is required
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Leading-twist functions

e There are 8 leading-twist TMDs

e There are 8 leading-twist structure
functions where the PDFs are connected

with either D; or Collins function

e 4 can be studies also through jet-SIDIS
without fragmentation functions
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EIC tasks

o [t's difficult to choose the most relevant
measurements at the moment

e Shall EIC measure them all?

see COMPASS Coll. 0705.2402
see also next talks




e | did not mention the issue of AdS/

QCD correspondence

see work of Brodsky, de Teramond
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EIC can map a new dimension: the
distribution of parton in transverse
momentum space

It's a new dimension also in terms of

theoretical complexity and offers new tests of
QCD

With present experiments and

phenomenology, we just scratched the surface

EIC will be a precision machine for TMDs




