Parton flavor separation at large fractional momentum

Alberto Accardi Hampton U. & Jefferson Lab

Outline

Introduction

- Quark, gluons and nucleons
- Parton distributions
- 🗢 Global fits

Why large fractional momentum (x)

Up and down: the CTEQ6X fit

Gluons, intrinsic charm

Outlook: the Electron-Ion Collider

Quarks, gluons and nucleons

Hadrons are made of quarks

• 6 flavors (and 3 colors):

up, down, strange – light charm, bottom, top – heavy

confined in colorless hadrons

- mesons 2 quarks
- baryons 3 quarks
- tetraquarks (?)
- pentaquarks (???)

Nucleons are made of 3 quarks...

Fractional momentum:

 $x = \frac{p_{\text{parton}}^+}{p_{\text{nucleon}}^+}$

$$p^{\pm} = \frac{1}{\sqrt{2}}(p_0 \pm p_3)$$

accardi@jlab.org

Nucleons are made of 3 quarks...

Fractional momentum:

$$p^{\pm} = \frac{1}{\sqrt{2}}(p_0 \pm p_3)$$

accardi@jlab.org

... and gluons, sea quarks ...

Fractional momentum:

$$p^{\pm} = \frac{1}{\sqrt{2}}(p_0 \pm p_3)$$

accardi@jlab.org

... and gluons, sea quarks ...

Fractional momentum:

 $x = \frac{p_{\text{parton}}^+}{p_{\text{nucleon}}^+}$

$$p^{\pm} = \frac{1}{\sqrt{2}}(p_0 \pm p_3)$$

accardi@jlab.org

... spinning and orbiting around !

... but this is another story ...

Probing the nucleon parton structure

♦ Need a large momentum transfer $Q^2 = q_\mu q^\mu$ to resolve the parton structure

• Example 1: Deep Inelastic Scattering (DIS)

 $Q^2 = p_{\gamma,Z}^2$

Probing the nucleon parton structure

Need a large momentum transfer $Q^2 = q_{\mu}q^{\mu}$ to resolve the parton structure

Example 2: Drell-Yan lepton pair creation (DY)

$$Q^2 = (p_\ell + p_{\bar{\ell}})^2$$

Probing the nucleon parton structure

Need a large momentum transfer $Q^2 = q_{\mu}q^{\mu}$ to resolve the parton structure

Example 3: jet production in p+p collisions

 $Q^2 = E_{jet}^2$

Factorization of hard scattering processes

Factorization of hard scattering processes

Hard scattering, computable in pQCD – e.g., in DIS (at Leading Order)

PDF – field theoretical definition (at Leading Order)

 $arphi_q(x) = \int rac{dz^-}{2\pi} e^{iz^-k^+} \langle p | \bar{\psi}(z^-n) rac{\gamma \cdot \overline{n}}{2} \psi(0) | p
angle$

Global PDF fits

Problem: we need a set of PDFs in order to calculate a particular hard-scattering process

Solution:

- Choose a data set for a choice of different hard scattering processes
- Generate PDFs using a parametrized functional form at initial scale Q_0 ; evolve them from Q_0 to any Q using DGLAP evolution equations
- Use the PDF to compute the chosen hard scatterings
- Repeatedly vary the parameters and evolve the PDFs again
- Obtain an optimal fit to a set of data.

Examples: CTEQ6.6, MRST2008 for unpolarized protons DSSV, LSS for polarized protons

For details, see J. Owens' lectures at the 2007 CTEQ summer school

Global PDF fits as a tool

Test new theoretical ideas

🔸 e.g., constrain amount of intrinsic charm

Phenomenology explorations

e.g., can CDF / HERA "excesses" be at all due to glue/quark underestimate at large x?

Test / constrain models

- *e.g.*, by extrapolating d/u at x=1
- Possibly, constrain nuclear corrections

Limitations

- 🔹 existing data
- experimental errors
- theoretical errors

Large uncertainties in quark and gluon PDF at x > 0.4 - e.g., CTEQ6.1

PDF errors

- propagation of exp. errors into the fit
- statistical interpretation
- reduced by enlarging the data set
- Theoretical errors
 - often poorly known
 - difficult to quantify
 - 🔶 can be dominant

Large uncertainties in quark and gluon PDF at x > 0.4

Precise PDF at large x are needed, e.g.,

- 🔶 at LHC, Tevatron
 - 1) QCD background in high-mass new physics searches
 - 2) Lumi monitoring at high mass (*Z*,*W* cross-section)
 - Example: Z' production

 $M_{Z'} \gtrsim 200 \; {
m GeV} \quad x = {m_T \over \sqrt{s}} e^y$

 $x \ge 0.02$ (LHC), 0.1 (Tevatron)

accardi@jlab.org

Large uncertainties in quark and gluon PDF at x > 0.4

Precise PDF at large x are needed, e.g.,

- 🔶 at LHC, Tevatron
 - 1) QCD background in high-mass new physics searches
 - Lumi monitoring at high mass (Z,W cross-section)

accardi@jlab.org

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔹 at LHC, Tevatron
 - 1) QCD background in high-mass new physics searches
 - 2) Luminosity monitoring at high-mass *Z*, *W* cross sections
 - → non-perturbative nucleon structure e.g., d/u at $x \rightarrow 1$

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔹 at LHC, Tevatron
 - 1) QCD background in high-mass new physics searches
 - 2) Luminosity monitoring at high-mass *Z*, *W* cross sections
 - ▶ non-perturbative nucleon structure e.g., $\Delta u/u$, $\Delta d/d$ at $x \rightarrow 1$

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - ➡ at LHC, Tevatron
 - 1) QCD background in high-mass new physics searches
 - 2) Luminosity monitoring at high-mass *Z*, *W* cross sections
 - non-perturbative nucleon structure
 - spin structure of the nucleon at small x

 $\sigma(p\vec{p}\to\pi^0 X)\propto\Delta q(x_1)\Delta g(x_2)\hat{\sigma}^{qg\to qg}\otimes D_q^{\pi^0}(z)$

$$x_1 \sim \frac{p_T}{\sqrt{s}} e^y$$
$$x_2 \sim \frac{p_T}{\sqrt{s}} e^{-y}$$

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - ➡ at LHC, Tevatron
 - 1) QCD background in high-mass new physics searches
 - 2) Luminosity monitoring at high-mass *Z*, *W* cross sections
 - non-perturbative nucleon structure
 - spin structure of the nucleon at small x

$$\sigma(p\vec{p} \to \pi^0 X) \propto \Delta q(x_1) \Delta g(x_2) \hat{\sigma}^{qg \to qg} \otimes D_q^{\pi^0}(z)$$

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - ✤ at LHC, Tevatron
 - 1) QCD background in high-mass new physics searches
 - 2) Luminosity monitoring at high-mass *Z*, *W* cross sections
 - non-perturbative nucleon structure
 - spin structure of the nucleon at small x
 - 🔶 neutrino oscillations

Why large x ...and low Q²?

JLab and SLAC have precision DIS data at large x, BUT low Q^2

need of theoretical control over

- 1) higher twist $\propto \Lambda^2/Q^2$
- 2) target mass corrections (TMC) $\propto x_B^2 m_N^2/Q^2$ 3) heavy-quark mass corrections $\propto m_Q^2/Q^2$
- 4) nuclear corrections
- 5) jet mass corrections (JMC) $\propto m_i^2/Q^2$
- 6) large-x resummation
- 7) large-*x* DGLAP evolution
- 8) quark-hadron duality
- 9) parton recombination at <u>large x</u>
- 10) perturbative stability at low- Q^2

11) ...

this talk

Up and down: the CTEQ6X fit

Accardi, Christy, Keppel, Melnitchouk, Monaghan, Morfín, Owens, Phys. Rev. D 81, 034016 (2010)

Collaboration and goals

JLab / Fermilab/ Florida State U. collaboration

- A. Accardi, E. Christy, <u>C. Keppel</u>, W. Melnitchouk,
 P. Monaghan, S.Malace, <u>J. Morfín</u>, <u>J. Owens</u>
- Initial Goals:
 - Extend PDF global fits to larger values of x_B and lower values of Q
 - Wealth of data from older SLAC experiments and newer Jlab, DY
 - ✤ see if PDF errors can be reduced using new JLAB data

CTEQ6X vs. CTEQ

CTEQ

 $Q^2 \ge 4 \text{ GeV}^2$ $W^2 \ge 12.25 \text{ GeV}^2$

not so large x, not too low Q²
hope 1/Q² corrections not large

CTEQ6X

TMC, HT, deuteron corrections

Progressively lower the cuts:

	Q^2	W^2
	$[GeV^2]$	$[GeV^2]$
CTEQ = cut0	4	12.25
$\operatorname{cut1}$	3	8
${ m cut}2$	2	4
${ m cut}3$	1.69	3

Better large-x, low-Q² coverage

CTEQ6X vs. CTEQ

CTEQ

 $Q^2 \ge 4 \text{ GeV}^2$ $W^2 \ge 12.25 \text{ GeV}^2$

not so large x, not too low Q²
hope 1/Q² corrections not large

CTEQ6X

TMC, HT, deuteron corrections

Progressively lower the cuts:

	Q^2	W^2
	$[GeV^2]$	$[GeV^2]$
CTEQ = cut0	4	12.25
$\operatorname{cut1}$	3	8
${ m cut}2$	2	4
${ m cut}3$	1.69	3

Better large-x, low-Q² coverage

Target mass corrections

♦ Nachtmann variable: $\xi = \frac{2x_B}{1 + \sqrt{1 + 4x_B^2 m_N^2/Q^2}} < 1 \text{ at } x_B = 1$

Standard Georgi-Politzer (OPE) [Georgi, Politzer 1976; see review by Schienbein et al. 2007] [see also Leader, d'Alesio, Murgia, 2009]

→ leads to non-zero structure functions at $x_B > 1$ (!)

Collinear factorization [Accardi, Qiu, JHEP 2008; Accardi, Melnitchouk 2008] Structure fns as convolutions of parton level structure fns and PDF

 $F_{T,L}(x_B, Q^2, m_N) = \sum_f \int_{\xi} \frac{\xi}{x_B} \frac{dx}{x} h_{T,L}^f\left(\frac{\xi}{x}, Q^2\right) \varphi_f(x, Q^2)$

respects kinematic boundaries

• **\xi-scaling**, uses CF with $x_{max} = 1$ [Aivazis et al '94; Kretzer, Reno '02]

 $F_{T,L}^{nv}(x_B, Q^2, m_N) \equiv F_T^{(0)}(\xi, Q^2)$

 \Rightarrow leads to non-zero structure functions at $x_B > 0$ (!)

accardi@jlab.org

"Higher-Twists" parametrization

• Parametrize by a multiplicative factor (same for *p* and *n*, for simplicity):

$$F_2(data) = F_2(TMC) \times \left(1 + \frac{C(x_B)}{Q^2}\right)$$

with

$$C(x_B) = a x^b \left(1 + c x\right)$$

Important: C(x_B) includes

- \clubsuit dynamical higher-twists (parton correlations, e.g., $\langle p|ar{\psi}D_AD_A\psi|p
 angle$)
- all uncontrolled power corrections:
 - $\sqrt{1}$ TMC model uncertainty, Jet Mass Corrections
 - $\sqrt{}$ NNLO corrections (power-like at small Q)
 - $\sqrt{1}$ large-x resummation

√ ...

Deuterium corrections

Reference fit vs. CTEQ6.1

Reference fit:

- cut0, no corrections
- → PDF errors with $\Delta \chi = 1$

	data	CTEQ6.1
DIS	(JLab)	NO
	SLAC	NO
	NMC	\checkmark
	BCDMS	
	H1	
	ZEUS	
DY	E605	
	E866	NO
W	CDF '98 (ℓ)	
	CDF '05 (ℓ)	NO
	D0 '08 (<i>l</i>)	NO
	D0 '08 (e)	NO
	CDF '09 (W)	NO
jet	CDF	\checkmark
	D0	\checkmark
$\gamma+\mathrm{jet}$	D0	NO

CTEQ6X vs CTEQ6.1

CTEQ6X fit: 🔶 cut3, TMC+HT deuteron corrections TMC, HT compensate each other ✤ u-quark: 🔶 almost unchanged d-quark suppressed due to deuteron corrections Reduced PDF errors ✤ about 30-50%

CTEQ6X vs CTEQ6.1

Deuterium corrections

d-quarks are very sensitive to deuterium corrections

 Off-shell corrections completely absorbed by the d-quark

free	= free p+n
dens	= density model corrections
nuc	= WBA smearing model
offsh	= off-shell corrections
	[Melnitchouk et al '94]

Impact on LHC

Parton luminosities: $L_{i,j}(M) = \frac{1}{S} \int_{M^2/s}^{1} \frac{dx}{x} q_i(x, M^2) q_j(M^2/(xs), M^2)$

Nuclear model uncertainty ~10% at large x:
 dominates Z cross-sections used as luminosity monitor

- exp = experimental
- RS = renorm. scale
- MC = charm mass
- TS = charm threshold
- SS = strangeness suppr.

d-quarks at large x

Large theoretical undertainties on *d*-quark at large x

- coming from deuteron corrections
 (no deuteron ⇒ d unconstrained at large x)
- unavoidable at the moment: model dependent

How to progress?

- Avoid them
 - Free nucleon targets → not enough data so far

Constrain them

- Q^2 dependence of D/p ratios at large x (maybe)
- Use quasi-free nucleon targets
- Use ratio of ³He ³H mirror nuclei

Free nucleon targets

Constraints on large-x d-quarks from

 \Rightarrow *p*+*p*(*bar*) : <u>DY at large *x*_{*F*}</u>

→ p+p(bar): W-asymmetry at large rapidity $p p(\bar{p}) \longrightarrow W^{\pm} X$ [D0 and CDF]

- v+p and v-bar+p
 - <u>WA21 already has data</u> (but hard to reconstruct cross-sections from published "quark distributions")
 - MINERvA with a hydrogen target
- Parity Violating DIS *
 - L/R electron asymmetry $\Rightarrow \gamma/Z$ interference $\propto d/u$
- Charged current structure functions
 [H1 and ZEUS]

 $p p(\bar{p}) \longrightarrow \mu^+ \mu^- X$ $m m(\bar{p}) \longrightarrow W^{\pm} V$

 $\nu(\bar{\nu}) p \longrightarrow l^{\pm} X$

 $\vec{e}_L(\vec{e}_R) p \longrightarrow e X$

* planned for Jlab at 12 GeV

 $e p \longrightarrow \nu X$

accardi@jlab.org

HERA combined data

[JHEP 1001,2010]

→ H1 and ZEUS combined data on e^+ -p and e^- -p collisions, NC & CC

HERA combined data

[JHEP 1001,2010]

These data alone insufficient for *d*-quark at large *x*

combine with deuterium data, cross check nuclear corrections

accardi@jlab.org

Constraining the nuclear corrections

Quasi-free nucleon targets * [BONUS, E94-102 and EG6 at JLab 6 GeV]

$$eA \longrightarrow e(A-1)X$$

³He - ³H mirror nuclei *

 $\frac{{}^{3}H}{{}^{3}He} \approx \frac{n}{p} \frac{2+p/n}{2+n/p}$

* planned for Jlab at 12 GeV

Observables for gluons

- Jets in *p*+*p* collision CT09
 - limited statistics
 - \rightarrow only very large Q^2 , and smallish x
- $\Rightarrow dF_2 / d(\ln Q^2)$
 - 🔶 indirect
 - limited leverage at large x, large errors

Longitudinal F_L

- directly sensitive to gluons
- 🔶 so far not many data points
- → JLab / JLab12 will improve large-*x* coverage, but low Q²

F_L – HT and perturbative stability

- HT for F_L have little constraints from theory, some guidance from renormalon calculations
 - Perturbatively unclear at large x
 - When fitted, large at NLO, decrease at NNLO
- "The high x and low Q² domain is 'dangerous'. This is another reason, along with target mass, to avoid fitting data in this region"

[Martin, Stirling, Thorne, PLB635(06)]

Should we dare more?

[see e.g., Alekhin et al., arXiv:0710.0124]

Target Mass Corrections

> Difference between Coll. Fact. [Accardi,Qiu] and OPE [Georgi,Politzer] for F_2

 \rightarrow different slope in $Q^2 \Rightarrow$ different gluons from $dF_2/d(\ln Q^2)$!

Target Mass Corrections

- **Very different F**_L correction
 - Can the differences be absorbed in HT terms ?
 - → Play F_L and F_2 off each other ⇒ can differentiate TMC method ??

Intrinsic charm

Intrinsic vs. radiative charm

Usual assumption in global fits: at threshold

Pumplin, PRD73(06), Brodky et al., PRD73(06) + references teherein

 $c(x,Q_c\approx m_c)=0$

charm generated during DGLAP evolution

2-2005 8711A82

- \Rightarrow a c-cbar pair fluctuation already exists, peaked at large $x \sim 0.4$
- fully participates in DGLAP evolution

c, cbar asymmetry: small @ NLO (pQCD) or large (nonpert. models)
accardi@jlab.org
Pavia U., 13 Jul 2010

Phenomenological implications

- SM and beyond at **Tevatron and LHC**
 - Higgs and single top production sensitive to heavy quarks
 - Novel Higgs production mechanisms at large $x_F \approx 0.7-0.9$ [Brodsky et al. PRD73(06), NPB907(09)]

p

[Nadolsky et al. PRD78(08)]

Indications from global fits

[Pumplin, Lai, Tung, PRD75(07)]

• 3 models at $\mu = m_c$

[see Pumplin PRD 73(06) for review of models]

1) Brodsky-Hoyer-Peterson-Sakai [PLB 93 (80)]

 $c(x) = \bar{c}(x)$ = $A x^2 \left[6x(1+x) \ln x + (1-x)(1+10x+x^2) \right]$

2) meson-cloud model
 [Navarra et al '96, '98;
 Melnitchouk,Steffens,Thomas '97,'99]

 $c(x) = Ax^{1.897}(1-x)^{6.095}$ $\bar{c}(x) = \bar{A}x^{2.511}(1-x)^{4.929}$

3) phenomenological "sea-like"

 $c(x) = \bar{c}(x) \propto \bar{d}(x) + \bar{u}(x)$

Indications from global fits

[Pumplin, Lai, Tung, PRD75(07)]

- All models allow IC = 0-3% intrinsic charm
 - Evolution redistributes IC to lower x, but large-x peak persists
 - sea-like spread out over x

Experimental evidence - D0

D0 measured excess of γ +charm jets compared CTEQ6.6 [D0, PRL102(09)] $g + Q \rightarrow \gamma/Z + Q$

$q+\bar{q}\to \gamma/Z+g\to \gamma/Z+Q\bar{Q}$

How to measure - hadronic collisions

$\rightarrow \gamma/Z$ + charm jet

- \Rightarrow sensitive to $g + Q \rightarrow \gamma/Z + Q$ and $q + \bar{q} \rightarrow \gamma/Z + g \rightarrow \gamma/Z + Q\bar{Q}$
- $\Rightarrow y_{\gamma}y_{jet} > 0 \text{ and } y_{\gamma}y_{jet} < 0 \text{ sensitive to different } x_1, x_2$
- allows constraints on Q, Qbar, and gluons
- angular dependence to distinguish above sub-processes

Also,

- High $x_F \ pp \to J/\psi X$
- High $x_F \ pp \rightarrow J/\psi J/\psi X$
- High $x_F \ pp \to \Lambda_c X$
- High $x_F \ pp \to \Lambda_b X$
- High $x_F pp \rightarrow \Xi(ccd)X$ (SELEX)

PANDA Workshop Turin June 17, 2009 NovelAnti-Proton QCD Physics

35

Stan Brodsky SLAC

accardi@jlab.org

How to measure – DIS

HERA charm and bottom events

- already included in the fits
- \Rightarrow most data at small x, where $\gamma g \rightarrow c\bar{c}$ dominates over $\gamma c \rightarrow c X$
- ✤ needs larger x

JLab 6/12

- Ideally placed across the charm threshold
- → D+ vs. D- sensitive to c/cbar asymetry

EIC (LHeC ??)

- jet measurements are possible
- → larger *Q*² range than Jlab, larger *x* than HERA

Target and heavy-quark mass corrections

DIS in collinear factorization: [Accardi, Qiu JHEP '08]

currently being revisited

$$F_{T,L}(x_B, Q^2, m_N) = \sum_f \int_{x_f^{min}}^{x_f^{max}} \frac{dx}{x} h_{T,L}^f \left(\frac{\xi_f}{x}, Q^2\right) \varphi_f(x, Q^2)$$

$$\xi_{f} = \xi \left[1 - \frac{\xi^{2}}{x^{2}} \frac{m_{f}^{2}}{Q^{2}} \right]^{-1} \xrightarrow{m_{f} \to 0} \xi \xrightarrow{M_{N} \to 0} x_{B}$$

$$\begin{split} x_f^{min} &= \xi \frac{Q^2 + (c-1)m_f^2 + \Delta[m_f^2, -Q^2, cm_f^2]}{2Q^2} & \stackrel{m_f \to 0}{\longrightarrow} \xi & \stackrel{M_N \to 0}{\longrightarrow} x_B \\ x_f^{max} &= \xi \frac{Q^2/x_B + 3m_f^2 + \Delta[m_f^2, -Q^2, Q^2(1/x_B - 1)]}{2Q^2} & \stackrel{m_f \to 0}{\longrightarrow} \xi/x_B & \stackrel{M_N \to 0}{\longrightarrow} 1 \\ \Delta[a, b, c] &= \sqrt{a^2 + b^2 + c^2 - 2(ab + bc + ca)} & \xi = 2x_B/(1 + \sqrt{1 + 4x_B^2 M_N^2/Q^2}) \end{split}$$

Outlook: the Electron-Ion Collider

The EIC for dummies

Future US-based e+p (e+A) collider – 2 designs:

→ BNL - eRHIC: $E_e = 5-30 \text{ GeV} \quad E_p = 250 \text{ GeV} \quad \pounds \sim 10^{34} \text{ cm}^{-2}/\text{s}^{-1}$

→ Jlab – MEIC:

 $E_e = 3-11 \text{ GeV} \quad E_p = 60 \text{ GeV} \quad \pounds \sim 10^{34} \text{ cm}^{-2}/\text{s}^{-1}$

The EIC for dummies

Future US-based e+p (e+A) collider – 2 designs:

→ BNL – eRHIC: $E_e = 5-30 \text{ GeV} \quad E_p = 250 \text{ GeV} \quad \pounds \sim 10^{34} \text{ cm}^{-2}/\text{s}^{-1}$

✤ Jlab – MEIC:

MEIC will probe lower x in the shadowing region, and higher Q^2 at large x.

Projected Results - F2^p Relative Uncertainty

[•] MEIC 4+60

• 1 year of running (26 weeks) at 50% efficiency, or 230 fb⁻¹

Solid lines are statistical errors, dotted lines are stat+syst in quadrature

For MeRHIC the luminosity is probably down by a factor of ~ 10 , so these error bars will go up $\sim 50\%$

Huge improvement in Q^2 coverage and uncertainty

Will, for instance, greatly aid global pdf fitting efforts

Projected Results - F2^d Relative Uncertainty

[•] MEIC 4+30

•1 year of running (26 weeks) at 50% efficiency, or 35 fb⁻¹

Even with a factor 10 less statistics for the deuteron the improvement compared to NMC is impressive

EIC will have excellent kinematics to measure n/p at large x!

Impact on global fits

Sensible reduction in PDF error, likely larger than shown if energy scan is performed

accardi@jlab.org

Structure functions at the EIC

Bread and butter: inclusive DIS

- \circ Detailed rates: F₂ and F_L, p and D
- charm and bottom str.fns.?
- Impact on global fits: large-x, small-x and saturation

• Electroweak structure functions

flavor separation, charge symmetry violation, new spin str.fns.
requires high luminosity – needed rates under study

• Spectator tagging will open up an exciting physics program

- Ongoing detector design angular & momentum resolution
- Rate estimates needed
- p vs. n tagging:
 - "effective" neutron target
 - control nuclear effects on an "effective" proton
- Tagging with ⁴He targets ???
 - EMC effect

accardi@jlab.org

Conclusions

☆ Flavor separation at large x important

- to understand the nucleon structure
- for phenomenological applications
- ☆ but needs theoretical corrections
 - target/hadron/quark mass, HT, nuclear corrections, ...
- ★ u, d quarks: ongoing CTEQ6X studies
- **Gluons:** will be included in the CTEQ6X global fit
- * Intrinsic charm: interesting direction for the future
- ★ Lots of progress available at the EIC

The future is bright ... and busy!

Effects of corrections on reference fit

- Apply the theoretical corrections one at a time
- 2 important lessons:
 - cut0 removes TMC+HT (as desired)
 - nuclear corrections are large starting from x > 0.5 !! ("safe cuts" aren't safe everywhere)

Stability of the d-quark fit

Relatively stable against kinematic cuts, but

- the d-quark suppression is lessened by the less restrictive cuts
- \Rightarrow effect still sizable at x=0.5–0.7 in the nominal range of validity of cut0

TMC vs HT

Extracted twist-2 PDF much less sensitive to choice of TMC

- fitted HT function compensates the TMC
- except when no TMC is included

Inclusion of TMC allow for economical HT parametrization (3 params)

TMC vs HT

Extracted higher-twist term depends on the type of TMC used

 \Rightarrow $Q^2 > 1.69 \text{ GeV}^2$ and $W^2 > 3 \text{ GeV}^2$ (referred to as "cut03")

→ lower cuts \Rightarrow x_B < 0.85 compared to x_B < 0.7 in CTEQ/MRST

➡ No evidence for negative HT

accardi@jlab.org

Off-shell corrections

d-quark is strongly correlated to choice of Off-Shell correction ! \Rightarrow on-shell or mild off-shell correction \Rightarrow d-quark suppression might as well be enhanced...

accardi@jlab.org

Experimental uncertainties: PDF errors

- > PDF errors at large x are reduced by lowering the cuts
 - Note: these are exp. errors propagated in the fit
 - nuclear correction uncertainty for d-quarks likely larger than this!

Quasi-free nucleon targets

BONUS and E94-102 experiments at JLab

DIS on deuterium with tagged proton

- tagged proton momentum is measured
- neutron off-shellness can be reconstructed

Study the <u>off-shell dependence</u> of $F_2(n)$ and quark PDFs

 $q \equiv q_D(x, Q^2, p^2)$

<u>Extrapolate</u> to a free neutron target $p^2 \rightarrow M_n^2$

- Strong Q² dependence of nuclear smearing
 - \Rightarrow use fixed x_{B} data up to larger Q^{2}
 - \rightarrow needs resonance region \Rightarrow quark-hadron duality
 - off-shell corrections can't be constrained

Projected Results IIa - F₂^p with CTEQ6X PDFs

 $E_e = 4 \text{ GeV}, E_p = 60 \text{ GeV}$ (s = 1000)- larger s (~4000 MeRHIC, or ~2500 MEIC) would cost luminosity

• 0.004 < y < 0.8

Luminosity ~ 3 x 10³⁴

 1 year of running (26 weeks) at 50% efficiency, or 230 fb-1

Somewhat smaller Q² reach and large luminosity is better choice at large x, $\sigma \sim (1-x)^3$

accardi@jlab.org

Pavia U., 13 Jul 2010

Projected Results IIb - F₂^d

Pavia U., 13 Jul 2010