Hadron structure at large x

Alberto Accardi

Hampton U. & Jefferson Lab

ECT*, Trento 26 May 2009

Why large x (and low- Q^2)

- Target Mass Corrections in collinear factorization
 - \Rightarrow F₂, F_L, g₁ DIS structure functions
 - 🗢 SIDIS preliminary
- Jet mass corrections
- Global PDF fits at large x
 TMC, Higher Twist, Nuclear Corrections
 unpolarized PDFs
- What can break the Wandzura-Wilczek relation?
 g₂ and twist-3 quark-gluon correlations
- Summary and outlook

Why large-x, low-Q²?

Large uncertainties in quark and gluon PDF at x > 0.5 - e.g., CTEQ6

accardi@jlab.org

Large uncertainties in quark and gluon PDF at x > 0.5

Precise PDF at large x are needed, e.g.,

- 🔶 at LHC, Tevatron
 - 1) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - 2) New physics as excess in large- p_T spectra \Leftrightarrow large x PDF

Example: Z' production

 $M_{Z'} \gtrsim 200 \; ext{GeV} \quad x = rac{m_T}{\sqrt{s}} e^y$ $x \ge 0.02 \; (ext{LHC}), \; 0.1 \; (ext{Tevatron})$

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔶 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - → d/u ratio at $x=1 \Leftrightarrow$ non-perturbative structure of the nucleon

accardi@jlab.org

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔶 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - → d/u ratio at $x=1 \Leftrightarrow$ non-perturbative structure of the nucleon
 - spin structure of the nucleon most spin at large-x, but also, e.g.,

 $\sigma(p\vec{p}\to\pi^0 X)\propto \Delta q(x_1)\Delta g(x_2)\hat{\sigma}^{qg\to qg}\otimes D_q^{\pi^0}(z)$

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔶 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - → d/u ratio at $x=1 \Leftrightarrow$ non-perturbative structure of the nucleon
 - spin structure of the nucleon most spin at large-x, but also, e.g.,

 $\sigma(p\vec{p} \to \pi^0 X) \propto \Delta q(x_1) \Delta g(x_2) \hat{\sigma}^{qg \to qg} \otimes D_q^{\pi^0}(z)$

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🟓 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - \Rightarrow d/u ratio at $x=1 \Leftrightarrow$ non-perturbative structure of the nucleon
 - spin structure of the nucleon

JLab has precision DIS data at large $x_{\rm B}$, BUT low Q^2

- need of theoretical control over
 - 1) higher twist $\propto \Lambda^2/Q^2$
 - 2) target mass corrections (TMC) $\propto x_B^2 m_N^2/Q^2$ 3) jet mass corrections (JMC) $\propto m_j^2/Q^2$

 - 4) nuclear corrections
 - 5) large-x resummation, quark hadron duality, ...

accardi@jlab.org

Target mass corrections

Accardi, Qiu, JHEP '08 Accardi, Melnitchouk, PLB '08

OPE and Target Mass Corrections

[Georgi, Politzer 1976; see review of Schienbein et al. 2007]

$$\int d^4z \, e^{-iq \cdot z} \langle N | T[j^{\dagger \mu}(z)j^{\nu}(0)] | N \rangle = \sum_k f^{\mu_1 \dots \mu_{2k}} A_{2k} \langle N | \underbrace{\mathcal{O}_{\mu_1 \dots \mu_{2k}}(0)}_{\text{symmetric, traceless}} | N \rangle$$

$$A_{2k} = \int_0^1 dy \, y^{2k} F(y) \quad F(y) \sim \frac{1}{y^2} \sum_q e_q^2 q(y) \text{ (at LO)} = \text{``quark function'}$$

OPE and Target Mass Corrections

[Georgi, Politzer 1976; see review of Schienbein et al. 2007]

$$\int d^4z \, e^{-iq \cdot z} \langle N|T[j^{\dagger \mu}(z)j^{\nu}(0)]|N\rangle = \sum_k f^{\mu_1 \dots \mu_{2k}} A_{2k} \langle N|\underbrace{\mathcal{O}_{\mu_1 \dots \mu_{2k}}(0)}_{\text{symmetric, traceless}}|N\rangle$$

$$A_{2k} = \int_0^1 dy \, y^{2k} F(y) \quad F(y) \sim y^2 \sum_q e_q^2 q(y) \text{ (at LO)} = \text{``quark function''}$$

Mellin transform, sum, transform back:

- ◆ <u>Threshold problem</u>: $x_B \le 1$ implies $0 \le \xi \le \xi_{th} \stackrel{\text{\tiny def}}{=} \xi(x_B = 1)$
 - Inverse Mellin transform does not give back F(y) !! [Johnson, Tung 1979]

→ <u>Unphysical region</u>: $F(y) \sim F_2(y)$ has support over 0 < y < 1→ $F_2^{GP}(x_B) > 0$ also for $x_B > 1$!!

accardi@jlab.org

ECT*, 26 May 2009

Collinear factorization - outline

Target Mass Corrections – $O(x_B^2 m_N^2/Q^2)$

- momentum space, <u>no need of Mellin transf.</u>
- kinematics of handbag diagram
 - \Rightarrow <u>no "unphysical region"</u> at $x_B > 1$ (!!)
- \Rightarrow any order in α_s at leading twist
- ♦ Jet Mass Corrections $O(m_j^2/Q^2)$
 - The current jet is not a massless parton...

Kinematics with $m_N \neq 0$

Factorization theorem with $m_N \neq 0$

 $\textbf{F} \text{ Expand around } \quad \tilde{k}^{\mu} = xp^{+}\overline{n}^{\mu} \qquad \tilde{k}^{2} = 0 \qquad \tilde{x}_{f} = \frac{-q^{2}}{2\tilde{k} \cdot q} = \frac{\xi}{x}$

perturbative: doesn't know about the target's mass

dynamical TMC only from nucleon w.f.

• Helicity structure functions F_T , F_L projected out of $W^{\mu\nu}$: e.g.,

 $F_T(x_B, Q^2) = \sum_f \int \frac{dx}{x} h_{fT}(\tilde{x}_f, Q^2) \varphi_{f/N}(x, Q^2) + O(\Lambda^2/Q^2)$ $= \xi/x$

no kinematic prefactors [Aivazis, Olness, Tung 1994]

Kinematic constraints

igstarrow General handbag diagram – on shell gluons and light quarks ($\widetilde{k}^2=0$):

Proof (can be generalized to heavy and off-shell quarks – and nuclei)

$$q \qquad p_{j} \qquad p_{j} \qquad p_{j} \geq 0 \qquad \Longrightarrow \quad \tilde{x}_{f} \leq 1 \quad \longleftrightarrow \quad x \geq \xi$$

$$p_{Y} \qquad p_{Y} \geq m_{N}^{2} \implies \tilde{x}_{f} \leq x_{B} \quad \longleftrightarrow \quad x \leq \xi/x_{B}$$
net baryon number

If net baryon number appears in the upper blob (not for pQCD quarks) $\frac{x_B}{1 + x_B m_N^2/Q^2} \le \tilde{x}_f \le \frac{1}{1 + m_N^2/Q^2}$

accardi@jlab.org

ECT*, 26 May 2009

No unphysical region!

TMC in collinear factorization:

$$F_T(x_B, Q^2) = \sum_f \int_{\xi}^{\underbrace{\xi}} \frac{dx}{x_B} \frac{dx}{x} h_{fT}\left(\frac{\xi}{x}, Q^2\right) \varphi_f(x, Q^2)$$

 $F_T(x_B, Q^2) = 0$ at $x_B > 1$

• Bjorken limit $m_N^2/Q^2 \rightarrow 0$ recovers "**massless**" structure functions ($m_N=0$)

$$F_T(x_B, Q^2) \longrightarrow F_T^{(0)}(x_B, Q^2) \equiv \sum_f \int_{x_B}^1 \frac{dx}{x} h_{fT}\left(\frac{x_B}{x}, Q^2\right) \varphi_f(x, Q^2)$$

Different from the "naive" collinear factorization TMC [Aivazis et al '94 Kretzer, Reno '02] $F_T^{nv}(x_B, Q^2) \equiv F_T^{(0)}(\xi, Q^2) = \sum_f \int_{\xi}^{1} \frac{dx}{x} h_{fT}\left(\frac{\xi}{x}, Q^2\right) \varphi_{f/N}(x, Q^2)$ which does not vanish at $x_B > 1$

accardi@jlab.org

Target mass corrections – F2 at NLO

Accardi, Qiu, JHEP 0807

$$F_2^{nv}(x_B) = \frac{1}{1 + 4x_B^2 \frac{m_N^2}{Q^2}} \frac{x_B}{\xi} F_2^{(0)}(\xi)$$

Target mass corrections – σ_L/σ_T at NLO

Accardi, Qiu, JHEP 0807

ECT*, 26 May 2009

Accardi, Melnitchouk, PLB 670 (08) 114

TMC for virtual photon asymmetries (leading twist):

$$g_1(x_B) = \frac{1}{1+\gamma^2} \sum_f \int_{\boldsymbol{\xi}} \frac{\boldsymbol{\xi}}{x_B} \frac{dx}{x} g_{1,f}^{(0)} \left(\frac{\boldsymbol{\xi}}{x}, Q^2\right) \Delta \varphi_f(x, Q^2)$$
$$A_1(x_B) = \frac{1+\gamma^2}{F_1(x_B)} g_1(x_B)$$
polarized PDF

with $\gamma^2 = 4x_B^2 \frac{m_N^2}{Q^2}$

Polarized DIS at LO

Accardi, Melnitchouk, PLB 670 (08) 114

Polarized DIS at LO

Accardi, Melnitchouk, PLB 670 (08) 114

 \Rightarrow Precision measurements of A_1 at JLAB requires both A_{\parallel} and A_{\perp}

ECT*, 26 May 2009

Unpolarized SIDIS at LO

Accardi, Hobbs, Melnitchouk, in progress

Large corrections at Jefferson Lab! (because of large-x, mostly)

ECT*, 26 May 2009

Jet mass corrections

Accardi, Qiu, JHEP '08

Jet smearing at LO

Jet smearing at LO

connection with lattice QCD ?

- Rigorously after some toil:
 - → $J_m(m_j^2)$ is the spectral function of a vacuum quark propagator, smeared by soft momentum exchanges with the target jet

accardi@jlab.org

Estimate of Jet Mass Corrections

Estimate of Jet Mass Corrections

Global PDF fits

Work in progress with: E.Christy, C.Keppel, W.Melnitchouk, P.Monaghan, J.Morfín, J.Owens

Factorization of hard scattering processes

Global PDF fits

Problem: we need a set of PDFs in order to calculate a particular hard-scattering process

Solution:

- generate PDFs using a parametrized functional form at a given initial scale Q₀ and evolving it at any Q.
- Choose a data set for a choice of different hard scattering processes
- Repeatedly vary the parameters and evolve the PDFs again
- Obtain an optimal fit to a set of data.
- Examples: CTEQ6.1, MRST2002 for unpolarized protons DSSV, LSS for polarized protons

For details, see J. Owens' lectures at the 2007 CTEQ summer school

Collaboration and goals

JLab / CTEQ collaboration: cteqX

A. Accardi, E. Christy, C. Keppel, W. Melnitchouk, P. Monaghan, J. Morfín, J. Owens

Initial Goals:

 \Rightarrow Extend PDF global fits to larger values of x_B and lower values of Q

Wealth of data from older SLAC experiments and newer Jlab, DY

see if PDF errors can be reduced using new JLAB data

Global fit details

We are using Jeff Owens' NLO DGLAP fitting package

- \Rightarrow use CTEQ6.1 parametrization of PDFs at $Q_0 = 1.3$ GeV
- Can fit DIS, Drell-Yan, W asymmetry, jets, γ+jet
- statistical and systematic errors added in quadrature
- → PDF errors computed by the Hessian method, $\Delta \chi^2 = 1$

New in this work:

- 🔶 γ+jet
- Multiple TMC and HT terms added
- Higher-twist contributions by a multiplicative factor
- Nuclear corrections for deuteron targets added
- → option for finite d/u at $x \rightarrow 1$ is being considered

Higher-Twists parametrization

• Parametrize the higher-twist contributions by a multiplicative factor:

$$F_2(data) = F_2(TMC) \times \left(1 + \frac{C(x_B)}{Q^2}\right)$$

with

 $C(x_B) = a x^b \left(1 + c x\right)$

Comments

- parametrization is sufficiently flexible to give good fits to data
- \Rightarrow c parameter allows negative HT at small x_B

Deuterium corrections

cteqX vs. CTEQ

CTEQ

 $Q^2 \ge 4 \text{ GeV}^2 \quad W^2 \ge 12.25 \text{ GeV}^2$

not so large x, not so low Q²
hope 1/Q² corrections not large

cteqX

TMC, HT, deuteron corrections

Progressively lower the cuts:

	Q^2	W^2
	$[GeV^2]$	$[GeV^2]$
CTEQ = cut0	4	12.25
$\operatorname{cut1}$	3	8
${ m cut2}$	2	4
${ m cut}3$	1.69	3

Better large-x, low-Q² coverage

Reference fit vs. CTEQ6.1

Reference fit: cut0, no corrections

	data	CTEQ6.1
DIS	(JLab)	NO
	SLAC	
	NMC	
	BCDMS	
	H1	
	ZEUS	
DY	E605	
	E866	NO
W	CDF '98 (ℓ)	
	CDF '05 (ℓ)	NO
	D0 '08 (<i>l</i>)	NO
	D0 '08 (e)	NO
	CDF '09 (W)	NO
jet	CDF	
	D0	\checkmark
γ +jet	D0	NO

d-quark suppression

Suppression of *d*-quark

- u-quark almost doesn't change (not shown)
- Relatively stable against kinematic cuts

Deuterium corrections have large effect on d-quark

- sensitivity to off-shell corrections [MST = Melnitchouk et al., '94]
- use WA21 data on v(vbar)-p to cross-check d without Deuterium?
 [w/L.Y.Zhu]

accardi@jlab.org

ECT*, 26 May 2009

TMC vs HT

Extracted higher-twist term depends on the type of TMC used

 \Rightarrow $Q^2 > 1.69 \text{ GeV}^2$ and $W^2 > 3 \text{ GeV}^2$ (referred to as "cut03")

→ lower cuts \Rightarrow x_B < 0.85 compared to x_B < 0.7 in CTEQ/MRST

➡ No evidence for negative HT

Preliminary results – TMC vs HT

Extracted twist-2 PDF much less sensitive to choice of TMC

- fitted HT function compensates the TMC
- except when no TMC is included

Preliminary results – D/p ratios

Nuclear smearing essential for D/p ratio at $x_B > 0.6$

- → It is essential to go beyond Bjorken limit: finite-Q² corrections
- off-shell corrections don't sensibly change the result

accardi@jlab.org

ECT*, 26 May 2009

Preliminary results – PDF errors

PDF errors at large x are reduced by lowering the cuts

	Q^2	W^2
	$[GeV^2]$	$[GeV^2]$
cut00	4	12.25
${ m cut}01$	3	8
${ m cut}02$	2	4
cut03	1.69	3

Note: errors multiplied by 10 for rough comparison to CTEQ6 errors

accardi@jlab.org

ECT*, 26 May 2009

Summary of cteqX fits

New global PDF fits are underway, with expanded kinematic range and data set

Suppressed d/u ratio at large x compared to CTEQ6.1
 TMC, HT essential for good fits, stability of PDF
 Large effect of deuterium corrections, also for standard CTEQ cuts
 need v(vbar)-p data to further constrain d-quark

PDF errors reduced

- by expanded large-x data set
- SLAC+JLab + recent DY

Tension with DY data sets

→ E-866 lepton pair data, and DØ W→*leptons* asymmetry data prefer an enhanced d/u ratio at large x

But... directly measured W asymmetry likes d suppression

Higher-twist terms also are interesting

Accardi, Bacchetta, Melnitchouk, Schlegel: arXiv:0905.3118, full paper in preparation

The g₂ structure function

Inclusive DIS structure functions:

$$W^{\mu\nu}(p,q,S) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)F_1(x_B,Q^2) + \left(p^{\mu} - q^{\mu}\frac{p \cdot q}{q^2}\right)\left(p^{\nu} - q^{\nu}\frac{p \cdot q}{q^2}\right)\frac{F_2(x_B,Q^2)}{p \cdot q} + \frac{1}{p \cdot q}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}\left[S_{\sigma}g_1(x_B,Q^2) + \left(S_{\sigma} - \frac{S \cdot q}{p \cdot q}p_{\sigma}\right)g_2(x_B,Q^2)\right]$$

The g₂ structure function

 \Rightarrow g₂ is a special structure function:

 it is the only one with twist-3 contributions that can be measured in inclusive DIS

in the OPE analysis, its twist-3 term can be isolated:

The Wandzura-Wilczek relation

Lorentz Invariance Relations (LIR) and Equations Of Motion (EOM) imply

$$g_2(x) = g_2^{WW}(x) + \tilde{\delta}(x) + \hat{\delta}(x) + \frac{m_q}{\Lambda} \delta_m(x)$$
negligible
for light quarks

where

The WW relation is broken by 2 "pure twist-3" terms

- can in principle be large and canceling: need to measure separately
- it is a first principles, model independent decomposition (Lorentz invariance, Dirac equations of motion)

accardi@jlab.org

ECT*, 26 May 2009

Experimental WW breaking

How interesting are \tilde{g}_T and \hat{g}_T ?

Transverse momentum dependent (TMD) quark distributions

long. polarized quarks in a long. polarized nucleon

long. polarized quarks in a transv. polarized nucleon

 $g_T^a(x, \vec{k}_T^2) = g_1^a(x, \vec{k}_T^2) + g_2^a(x, \vec{k}_T^2)$

twist-3 no parton model interpretation

Collinear PDFs, are defined by transverse momentum integration

$$g_{1(1T)}(x) = \int d^2k_T g_{1(1T)}(x, \vec{k}_T)$$
$$g_{1T}^{(1)}(x) = \int d^2k_T \frac{\vec{k}_T^2}{2M} g_{1T}(x, \vec{k}_T)$$

ECT*, 26 May 2009

How interesting are \tilde{g}_{T} and $\hat{g}_{T}?$

Lorentz Invariance: $g_T^a(x) = g_1^a(x) + \frac{d}{dx} g_{1T}^{a(1)}(x) + \hat{g}_T^a(x)$ Eqs. of motion: $g_{1T}^{a(1)}(x) = xg_T^a(x) - x\tilde{g}_T^a(x) - \frac{m}{M}h_1^a(x)$ WW relation: $g_2(x) = g_2^{WW}(x) + \tilde{\delta}(x) + \hat{\delta}(x)$

 \rightarrow computation of high- k_T spin asymmetries / tails of TMDs

◆ 3 independent measurements (g_T, g₁, g_{1T}⁽¹⁾) for 2 independent relations:
 ◆ test of TMD factorization
 ◆ connection to collinear factorization
 g⁽¹⁾_{1T}(x) ^T = ∫ d²k_T $\frac{\vec{k}_T^2}{2M} g_{1T}(x, \vec{k}_T) \stackrel{CF}{=} \int \frac{d\lambda e^{i\lambda x}}{4\pi S_T} \langle P, S | \bar{\psi}(0) \gamma^+ \partial_{\alpha} \gamma_5 \psi(\lambda n) | P, S \rangle$

accardi@jlab.org

ECT*, 26 May 2009

How can we measure \tilde{g}_T and \hat{g}_T ?

\rightarrow Need to measure $g_{1T}^{(1)}$: double L-T spin asymmetry in SIDIS

accardi@jlab.org

ECT*, 26 May 2009

q

***** Hadrons at large $x / \log Q^2$ including:

- TMC in coll.fact. free from threshold problem
- JMC new! at LO only, so far
- HT, nuclear corrections

★ New PDFs at large x

- \rightarrow HT+TMC:
 - \checkmark stable twist-2
 - ✓ economical higher-twist parametrization
- nuclear smearing essential for deuterium at $x_B > 0.5$
- Extended data set reduced PDF errors

★ Twist-3 quark-gluon correlations in polarized DIS

- test of TMD factorization
- TMD / connection
- evolution of g_2

Outlook

1) Unpolarized hadrons

Nuclear smearing & nuclear PDF [w/ Qiu, Vary]

★ JMC: phenomemology, NLO
 ★ quark-hadron duality [w/ Qiu]
 ★ large-x resummation [w/ Jlab group]

★ TMC for DY, p+p at large x_F [w/ Schlegel, Metz ??] cteqX fits $(\varphi \equiv f_1)$

 \neq F_L : gluons, small and large *x*

★ nuclear PDFs [w/ SMU group ??]

★ ... for the future ...

Outlook

2) Polarized hadrons

- ★ TMC for TMDs
 - SIDIS @ NLO in coll.fact.
 - for TMDs [w/ Prokhudin, Melis ?]

polarized JMC [w/ Bacchetta, Schlegel]

new observables ?

transversity in inclusive DIS ?? `

★ Twist-3, g₂ evolution & C. [w/ Bacchetta, Schlegel ?] **Polarized cteqX ?** $(\Delta \varphi \equiv g_1)$

- TMC+HT+nuclear corrections [w/ Vogelsang, Strattman, Sassot ?]
- ✓ ★ ... for the future ...

Transversity fits ?? $(\delta \varphi \equiv h_1)$ [w/ Torino group ??]

Outlook

Thank you!

Lorentz Invariance Relation

• Lorentz invariance relates $g_1(x)$, $g_{1T}(x)$ and $g_T(x)$:

$$g_T^a(x) = g_1^a(x) + \frac{d}{dx} g_{1T}^{a(1)}(x) + \hat{g}_T^a(x)$$

pure twist-3 (quark-glue correlations)

where

$$\hat{g}_T(x) = \int dx' \frac{\overline{D}(x,x') + \overline{D}(x',x)}{x'-x}$$
$$\overline{D}(x,x') = \frac{1}{2} \Big[\overline{D}_1(x,x') + \overline{D}_2(x',x) \Big]$$

Bukhvostov,Kuraev,Lipatov '83 Belitsky, hep-ph/9703432

and in light-cone gauge

 $\frac{M}{P^+} S_T^i \overline{D}_1(x, x') = -\frac{g_s}{8} \int \frac{d\xi^-}{2\pi} \frac{d\eta^-}{2\pi} e^{ik\cdot\xi - ik'\cdot\eta} \langle P, S | \bar{\psi}(\eta) \gamma^+ A_T(0) \gamma^i \gamma_5 \psi(\xi) | P, S \rangle$ $\frac{M}{P^+} S_T^i \overline{D}_2(x', x) = -\frac{g_s}{8} \int \frac{d\xi^-}{2\pi} \frac{d\eta^-}{2\pi} e^{ik'\cdot\eta - ik\cdot\xi} \langle P, S | \bar{\psi}(\xi) \gamma^+ \gamma^i A_T(0) \gamma_5 \psi(\eta) | P, S \rangle$

Equations Of Motion relation

The Dirac equation of motion $D\psi - m\psi = 0$ implies

$$g_{1T}^{a(1)}(x) = xg_T^a(x) - x\tilde{g}_T^a(x) - \frac{m}{M}h_1^a(x)$$

negligible
for light quarks
pure twist-3
(mark-glue correlations)

where in light-cone gauge,

$$\begin{split} \tilde{g}_T^a(x) &= \frac{1}{x} \int dx' \overline{D}(x, x') \\ &= \frac{g_s}{2x} \frac{P^+}{MS_T^i} \int \frac{d\xi^-}{2\pi} \langle P, S | \bar{\psi}^a(0) \gamma^+ \left(\mathcal{A}_T(0) - \mathcal{A}_T(\xi) \right) \gamma_5 \psi^a(\xi) | P, S \rangle \end{split}$$

Note: \hat{g}_T, \tilde{g}_T are different projection of the D(x,x') quark-gluon correlator

Jet function – outlook

We need to develop a "phenomenology" of the jet function:

- from Dyson-Schwinger equations?
- → from e^+e^- → jets?
- from Monte Carlo simulations?

Can we compare the fitted $J_m \approx J_2$ to lattice QCD computations ?? $\int_0^{\infty} dm_j^2 J_2(m_j^2) 2\pi \delta(l^2 - m_j^2) \theta(l^0) = \frac{1}{4l^{-1}} \int d^4 z e^{iz \cdot l} \text{Tr} [\gamma^- \langle 0 | \overline{\psi}(z) \psi(0) | 0 \rangle]$ $\Rightarrow \text{ Landau gauge vs. light-cone gauge}$

- Euclidean vs. Minkowski space
- Should we ultimately regard it only as a phenomenological tool?
 fit it to DIS data, in the spirit of "global QCD fits"

Need extension to NLO, polarized DIS
