### Contribution of Strange Quarks to the Structure of the Nucleon



### Wally Melnitchouk (for Anthony W. Thomas) Workshop on Precision Perspectives in Hadronic Physics ICTP : May 22<sup>nd</sup>, 2006



Thomas Jefferson National Accelerator Facil



# **Outline**

- The QCD Vacuum
- Quarks to Hadrons
- Measurements of Nucleon Form Factors
- A Precise Theoretical Calculation of G<sub>M</sub><sup>s</sup>
- Latest Results on Strangeness





Thomas Jefferson National Accelerator Facility

# **Topology of QCD Vacuum**





#### Leinweber: see CSSM web pages

Thomas Jefferson National Accelerator Facility



# Powerful Qualitative New Insights From Lattice QCD

**QCD** sum rules :

$$\begin{split} \left\langle 0 \left| \frac{\alpha_s}{\pi} G^i_{\mu\nu} G^i_i \right| 0 \right\rangle &= \left\langle 0 \left| \frac{2\alpha_s}{\pi} (B^2 - E^2) \right| 0 \right\rangle \\ &= (350 \pm 30 \text{ MeV})^4, \end{split}$$

- Non-trivial topological structure of vacuum linked to dynamical chiral symmetry breaking
- There are regions of positive and negative topological charge
- BUT they clearly are <u>NOT spherical</u>

NOR are they weakly interacting!



Thomas Jefferson National Accelerator Facility



## **Quark Condensate**

$$\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle = -(225 \pm 25 \text{ MeV})^3$$

at a renormalization scale of about 1 GeV.

 $\sigma\,$  commutator measures chiral symmetry breaking

≈ valence + pion cloud + volume \* (difference of condensate in & out of N)

... and last term is as big as 20 MeV (or more)

i.e. presence of nucleon "cleans out" vacuum to some extent





**Thomas Jefferson National Accelerator Facility** 

### **Lattice QCD Simulation of Vacuum Structure**

#### Leinweber, Signal et al.



**Office of** 

Science

**U.S. DEPARTMENT OF ENERGY** 



Operated by the Southeastern Universities Research Association for the U.S. Department

ellerson C

### χ'al Extrapolation Under Control when Coefficients Known – e.g. for the nucleon



### FRR give same answer to «1% systematic error!

|                | Bare Coefficients |                 |                 |     | Renormalized Coefficients |          |          |           |
|----------------|-------------------|-----------------|-----------------|-----|---------------------------|----------|----------|-----------|
| Regulator      | $a_0^{\Lambda}$   | $a_2^{\Lambda}$ | $a_4^{\Lambda}$ | Λ   | $c_0$                     | $c_2$    | $c_4$    | $m_N$     |
| Monopole       | 1.74              | 1.64            | -0.49           | 0.5 | 0.923(65)                 | 2.45(33) | 20.5(15) | 0.960(58) |
| Dipole         | 1.30              | 1.54            | -0.49           | 0.8 | 0.922(65)                 | 2.49(33) | 18.9(15) | 0.959(58) |
| Gaussian       | 1.17              | 1.48            | -0.50           | 0.6 | 0.923(65)                 | 2.48(33) | 18.3(15) | 0.960(58) |
| Sharp cutoff   | 1.06              | 1.47            | -0.55           | 0.4 | 0.923(65)                 | 2.61(33) | 15.3(8)  | 0.961(58) |
| Dim. Reg. (BP) | 0.79              | 4.15            | +8.92           | _   | 0.875(56)                 | 3.14(25) | 7.2(8)   | 0.923(51) |

Leinweber et al., PRL 92 (2004) 242002



Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

ellerson

## Convergence from LNA to NLNA is Rapid – Using Finite Range Regularization

| Regulator | LNA | NLNA |  |
|-----------|-----|------|--|
| Sharp     | 968 | 961  |  |
| Monopole  | 964 | 960  |  |
| Dipole    | 963 | 959  |  |
| Gaussian  | 960 | 960  |  |
| Dim Reg   | 784 | 884  |  |

### M<sub>N</sub> in MeV





Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

ellerson C

## JLab: Unique Capabilities for Investigating QCD in the Non-Perturbative Regime



JLab is a world leader in SRF technology: SNS, 12 GeV Upgrade, FEL, RIA, and others in the Office of Science 20-Year Facilities Outlook



Superconducting rf (SRF) technology makes the circulating accelerator feasible

Providing ~2300 international users with a unique electron beam, three experimental halls, and computational and theory support





High luminosity, high resolution detectors in Halls A, B, and C.



## **Precision Tests of Nucleon Structure**

 Astonishing discovery concerning proton electric form factor



But what about contribution from non-valence quarks

- especially strange quarks ?





Thomas Jefferson National Accelerator Facility

## Strangeness Widely Believed to Play a Major Role – Does It?

• As much as 100 to 300 MeV of proton mass:

$$M_N = \langle N(P)| - \frac{9\,\alpha_s}{4\,\pi} \operatorname{Tr}(G_{\mu\nu}G^{\mu\nu}) + m_u\bar{\psi}_u\psi_u + m_d\bar{\psi}_d\psi_d + m_s\bar{\psi}_s\psi_s|N(P)\rangle$$

Hence 110  $\circ$  110 MeV (increasing to 180 for higher  $\sigma_N$ )

 $\Delta M_N^{s-\text{quarks}} = \frac{y \overline{m_s}}{m_u + m_d} \,\sigma_N$ 

 Through proton spin crisis: As much as 10% of the spin of the proton

### • HOW MUCH OF THE MAGNETIC FORM FACTOR?



homas Jefferson National Accelerator Facility



**y=0.2** ○ **0.2** 

45 • 8 MeV (or 70?)

# **MIT-Bates & A4 at Mainz**









Thomas Jefferson National Accelerator Facility



# **G0 and HAPPEx at JLab**







Thomas Jefferson National Accelerator Facility



### Strange Form Factors at Q^2=0.1GeV^2



 $\begin{array}{l} G_{\text{E}}^{\,\,\text{s}} = -0.013 \pm 0.028 \\ G_{\text{M}}^{\,\,\text{s}} = +0.62 \pm 0.31 \ \mu_{\text{N}} \end{array}$ 

**Theories** 

- 1. Leinweber, et al. PRL **94** (05) 212001
- 2. Lyubovitskij, et al. PRC 66 (02) 055204
- 3. Lewis, et al. PRD **67** (03) 013003
- 4. Silva, et al. PRD **65** (01) 014016



### **Physical Significance of this Result**

•Size and sign of the strange magnetic moment is <u>astonishing</u>!

• For the deuteron, this result (G0) gives - 0.54  $\mu_{\text{N}}$  - i.e. - 60% of its experimental magnetic moment!!

• Also remarkable versus lattice QCD which gives +0.03  $\circ$  0.01  $\mu_N$  (Leinweber et al., PRL 94 (2005) 212001)

• Sign would require violation of universality of valence quark moments by  $\sim$  70% !





Thomas Jefferson National Accelerator

# Magnetic Moments within QCD



 $p = 2/3 u^p - 1/3 d^p + O_N$  $n = -1/3 u^p + 2/3 d^p + O_N$  $2p + n = u^p + 3 O_N$ (and  $p + 2n = d^p + 3 O_N$ )  $\Sigma^{+} = 2/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$  $\Sigma^{-} = -1/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$  $\Sigma^+$  -  $\Sigma^- = \mathbf{u}^{\Sigma}$  $O_{N} = 1/3 [2p + n - (u^{p} / u^{\Sigma}) (\Sigma^{+} - \Sigma^{-})]$ **HENCE:** Just these ratios from Lattice OCD  $O_{N} = 1/3 [n + 2p - (u^{n} / u^{\Xi}) (\Xi^{0} - \Xi^{-})]$ OR Office of Merson C U.S. DEPARTMENT OF ENERGY

# **Constraint from Charge Symmetry**

$$\begin{aligned} O_N &= \frac{2}{3} \,^{\ell} G_M^u - \frac{1}{3} \,^{\ell} G_M^d - \frac{1}{3} \,^{\ell} G_M^s \\ &= \frac{1}{3} \left( {}^{\ell} G_M^d - {}^{\ell} G_M^s \right) \,, \\ &= \frac{\ell}{3} \left( \frac{G_M^s}{2} \left( \frac{1 - {}^{\ell} R_d^s}{{}^{\ell} R_d^s} \right) \,, \end{aligned}$$



$$G_M^s = \left(\frac{{}^\ell R_d^s}{1 - {}^\ell R_d^s}\right) \left[3.673 - \frac{u_p}{u_{\Sigma^+}}\left(3.618\right)\right]$$

$$G_M^s = \left(\frac{{}^{\ell}R_d^s}{1 - {}^{\ell}R_d^s}\right) \left[-1.033 - \frac{u_n}{u_{\Xi^0}} \left(-0.599\right)\right]$$

#### Leinweber and Thomas, Phys. Rev. D62 (2000) 07505.





Thomas Jefferson National Accelerator Facility

# u<sup>p</sup>valence : QQCD Data Corrected for Full QCD Chiral Coeff's



#### New lattice data from Zanotti et al. ; Chiral analysis Leinweber et al.



Thomas Jefferson National Accelerator Facility









Thomas Jefferson National Accelerator



## **Check: Octet Magnetic Moments**



#### Leinweber et al., hep-lat/0406002





### Convergence LNA to NLNA Again Excellent (Effect of Decuplet)





**Thomas Jefferson National Accelerator Facility** 



## **State of the Art Magnetic Moments**

|                | QQCD       | Valence    | Full QCD   | Expt.       |
|----------------|------------|------------|------------|-------------|
| р              | 2.69 (16)  | 2.94 (15)  | 2.86 (15)  | 2.79        |
| n              | -1.72 (10) | -1.83 (10) | -1.91 (10) | -1.91       |
| Σ+             | 2.37 (11)  | 2.61 (10)  | 2.52 (10)  | 2.46 (10)   |
| Σ-             | -0.95 (05) | -1.08 (05) | -1.17 (05) | -1.16 (03)  |
| Λ              | -0.57 (03) | -0.61 (03) | -0.63 (03) | -0.613 (4)  |
| Ξ <b>0</b>     | -1.16 (04) | -1.26 (04) | -1.28 (04) | -1.25 (01)  |
| Ξ              | -0.65 (02) | -0.68 (02) | -0.70 (02) | -0.651 (03) |
| u <sup>p</sup> | 1.66 (08)  | 1.85 (07)  | 1.85 (07)  | 1.81 (06)   |
| u <sup>E</sup> | -0.51 (04) | -0.58 (04) | -0.58 (04) | -0.60 (01)  |



Thomas Jefferson National Accelerator Facility



## Accurate Final Result for G<sub>M</sub><sup>s</sup>



1.25±0.12

#### Yields : $G_{M}^{s} = -0.046 \pm 0.019 \mu_{N}$



Leinweber et al., (PRL June '05) hep-lat/0406002



Thomas Jefferson National Accelerator Facility

# G<sub>E</sub><sup>s</sup> by same technique (January 2006)

In this case only know  $\Sigma^-$  radius (and p and n) 2p +n = u <sup>p</sup> +3 O<sub>N</sub> p + 2n = d <sup>p</sup> + 3 O<sub>N</sub>

<r²><sub>s</sub> = 0.000  $\Downarrow$  0.006  $\Downarrow$  0.007 fm² ; 0.002  $\Downarrow$  0.004  $\Downarrow$  0.004 fm²

 $G_E^s(0.1 \,\text{GeV}^2) = +0.001 \pm 0.004 \pm 0.004 \pm 0.004$ 

(up to order Q<sup>4</sup>)

Note consistency and level of precision!

einweber, Young et al., hep-lat/0601025: Jan 2006.





### **Ross Young: Why not use ALL the data?**





Thomas Jefferson National Accelerator



Young, Roche, Carlini, Thomas – nucl-ex/0604010 (pre- latest HAPPEx)



#### Superimpose NEW HAPPEx Measurement (April 2006)



#### World data plus new HAPPEx data



# **Axial Form Factors**



World Data pre-latest HAPPEx (Young et al., nucl-ex/0604010)

#### 



Thomas Jefferson National Accelerato



Operated by the Southeastern Universities Research Association for the U.S. Department

World Data with new HAPPEx

(Young, Roche, Carlini and Thomas,

extended analysis)

### **Strange Form Factor Measurements – Future Plans**

HAPPEx: "HAPPEx3" measure  $G_{E}^{s}$  + 0.48 $G_{M}^{s}$  with high precision at Q<sup>2</sup>~0.6 GeV<sup>2</sup>

### G<sup>0</sup>: Turn experiment around

•detect electrons at  $\theta = 108^{\circ}$ 

- add Cerenkov for pion rejection
- measure at  $Q^2$  = .23 and .63 GeV<sup>2</sup>
- LH<sub>2</sub> and LD<sub>2</sub> targets

#### Mainz A4: Turn experiment around

•detect electrons at  $\theta = 145^{\circ}$ 

- Measure at  $Q^2$  = .23 and .47 GeV<sup>2</sup>
- LH<sub>2</sub> and LD<sub>2</sub> targets









## Summary

- Beautiful measurements at JLab have defined  $G_{E,M}^{s}$  at Q<sup>2</sup> = 0.1 GeV<sup>2</sup> very precisely
- Results agree astonishingly well with modern calculations based on lattice QCD with chiral extrapolation and unquenching using FRR
- Result supports physical picture that s-quark is effectively a HEAVY quark and s-quark fluctuations are strongly suppressed

   e.g. contribution to nucleon mass ~ 10 MeV
- Useful for lab tests of extra dimensions (e.g. Flambaum et al., Phys Rev D – hep-ph/0402098)





Thomas Jefferson National Accelerator Facili

# **Special Mentions.....**





#### **Derek Leinweber**

#### **Ross Young**





Thomas Jefferson National Accelerator