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Introduction to JLab



JLab experimental program touches key problems
in nuclear & particle physics, and beyond...

confinement in QCD - spectra and decays of hadrons

hadronic form factors & quark-gluon distributions

strangeness & parity violation in hadrons & nuclei

few-body nuclear physics & the NN force

many-body nuclear physics & the nuclear medium

Standard Model tests & beyond



Continuous Electron Beam Accelerator Facility
at JLab

0.6 GeV electrons / linac

x 10         6 GeV

Hall A
Hall B Hall C



Experimental Halls

Hall A

Hall C

Hall B

Hall D



Experimental Halls

Hall A

Hall C

high luminosity

very high precision
measurements

high Q   form factors,
parity-violating e scattering,
precision structure functions,
...

2

> 10
38

cm
−2

s
−1



Experimental Halls

Hall B

large acceptance
lower luminosity
∼ 10

35
cm

−2
s
−1

collect all data “at once”

N   spectroscopy
(multi-hadron final states),
structure function moments,
...

*

CLAS
(CEBAF Large Acceptance Spectrometer)



Experimental Halls

Hall D

proposed new Hall
as part of 12 GeV upgrade

photon beam

exotic meson spectroscopy
(GlueX Collaboration)
“origins of confinement”

acceptance4π



Baryon Spectroscopy

Hall B (CLAS Collaboration)
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Conventional N* Spectroscopy
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CLAS p!0, n!+

CLAS n!+ (preliminary)
CLAS N!, p!+!"

CLAS – N* analysis of Roper excitation 

 P R E L I M
 INA R Y

Best description by model with meson cloud (low Q2) and quark core (high Q2)



Conventional N* Spectroscopy
γ
∗

p → p π
+

π
−New state seen in ?
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 Transition Form FactorN → ∆
N!(1232) Quadrupole Transition

SU(6): E1+=S1+=0

< 0.01< 0.01

N!(1232) Quadrupole Transition

SU(6): E1+=S1+=0

< 0.01< 0.01

N!(1232) Quadrupole Transition

SU(6): E1+=S1+=0

< 0.01< 0.01

N!(1232) Quadrupole Transition

SU(6): E1+=S1+=0

< 0.01< 0.01



N-! circa 2002 LRP

From the 2002 LRP:

     “An accurate measurement of the quadrupole excitation of the nucleon can
thus be of great importance in testing the forces between the quarks and,
more generally, models of the nucleon.  R

EM 
data appear to discriminate

among detailed models of the nucleon”

 Transition Form FactorN → ∆

! REM remains small and < 0 at

high Q2  with trend towards

REM ~ 0, and possible sign

change.

! RSM continues to rise in

magnitude with Q2.

No trend seen towards Q2-

independence.

! Pion cloud models describe

data well (fitted to low and high

Q2 points).

! Unquenched LQCD gives

correct signs and approximate

magnitudes.

 N-! in  2004

!REM (E1+/M1+) and RSM (S1+/M1+)

have been extended significantly

both to higher and lower Q2

LQCD (unquenched)

LQCD (unquenched)

! REM remains small and < 0 at

high Q2  with trend towards

REM ~ 0, and possible sign

change.

! RSM continues to rise in

magnitude with Q2.

No trend seen towards Q2-

independence.

! Pion cloud models describe

data well (fitted to low and high

Q2 points).

! Unquenched LQCD gives

correct signs and approximate

magnitudes.

 N-! in  2004

!REM (E1+/M1+) and RSM (S1+/M1+)

have been extended significantly

both to higher and lower Q2

LQCD (unquenched)

LQCD (unquenched)

Hall B & Hall C



Electromagnetic
Form Factors

Halls A and C



Proton Neutron

Electric

Magnetic

Before JLab

JLab data on the EM form factors provide a testing ground
for theories constructing nucleons from quarks and glue

proton neutron
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Before JLab



proton neutron
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Today

JLab data on the EM form factors provide a testing ground
for theories constructing nucleons from quarks and glue

Proton Neutron

Electric

Magnetic

Today



Proton                RatioGE/GM

II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.

A. Rosenbluth technique

The unpolarized differential cross section for elastic scat-

tering can be written in terms of the cross section for scat-

tering from a point charge and the electric and magnetic form

factors:

d!

d"
!!Mott!GEp

2 "#GMp

2

1"#
"2#GMp

2 tan2$%/2&" , $1&

where #!Q2/4Mp
2 , % is the electron scattering angle, Q2

!4EeEe!sin
2(%/2), and Ee and Ee! are the incoming and scat-

tered electron energies. One can then define a reduced cross

section,

!R'
d!

d"

($1"#&

!Mott
!#GMp

2 $Q2&"(GEp

2 $Q2&, $2&

where ( is the longitudinal polarization of the virtual photon
)(#1!1"2(1"#)tan2(%/2)* . At fixed Q2, i.e., fixed # , the
form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:

GEp

GMp

!#
Pt

Pl

$Ee"Ee!&tan$%/2&
2Mp

, $3&

where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.

J. ARRINGTON PHYSICAL REVIEW C 68, 034325 $2003&

034325-2

Rosenbluth (Longitudinal-Transverse)
Separation

Polarization Transfer

LT

τ = Q2/4M2

ε =
[
1 + 2(1 + τ) tan2 θ/2

]
−1

σR = G2

M (Q2) +
ε

τ
G2

E(Q2)

from slope in     plotGE/GM ε

PT
GE

GM

= −

√
τ(1 + ε)

2ε

PT

PL

PT,L polarization of recoil proton



QED Radiative Corrections

! µ

"µ

elastic electron

scattering

electron vertex

correction

electron self-energy

diagrams

vacuum

polarization

proton vertex

correction
proton self-energy

diagrams

box and crossed-

box diagrams

inelast ic ampli tudes

• ep γ

dσ A
(
τ µp GM ε GE

)
∝ ε

τµp
R , R µp

GE

GM

• γ

dσ dσ δ

−→ δ α

• R

ε

∼

• ep γ

dσ A
(
τ µp GM ε GE

)
∝ ε

τµp
R , R µp

GE

GM

• γ

dσ dσ δ

−→ δ α

• R

ε

∼

•
M f Q , ε M M

M −→
f Q , ε −→ e

p
γ

M −→ p γ

−→ α

δ f Q , ε
Re{M†M }

|M |

• δ ε

−→ ε dσ

•

•
M f Q , ε M M

M −→
f Q , ε −→ e

p
γ

M −→ p γ

−→ α

δ f Q , ε
Re{M†M }

|M |

• δ ε

−→ ε dσ

•

mostly from box (and crossed box)
diagram

Blunden, WM, Tjon, Phys. Rev. Lett. 91 (2003) 142304
Guichon, Vanderhaeghen, Phys. Rev. Lett. 91 (2003) 142303

Chen, Afanasev, Brodsky, Carlson, Vanderhaeghen, Phys. Rev. Lett. 93 (2004) 122301 
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Mγγ

• γ
−→ k

k q
−→ γ

q
−→ N k ≈ N

−→

•
−→
−→ N k k

−→
−→ ε

•
−→ N k D k

−→
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FIG. 2: Difference between the full two-photon exchange correction to the elastic cross section

(using the realistic form factors in Eq. (26)) and the commonly used expression (23) from Mo &

Tsai [13] for Q2 = 1–6 GeV2. The numbers labeling the curves denote the respective Q2 values in

GeV2.
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FIG. 7: Ratio of elastic e+p to e−p cross sections. The data are from SLAC [31, 32], with Q2

ranging from 0.01 to 5 GeV2. The results of the 2γ exchange calculations are shown by the curves

for Q2 = 1 (dotted), 3 (dashed) and 6 GeV2 (solid).
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Two-photon exchange in elastic scattering
TABLE I: Parameters for the proton and neutron form factor fits in Eq. (26) used in this work,

with ni and di in units of GeV2.

F p
1 F p

2 Fn
1 Fn

2

N 3 3 3 2

n1 0.38676 1.01650 24.8109 5.37640

n2 0.53222 –19.0246 –99.8420

d1 3.29899 0.40886 1.98524 0.76533

d2 0.45614 2.94311 1.72105 0.59289

d3 3.32682 3.12550 1.64902 —

3
p 

2
p  

4
p 

1
 p

 k  q!k

FIG. 1: Two-photon exchange box and crossed box diagrams for elastic electron–proton scattering.
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FIG. 1: Two-photon exchange box and crossed box diagrams for elastic electron–proton scattering.
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Blunden, Melnitchouk, Tjon 

nucl-th/0506039
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FIG. 5: The ratio of proton form factors µpGE/GM measured using LT separation (open diamonds)

[2] and polarization transfer (PT) (open circles) [5]. The LT points corrected for 2γ exchange are

shown assuming a linear slope for ε = 0.2 − 0.9 (filled squares) and ε = 0.5 − 0.8 (filled circles)

(offset for clarity).

29

polarization
transfer

Rosenbluth
separation

Rosenbluth
corrected for
2   exchangeγ

resolves much of the form factor discrepancy
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effect of the nucleon two-photon exchange, making the negative nucleon correction somewhat
smaller at backward angles (i. e. at low ε). Generally the combined effect of the nucleon and
∆ two-photon exchanges retains the characteristic features of the nucleon contribution: a
negative correction at small ε, decreasing in magnitude as ε increases.2 The main features
of the ∆ contribution – its smallness and its tendency to attenuate the nucleon contribution
at backward angles – are independent of the choice of the γN∆ form factor. The detailed
interplay between the ∆ and the nucleon contributions can be more complicated, especially
at forward angles and for higher momentum transfers, as can be seen from Fig. 2.

The calculated differential cross section is shown by the solid lines in Fig. 3, including
the Born term and the sum of the two-photon exchanges with the nucleon and the ∆
intermediate states. These results were obtained using the dipole form factor Eq. (4) with
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FIG. 3: Effect of adding the two-photon exchange (with the indicated choice of the γN∆ form

factor) to the Born cross section, the latter evaluated with the form factors from the PT experi-
ment [3]. The reduced cross section is scaled for convenience, as described in the text. The data
points at three fixed momentum transfers are taken from Refs. [1, 2].

the cutoff Λ∆ = 0.84 GeV, a choice consistent with various parametrisations from pion
electroproduction (see, e. g. [8, 20]). The reduced cross section Eq. (1), scaled by the square
of the standard dipole form factor GD(Q2) = 1/(1 + Q2/0.71)2, is compared in Fig. 3 with
the LT-separation measurements from SLAC [1] (at Q2 = 4 and 6 GeV2) and JLab [2] (at
Q2 = 2.64 GeV2). The dotted lines show the Born contribution alone, using the form factors
GE,M taken from the JLab PT experiment [3]. On can see that the including only the Born

2 The diminishing of the two-photon exchange correction at forward angles is consistent with the analysis

of electron-proton and positron-proton scattering data [19].
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convenient to divide dσ by a kinematic factor and thus use the reduced cross section

dσR =
[
G2

M(Q2) +
ε

τ
G2

E(Q2)
]
(1 + δN + δ∆) . (1)

Here the Born contribution is written in terms of the electric and magnetic form factors of
the proton, GE(Q2) and GM(Q2), which are functions of the momentum transfer squared
Q2 ≡ −q2 ≡ 4MNτ = −(p1 − p3)2. The kinematic variable ε is related to the scattering
angle θ through ε = [1 + 2(1 + τ) tan2(θ/2)]−1, equal to the photon polarisation in the Born
approximation.

We denote the Born scattering amplitude as MB and the two-photon exchange ampli-
tudes with the nucleon and ∆ intermediate states as Mγγ

N and Mγγ
∆ , respectively. From the

equation dσ = dσB(1 + δN + δ∆) = |MB + Mγγ
N + Mγγ

∆ |2, where dσB = |MB|
2, we derive

to first order in the electromagnetic coupling e2/(4π) ≈ 1/137:

δN,∆ = 2
Re

(
M†

B Mγγ
N,∆

)

|MB|
2

. (2)

The nucleon part δN of the two-photon exchange was analysed in Ref. [5]. Below we will
evaluate the ∆ two-photon exchange contribution δ∆. The corresponding scattering ampli-
tude Mγγ

∆ is given by the sum of the box and crossed-box loop diagrams depicted in Fig. 1.
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FIG. 1: Two-photon exchange box and crossed-box graphs for electron-proton scattering with a ∆

intermediate state, calculated in the present letter.

We use the γN∆ vertex of the following form [10]:

Γνα
γ∆→N(p, q) ≡ iV να

∆in(p, q) = i
eF∆(q2)

2M2
∆

{
g1 [ gναp/q/ − pνγαq/ − γνγα(p · q) + γνp/qα ] +

g2 [ pνqα − gνα(p · q) ]
}
γ5 T3 , (3)

where M∆ ≈ 1.232 GeV is the ∆ mass, pα and qν are the four-momenta of the incoming ∆
and photon, respectively, g1 and g2 are the coupling constants.1 An analysis of Eq. (3) in
the ∆ rest frame, similar to that in Ref. [12], suggests that g1 and g2−g1 may be interpreted
as magnetic and electric components, respectively, of the γN∆ vertex. For simplicity we
have only one regularising form factor in Eq. (3), taking it as a function of the photon
four-momentum squared:

F∆(q2) =
Λ2n

∆

(Λ2
∆ − q2)n , (4)

1 We use the notation and conventions of Ref. [11] throughout the calculation.
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e.g.      intermediate states ∆

the following we will discuss the results obtained with the fixed coupling constants g1 = 7
and g2 = 9. These couplings were used in the Dressed K-matrix Model [10] (adjusted for
a different normalisation of the vertex used in the present calculation), yielding a good
coupled-channel description of pion-nucleon scattering, pion-photoproduction and Compton
scattering at low and intermediate energies. For example, the E2/M1 ratio obtained in
Ref. [10] from the pion photoproduction multipoles at the position of the ∆ resonance, is

REM = ImE3/2
1+ /ImM3/2

1+ × 100% ≈ −3%, consistent with the PDG [18] analysis: −(2.5 ±
0.5)%. With these values of the coupling constants – corresponding to g2

M = 49, gMgE = 14
and g2

E = 4, within the interpretation above – one can see from Eq. (16) and Table I that
the magnetic coupling tends to dominate the ∆ two-photon exchange contribution in most
kinematical regimes.

The ε dependence of the sum of the ∆ and nucleon two-photon exchange contributions is
shown in Fig. 2, for two fixed values of the momentum transfer and for various choices of the
γN∆ form factor. The purely nucleon contribution, shown for comparison, was calculated
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FIG. 2: Sum of the nucleon (N) and ∆ contributions to the two-photon exchange correction of the
electron-proton scattering cross section, using the monopole and dipole γN∆ form factor Eq. (4)

with two choices of the cutoff Λ∆.

as in Ref. [5] using the γNN form factors as measured in the PT experiments [3]. The ∆
correction is more prominent at higher momentum transfers. The ∆ tends to attenuate the
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phenomenological models and also in state-of-the-art lat-
tice calculations [1, 2]; many focus on the contribution
to the magnetic moment. In this paper, we report on
a new measurement sensitive to strange quark contribu-
tions over a range of distance scales.

Separation of the strange quark contributions to nu-
cleon currents in the context of the neutral weak interac-
tion dates back to Cahn and Gilman [3] and was devel-
oped by Kaplan and Manohar [4]. Because the coupling
of both photons and Z bosons to point-like quarks is
well defined, it is possible, by comparing the correspond-
ing currents, to separate the contributions of the various
flavors [5, 6, 7]. The charge and magnetic form factors of
the proton can be written (i = γ, Z)

Gp,i
E,M = ei,uGu

E,M + ei,d
(
Gd

E,M + Gs
E,M

)
, (1)

neglecting the very small contribution from heavier fla-
vors. For the ordinary electromagnetic form factors the
charges are eγ = +2/3, −1/3 for u and d/s quarks, re-
spectively. Assuming that the proton and neutron are re-

lated by a simple exchange of u and d quarks [8] (and the
corresponding anti-quarks), the ordinary neutron form
factors can be written in terms of these same contribu-
tions

Gn,γ
E,M =

2

3
Gd

E,M − 1

3

(
Gu

E,M + Gs
E,M

)
. (2)

A complete separation of the Gq
E,M , and, in particular,

isolation of Gs
E,M , requires a third combination. In this

paper, new measurements of the weak interaction form
factors of the proton are presented which allow us to
determine the strange quark contributions. These form
factors are written (Eqn. 1) in terms of the weak charges,
eZ = 1− 8/3 sin2θW , −1+ 4/3 sin2θW for the u and d/s
quarks, respectively, where θW is the weak mixing angle.

In order to isolate the small contribution to elastic
electron-proton scattering from the neutral weak current,
we measure the parity-violating asymmetry for longitu-
dinally polarized (R and L) electrons [7]

A =
dσR − dσL

dσR + dσL
= − GF Q2

4
√

2πα

εGγ
EGZ

E + τGγ
MGZ

M − (1 − 4 sin2 θW )ε′Gγ
MGe

A

D (3)

where

τ =
Q2

4M2
p

, ε =

(
1 + 2(1 + τ) tan2 θ

2

)−1

,

D = ε(Gγ
E)2 + τ(Gγ

M )2, and ε′ =
√

τ(1 + τ)(1 − ε2),

Q2 is the squared four-momentum transfer (Q2 > 0), GF

and α the usual weak and electromagnetic couplings, Mp

the proton mass and θ the laboratory electron scattering
angle. The three new form factors in this asymmetry,
GZ

E , GZ
M and Ge

A may be separated by measuring elas-
tic scattering from the proton at forward and backward
angles, and quasi-elastic scattering from the deuteron at
backward angles [7].

The G0 experiment [9] was performed in Hall C at
Jefferson Lab. We used a 40 µA polarized electron
beam with an energy of 3.031 ± 0.001 GeV over the
measurement period of 700 h. It was generated with
a strained GaAs polarized source [10] with 32 ns pulse
timing (rather than the standard 2 ns) to allow for time-
of-flight (t.o.f.) measurements. The average beam po-
larization, measured with a Møller polarimeter [11] in
interleaved runs, was 73.7 ± 1.0%. Helicity-correlated
current and position changes were corrected with active
feedback to levels of about 0.3 parts-per-million (ppm)
and 10 nm, respectively. Corrections to the measured
asymmetry were applied via linear regression for residual

helicity-correlated beam current, position, angle and en-
ergy variations and amounted to a negligible total of 0.02
ppm; the largest correction was 0.01 ppm for helicity-
correlated current variation. We made one further cor-
rection of, on average, +0.71 ± 0.14 ppm to the asym-
metries in all detectors (∼ 5% variation from detector to
detector). It was associated with a small (∼ 10−3) frac-
tion of the beam current with a 2 ns structure (“leakage
beam”: tails of beams from other operating halls) and a
large charge asymmetry (∼ 570 ppm); it was measured
in otherwise ‘forbidden’ regions of the t.o.f. spectra.

The polarized electrons scattered from a 20 cm liquid
hydrogen target [12]; the recoiling elastic protons were
detected to allow simultaneous measurement of the wide
range of momentum transfer, 0.12 ≤ Q2 ≤ 1.0 GeV2.
This was effected using a novel toroidal spectrometer de-
signed to measure the entire range with a single field
setting and with precision comparable to previous exper-
iments. The spectrometer included an eight-coil super-
conducting magnet and eight sets of scintillator detec-
tors. Each set consisted of 16 scintillator pairs used in
coincidence to cover the range of momentum transfers
(smallest detector number corresponding to the lowest
momentum transfer). Because of the correlation between
the momentum and scattering angle of the elastic protons
(higher momentum corresponds to more forward proton
scattering angles), detector 15 covered the range of mo-
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phenomenological models and also in state-of-the-art lat-
tice calculations [1, 2]; many focus on the contribution
to the magnetic moment. In this paper, we report on
a new measurement sensitive to strange quark contribu-
tions over a range of distance scales.

Separation of the strange quark contributions to nu-
cleon currents in the context of the neutral weak interac-
tion dates back to Cahn and Gilman [3] and was devel-
oped by Kaplan and Manohar [4]. Because the coupling
of both photons and Z bosons to point-like quarks is
well defined, it is possible, by comparing the correspond-
ing currents, to separate the contributions of the various
flavors [5, 6, 7]. The charge and magnetic form factors of
the proton can be written (i = γ, Z)

Gp,i
E,M = ei,uGu

E,M + ei,d
(
Gd

E,M + Gs
E,M

)
, (1)

neglecting the very small contribution from heavier fla-
vors. For the ordinary electromagnetic form factors the
charges are eγ = +2/3, −1/3 for u and d/s quarks, re-
spectively. Assuming that the proton and neutron are re-

lated by a simple exchange of u and d quarks [8] (and the
corresponding anti-quarks), the ordinary neutron form
factors can be written in terms of these same contribu-
tions

Gn,γ
E,M =

2

3
Gd

E,M − 1

3

(
Gu

E,M + Gs
E,M

)
. (2)

A complete separation of the Gq
E,M , and, in particular,

isolation of Gs
E,M , requires a third combination. In this

paper, new measurements of the weak interaction form
factors of the proton are presented which allow us to
determine the strange quark contributions. These form
factors are written (Eqn. 1) in terms of the weak charges,
eZ = 1− 8/3 sin2θW , −1+ 4/3 sin2θW for the u and d/s
quarks, respectively, where θW is the weak mixing angle.

In order to isolate the small contribution to elastic
electron-proton scattering from the neutral weak current,
we measure the parity-violating asymmetry for longitu-
dinally polarized (R and L) electrons [7]

A =
dσR − dσL

dσR + dσL
= − GF Q2

4
√
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E + τGγ
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MGe

A

D (3)

where
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Q2

4M2
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(
1 + 2(1 + τ) tan2 θ

2

)−1

,

D = ε(Gγ
E)2 + τ(Gγ

M )2, and ε′ =
√

τ(1 + τ)(1 − ε2),

Q2 is the squared four-momentum transfer (Q2 > 0), GF

and α the usual weak and electromagnetic couplings, Mp

the proton mass and θ the laboratory electron scattering
angle. The three new form factors in this asymmetry,
GZ

E , GZ
M and Ge

A may be separated by measuring elas-
tic scattering from the proton at forward and backward
angles, and quasi-elastic scattering from the deuteron at
backward angles [7].

The G0 experiment [9] was performed in Hall C at
Jefferson Lab. We used a 40 µA polarized electron
beam with an energy of 3.031 ± 0.001 GeV over the
measurement period of 700 h. It was generated with
a strained GaAs polarized source [10] with 32 ns pulse
timing (rather than the standard 2 ns) to allow for time-
of-flight (t.o.f.) measurements. The average beam po-
larization, measured with a Møller polarimeter [11] in
interleaved runs, was 73.7 ± 1.0%. Helicity-correlated
current and position changes were corrected with active
feedback to levels of about 0.3 parts-per-million (ppm)
and 10 nm, respectively. Corrections to the measured
asymmetry were applied via linear regression for residual

helicity-correlated beam current, position, angle and en-
ergy variations and amounted to a negligible total of 0.02
ppm; the largest correction was 0.01 ppm for helicity-
correlated current variation. We made one further cor-
rection of, on average, +0.71 ± 0.14 ppm to the asym-
metries in all detectors (∼ 5% variation from detector to
detector). It was associated with a small (∼ 10−3) frac-
tion of the beam current with a 2 ns structure (“leakage
beam”: tails of beams from other operating halls) and a
large charge asymmetry (∼ 570 ppm); it was measured
in otherwise ‘forbidden’ regions of the t.o.f. spectra.

The polarized electrons scattered from a 20 cm liquid
hydrogen target [12]; the recoiling elastic protons were
detected to allow simultaneous measurement of the wide
range of momentum transfer, 0.12 ≤ Q2 ≤ 1.0 GeV2.
This was effected using a novel toroidal spectrometer de-
signed to measure the entire range with a single field
setting and with precision comparable to previous exper-
iments. The spectrometer included an eight-coil super-
conducting magnet and eight sets of scintillator detec-
tors. Each set consisted of 16 scintillator pairs used in
coincidence to cover the range of momentum transfers
(smallest detector number corresponding to the lowest
momentum transfer). Because of the correlation between
the momentum and scattering angle of the elastic protons
(higher momentum corresponds to more forward proton
scattering angles), detector 15 covered the range of mo-
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timated from the range of elastic asymmetries generated
from a variety of different background yield and asymme-
try models. These models are bounded by the measured
slopes of background yields and asymmetries on either
side of the elastic peak and varied continuously between
these limits. The uncertainty in the background asym-
metry for detector 15 is conservatively taken to be the
difference between interpolated background asymmetries
in successive detectors as described above. We have also
estimated the global and point-to-point contributions to
these uncertainties from the extent to which a change in,
e.g., the background asymmetry functional form, consis-
tently changes the asymmetries in all the affected detec-
tors.

The results of the experiment are shown as a function
of momentum transfer in Fig. 2. The quantity

Gs
E + ηGs

M =
4
√

2πα

GF Q2

D
εGγ

E

(Aphys − ANV S) , (5)

(where η
(
Q2

)
= τGp

M/εGp
E) is determined from the dif-

ference between the experimental asymmetry and the
“no-vector-strange” asymmetry, ANV S . ANV S is calcu-
lated from Eqn. 3 with Gs

E = Gs
M = 0 for all values of Q2,

and using the electromagnetic form factors of Kelly [15].
Also shown is the excellent agreement with the HAPPEX
measurements [16, 17] made at nearly the same kinematic
points (with small corrections to the asymmetries, < 0.2
ppm, to adjust them to the G0 beam energy). The error
bars include the statistical uncertainty (inner) and statis-
tical plus point-to-point systematic uncertainties added
in quadrature (outer). The error bands represent, for the
G0 experiment, the global systematic uncertainties: from
the measurement (upper) and from the uncertainties in
the quantities entering ANV S (lower). These quantities
are: the calculated value of the axial-vector form factor
normalization [18] (differing from gA/gV by electroweak
radiative corrections), the same dipole momentum trans-
fer dependence for Ge

A(Q2) as is deduced for GA(Q2) [19],
the axial vector strangeness contribution ∆s [20], and
the electroweak radiative corrections [21]. The sensitiv-
ity of the result to electromagnetic form factors is shown
separately by the lines on the plot. For the alternative
form factor parameterizations of Friedrich and Walcher
(FW) [22] (dashed) and the combination (dotted): Ar-
rington “Rosenbluth” [23] - proton, and Kelly [15] - neu-
tron, the effective ANV S is shown (e.g., for the FW pa-
rameterization, the value of Gs

E + ηGs
M at Q2 = 0.63

GeV2 increases from 0.059 to 0.072). Alternately, the
uncertainties in the Kelly form factor fits would increase
the width of the uncertainty band (lower) for ANV S at
each Q2 by about 25% if included there.

The Gs
E + ηGs

M data shown in Fig. 2 have a system-
atic and intriguing Q2 dependence. For reference we note
that Gs

E + ηGs
M = 0 at Q2 = 0 and that η ∼ 0.94Q2

(Kelly form factors) for our kinematics. First, to charac-

FIG. 2: The combination Gs
E + ηGs

M for the present mea-
surement. The gray bands indicate systematic uncertainties
(to be added in quadrature); the lines correspond to different
electromagnetic nucleon form factor models (see text).

terize our result with a single number, we tested the hy-
pothesis Gs

E + ηGs
M = 0 by generating randomized data

sets with this constraint, distributed according to our
statistical and systematic uncertainties (including corre-
lated uncertainties). The fraction of these with χ2 larger
than that of our data set was 11%, so we conclude that
the non-strange hypothesis is disfavored with 89% con-
fidence. More important is the Q2 dependence of the
data. The initial rise from zero to about 0.05 is consis-
tent with the finding that Gs

M (Q2 = 0.1 GeV2) ∼ +0.5
from the SAMPLE [24], PVA4 [25] and HAPPEX [17]
measurements. Because η increases linearly throughout,
the apparent decline of the data in the intermediate re-
gion up to Q2 ∼ 0.3 indicates that Gs

E may be negative

in this range. There is also some support for this conclu-
sion from the combination of G0 and PVA4 [26] results
at Q2 = 0.23 GeV2. There is a significant trend, consis-
tent with HAPPEX [16], to positive values of Gs

E + ηGs
M

at higher Q2. Experiments planned for Jefferson Lab,
including G0 measurements at backward angles, and
MAMI (Mainz) will provide precise separations of Gs

E

and Gs
M over a range of Q2 to address this situation.

In summary, we have measured forward angle parity-
violating asymmetries in elastic electron-proton scatter-
ing over a range of momentum transfers from 0.12 to 1.0
GeV2. These asymmetries determine the neutral weak
interaction analogs of the ordinary charge and magneti-
zation form factors of the proton. From the asymmetries
we have determined combinations of the strange quark
contributions to these form factors, Gs

E + ηGs
M , which,

together with other experiments, indicate that both Gs
M

and Gs
E are non-zero.

We gratefully acknowledge the strong technical contri-
butions to this experiment from many groups: Caltech,
Illinois, LPSC-Grenoble, IPN-Orsay, TRIUMF and par-
ticularly the Accelerator and Hall C groups at Jefferson
Lab. This work is supported in part by CNRS (France),
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phenomenological models and also in state-of-the-art lat-
tice calculations [1, 2]; many focus on the contribution
to the magnetic moment. In this paper, we report on
a new measurement sensitive to strange quark contribu-
tions over a range of distance scales.

Separation of the strange quark contributions to nu-
cleon currents in the context of the neutral weak interac-
tion dates back to Cahn and Gilman [3] and was devel-
oped by Kaplan and Manohar [4]. Because the coupling
of both photons and Z bosons to point-like quarks is
well defined, it is possible, by comparing the correspond-
ing currents, to separate the contributions of the various
flavors [5, 6, 7]. The charge and magnetic form factors of
the proton can be written (i = γ, Z)

Gp,i
E,M = ei,uGu

E,M + ei,d
(
Gd

E,M + Gs
E,M

)
, (1)

neglecting the very small contribution from heavier fla-
vors. For the ordinary electromagnetic form factors the
charges are eγ = +2/3, −1/3 for u and d/s quarks, re-
spectively. Assuming that the proton and neutron are re-

lated by a simple exchange of u and d quarks [8] (and the
corresponding anti-quarks), the ordinary neutron form
factors can be written in terms of these same contribu-
tions

Gn,γ
E,M =
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)
. (2)

A complete separation of the Gq
E,M , and, in particular,

isolation of Gs
E,M , requires a third combination. In this

paper, new measurements of the weak interaction form
factors of the proton are presented which allow us to
determine the strange quark contributions. These form
factors are written (Eqn. 1) in terms of the weak charges,
eZ = 1− 8/3 sin2θW , −1+ 4/3 sin2θW for the u and d/s
quarks, respectively, where θW is the weak mixing angle.

In order to isolate the small contribution to elastic
electron-proton scattering from the neutral weak current,
we measure the parity-violating asymmetry for longitu-
dinally polarized (R and L) electrons [7]

A =
dσR − dσL

dσR + dσL
= − GF Q2

4
√
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εGγ
EGZ

E + τGγ
MGZ

M − (1 − 4 sin2 θW )ε′Gγ
MGe

A

D (3)

where
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,
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√

τ(1 + τ)(1 − ε2),

Q2 is the squared four-momentum transfer (Q2 > 0), GF

and α the usual weak and electromagnetic couplings, Mp

the proton mass and θ the laboratory electron scattering
angle. The three new form factors in this asymmetry,
GZ

E , GZ
M and Ge

A may be separated by measuring elas-
tic scattering from the proton at forward and backward
angles, and quasi-elastic scattering from the deuteron at
backward angles [7].

The G0 experiment [9] was performed in Hall C at
Jefferson Lab. We used a 40 µA polarized electron
beam with an energy of 3.031 ± 0.001 GeV over the
measurement period of 700 h. It was generated with
a strained GaAs polarized source [10] with 32 ns pulse
timing (rather than the standard 2 ns) to allow for time-
of-flight (t.o.f.) measurements. The average beam po-
larization, measured with a Møller polarimeter [11] in
interleaved runs, was 73.7 ± 1.0%. Helicity-correlated
current and position changes were corrected with active
feedback to levels of about 0.3 parts-per-million (ppm)
and 10 nm, respectively. Corrections to the measured
asymmetry were applied via linear regression for residual

helicity-correlated beam current, position, angle and en-
ergy variations and amounted to a negligible total of 0.02
ppm; the largest correction was 0.01 ppm for helicity-
correlated current variation. We made one further cor-
rection of, on average, +0.71 ± 0.14 ppm to the asym-
metries in all detectors (∼ 5% variation from detector to
detector). It was associated with a small (∼ 10−3) frac-
tion of the beam current with a 2 ns structure (“leakage
beam”: tails of beams from other operating halls) and a
large charge asymmetry (∼ 570 ppm); it was measured
in otherwise ‘forbidden’ regions of the t.o.f. spectra.

The polarized electrons scattered from a 20 cm liquid
hydrogen target [12]; the recoiling elastic protons were
detected to allow simultaneous measurement of the wide
range of momentum transfer, 0.12 ≤ Q2 ≤ 1.0 GeV2.
This was effected using a novel toroidal spectrometer de-
signed to measure the entire range with a single field
setting and with precision comparable to previous exper-
iments. The spectrometer included an eight-coil super-
conducting magnet and eight sets of scintillator detec-
tors. Each set consisted of 16 scintillator pairs used in
coincidence to cover the range of momentum transfers
(smallest detector number corresponding to the lowest
momentum transfer). Because of the correlation between
the momentum and scattering angle of the elastic protons
(higher momentum corresponds to more forward proton
scattering angles), detector 15 covered the range of mo-
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timated from the range of elastic asymmetries generated
from a variety of different background yield and asymme-
try models. These models are bounded by the measured
slopes of background yields and asymmetries on either
side of the elastic peak and varied continuously between
these limits. The uncertainty in the background asym-
metry for detector 15 is conservatively taken to be the
difference between interpolated background asymmetries
in successive detectors as described above. We have also
estimated the global and point-to-point contributions to
these uncertainties from the extent to which a change in,
e.g., the background asymmetry functional form, consis-
tently changes the asymmetries in all the affected detec-
tors.

The results of the experiment are shown as a function
of momentum transfer in Fig. 2. The quantity
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(Aphys − ANV S) , (5)

(where η
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= τGp
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E) is determined from the dif-

ference between the experimental asymmetry and the
“no-vector-strange” asymmetry, ANV S . ANV S is calcu-
lated from Eqn. 3 with Gs

E = Gs
M = 0 for all values of Q2,

and using the electromagnetic form factors of Kelly [15].
Also shown is the excellent agreement with the HAPPEX
measurements [16, 17] made at nearly the same kinematic
points (with small corrections to the asymmetries, < 0.2
ppm, to adjust them to the G0 beam energy). The error
bars include the statistical uncertainty (inner) and statis-
tical plus point-to-point systematic uncertainties added
in quadrature (outer). The error bands represent, for the
G0 experiment, the global systematic uncertainties: from
the measurement (upper) and from the uncertainties in
the quantities entering ANV S (lower). These quantities
are: the calculated value of the axial-vector form factor
normalization [18] (differing from gA/gV by electroweak
radiative corrections), the same dipole momentum trans-
fer dependence for Ge

A(Q2) as is deduced for GA(Q2) [19],
the axial vector strangeness contribution ∆s [20], and
the electroweak radiative corrections [21]. The sensitiv-
ity of the result to electromagnetic form factors is shown
separately by the lines on the plot. For the alternative
form factor parameterizations of Friedrich and Walcher
(FW) [22] (dashed) and the combination (dotted): Ar-
rington “Rosenbluth” [23] - proton, and Kelly [15] - neu-
tron, the effective ANV S is shown (e.g., for the FW pa-
rameterization, the value of Gs

E + ηGs
M at Q2 = 0.63

GeV2 increases from 0.059 to 0.072). Alternately, the
uncertainties in the Kelly form factor fits would increase
the width of the uncertainty band (lower) for ANV S at
each Q2 by about 25% if included there.

The Gs
E + ηGs

M data shown in Fig. 2 have a system-
atic and intriguing Q2 dependence. For reference we note
that Gs

E + ηGs
M = 0 at Q2 = 0 and that η ∼ 0.94Q2

(Kelly form factors) for our kinematics. First, to charac-

FIG. 2: The combination Gs
E + ηGs

M for the present mea-
surement. The gray bands indicate systematic uncertainties
(to be added in quadrature); the lines correspond to different
electromagnetic nucleon form factor models (see text).

terize our result with a single number, we tested the hy-
pothesis Gs

E + ηGs
M = 0 by generating randomized data

sets with this constraint, distributed according to our
statistical and systematic uncertainties (including corre-
lated uncertainties). The fraction of these with χ2 larger
than that of our data set was 11%, so we conclude that
the non-strange hypothesis is disfavored with 89% con-
fidence. More important is the Q2 dependence of the
data. The initial rise from zero to about 0.05 is consis-
tent with the finding that Gs

M (Q2 = 0.1 GeV2) ∼ +0.5
from the SAMPLE [24], PVA4 [25] and HAPPEX [17]
measurements. Because η increases linearly throughout,
the apparent decline of the data in the intermediate re-
gion up to Q2 ∼ 0.3 indicates that Gs

E may be negative

in this range. There is also some support for this conclu-
sion from the combination of G0 and PVA4 [26] results
at Q2 = 0.23 GeV2. There is a significant trend, consis-
tent with HAPPEX [16], to positive values of Gs

E + ηGs
M

at higher Q2. Experiments planned for Jefferson Lab,
including G0 measurements at backward angles, and
MAMI (Mainz) will provide precise separations of Gs

E

and Gs
M over a range of Q2 to address this situation.

In summary, we have measured forward angle parity-
violating asymmetries in elastic electron-proton scatter-
ing over a range of momentum transfers from 0.12 to 1.0
GeV2. These asymmetries determine the neutral weak
interaction analogs of the ordinary charge and magneti-
zation form factors of the proton. From the asymmetries
we have determined combinations of the strange quark
contributions to these form factors, Gs

E + ηGs
M , which,

together with other experiments, indicate that both Gs
M

and Gs
E are non-zero.

We gratefully acknowledge the strong technical contri-
butions to this experiment from many groups: Caltech,
Illinois, LPSC-Grenoble, IPN-Orsay, TRIUMF and par-
ticularly the Accelerator and Hall C groups at Jefferson
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2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).

The renormalization constants for the spin-independent, helicity and transversity opera-

tors are given by
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The contributions from the coupling to nucleon intermediate states are given by:

ZNN
1,U = − g2

A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (19)

and

ZNN
1,P =

1

3

g2
A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (20)

for the unpolarized and polarized operators, respectively. One can explicitly verify that the

LNA behavior of these contributions is m2
π log m2

π. The ∆ contributions to the unpolarized
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2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).

The renormalization constants for the spin-independent, helicity and transversity opera-

tors are given by

Z−1
q = 1 + ZNN
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1,U + Ztad

1,U , (18a)
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The contributions from the coupling to nucleon intermediate states are given by:

ZNN
1,U = − g2

A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (19)

and

ZNN
1,P =

1

3

g2
A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (20)

for the unpolarized and polarized operators, respectively. One can explicitly verify that the

LNA behavior of these contributions is m2
π log m2

π. The ∆ contributions to the unpolarized
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and QK!#1 is the strangeness charge of the kaon. The
expression for GM

(K) especially is now very simple, depending

only on the relative orientation of the kaon and photon mo-

menta. In particular, there is no contribution to GM
(K) from the

configuration where k! and q! are parallel, for which it

would be impossible to flip the nucleon spin through the

interaction with the spin-0 kaon. As we shall see below, the

contribution from the K-interaction diagram to the magnetic

moment will be instrumental to its change of sign.

The results for the B1
S form factor turn out to be quite

large in magnitude, but opposite in sign compared with G̃M
S ,

for the same value of the cutoff mass parameter #K# . The

combined effect, illustrated in Fig. 1 !solid curve", is a value
for (S which is almost independent of #K# . Also shown is

the uncorrected value (̃S)G̃M
S (0) !dotted curve", and

#2B1
S(0) !dashed curve". In fact, the B1

(#) form factor is

negative, making the contribution to the magnetic moment

from the # interaction more positive than for the uncorrected

G̃M
(#) . The same is true for the K interaction contribution,

where B1
(K) , which is also negative, gives a less negative

contribution to GM
(K) compared with G̃M

K . The final effect is

that both the K interaction and # interaction diagrams now

contribute with almost the same magnitude and opposite

sign, making the total magnetic moment very small and posi-

tive: for #K#!1 GeV, one has GM
(#)(0)!0.044 n.m. and

GM
(K)(0)!#0.034 n.m., for a total strange magnetic moment

(S!"0.010 n.m. This is to be compared with G̃M
(#)(0)

FIG. 1. Strange magnetic moment (S !solid" as a function of
meson-nucleon vertex function cutoff mass #K# . Also shown are

the unphysical (̃S !dotted" and #2B1
S(0) contributions !dashed".
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operators. Diagrams ZN
2 and Z∆
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Fig. 13. Proton F2 structure function in the ! (top) and S11 (bottom) resonance regions from Jefferson Lab Hall C, compared

with the scaling curve from Ref. [7]. The resonances move to higher " with increasing Q2, which ranges from ∼ 0.5GeV2

(smallest " values) to ∼ 4.5GeV2 (largest " values).

higherQ2 values. It is difficult to evaluate precisely the equivalence of the two ifQ2 evolution [60] is not

taken into account. Furthermore, the resonance data and scaling curves, although at the same " or #′, are
at different x and sensitive therefore to different parton distributions. A more stringent test of the scaling

behavior of the resonances would compare the resonance data with fundamental scaling predictions for

the same low-Q2, high-x values as the data.

Such predictions are now commonly available from several groups around the world, for instance,

the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [61]; Martin, Roberts, Stirling, and

Thorne (MRST) [62]; Gluck, Reya, andVogt (GRV) [63]; and Blümlein and Böttcher [64], to name a few.

These groups provide results from global QCD fits to a full range of hard scattering processes—including

lepton–nucleon deep inelastic scattering, prompt photon production, Drell–Yan measurements, jet pro-

duction, etc.—to extract quark and gluon distribution functions (PDFs) for the proton. The idea of such

global fitting efforts is to adjust the fundamental PDFs to bring theory and experiment into agreement

for a wide range of processes. These PDF-based analyses include pQCD radiative corrections which give

rise to logarithmicQ2 dependence of the structure function. In this report, we use parameterizations from

all of these groups, choosing in each case the most straightforward implementation for our needs. It is

not expected that this choice affects any of the results presented here.

Local Bloom-Gilman duality

∆

S11

ξ =
2x

1 +
√

1 + 4M2x2/Q2
Nachtmann scaling variable
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Fig. 14. Proton F
p
2 structure function in the resonance region for several values of Q2, as indicated. Data from Jefferson Lab

Hall C [65,66] are compared with some recent parameterizations of the deep inelastic data at the same Q2 values (see text).

Comparison of resonance region data with PDF-based global fits allows the resonance–scaling com-

parison to be made at the same values of (x, Q2), making the experimental signature of duality less

ambiguous. Such a comparison is presented in Fig. 14 for F
p
2 data from Jefferson Lab experiment E94-

110 [65,66], with the data bin-centered to the values Q2 = 1.5, 2.5 and 3.5 GeV2 indicated. These F
p
2

data are from an experiment capable of performing longitudinal/transverse cross section separations, and

so are even more precise than those shown in Figs. 11–13.

The smooth curves in Fig. 14 are the perturbative QCD fits from the MRST [67] and CTEQ [68]

collaborations, evaluated at the same Q2 values as the data. The data are shown with target mass (TM)

corrections, which are calculated according to the prescription of Barbieri et al. [16]. The SLAC curve

is a fit to deep inelastic scattering data [69], which implicitly includes target mass effects inherent in

the actual data. The target mass corrected pQCD curves appear to describe, on average, the resonance

strength at each Q2 value. Moreover, this is true for all of the Q2 values shown, indicating that the

resonance averages must be following the same perturbative Q2 evolution [60] which governs the pQCD

parameterizations (MRST and CTEQ). This demonstrates even more emphatically the striking duality

between the nominally highly nonperturbative resonance region and the perturbative scaling behavior.

An alternate approach to quantifying the observation that the resonances average to the scaling curve

has been used recently by Alekhin [70]. Here the differences between the resonance structure func-

tion values and those of the scaling curve, !F
p
2 , are used to demonstrate duality, as shown in Fig. 15,
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Fig. 26. As in Fig. 25, but for the longitudinal structure function FL.

the integrated resonance region strength forQ2!1GeV2 is similar to the integrated perturbative strength
over the same range in x. This strongly suggests that, at least for the unpolarized structure functions,

duality is a fundamental property of nucleon structure.

4.2.2. Moments of F1 and FL
In this section we present moments of new, LT-separated, spin-averaged, structure function data.

Previously, F2 moments were constructed using assumed values for R. Since hardly any measurements
of R existed in the nucleon resonance region before the Jefferson Lab E94-110 experiment [65,66], one

may expect small changes to the low-Q2 moments of F2 constructed from the earlier data.
At lower values of Q2 (< 5GeV2), the region of the nucleon resonances covers larger intervals of x,

and consequently resonances provide increasingly dominant contributions to structure function moments.

Since bound state resonances are associated with nonperturbative effects in QCD, one expects deviations

fromperturbative behavior to be strongest in this regime.This is especially true in the longitudinal channel,

where long-range correlations between quarks are expected to play a greater role, as discussed in Section

4.2.1, above.

As can be seen in Figs. 27 and 28, nonperturbative effects (other than the elastic contribution) appear

to be small in the new Jefferson Lab data above Q2 = 0.7GeV2. Here, the n = 2 and 4 moments of the

F
p
2 (top), 2xF

p
1 (center), and F

p
L (bottom) structure functions are extracted from fits to the Jefferson Lab

Hall C [65,66] and SLAC [95,98] data. This moment analysis is still preliminary [99], and is ultimately

E. Christy et al. (2005)

duality in F  and F  structure functions
(from longitudinal-transverse separation)

2 L

importance of target mass corrections
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measurements at higher Q2 —data which are planned but
not yet available [24].

Figure 3 shows the same duality integral ratio as in
Fig. 2, but here obtained more locally, in restricted j
ranges around the three prominent resonance enhancement
regions observed in inclusive nucleon resonance electro-
production, i.e., around the masses of the D P33(1232)
(1.3 # W2 , 1.9 GeV2), the S11(1535) (1.9 # W2 ,
2.5 GeV2), and the F15(1680) (2.5 # W2 , 3.1 GeV2)
resonances, and in the higher W2 region above these
(3.1 # W2 # 3.9 GeV2). The uncertainties shown were
computed as in Fig. 2. The latter higher mass ratios,
which compare near deep inelastic data to deep inelastic
data are essentially one and similar to the results in Fig. 2.
It has been pointed out [25] that the D resonance form
factor decreases faster in Q2 than the leading order pertur-
bative QCD Q24 behavior which the scaling curve should
reflect. A similar observation may possibly be made from
Fig. 3 where the ratio (res!DIS) drops below unity in the
region 1 , Q2 , 3.5 "GeV!c#2. The S11 region, on the
other hand, appears systematically higher than the others.
Generally, however, the lower mass resonances appear to
average to the deep inelastic strength, manifesting duality
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FIG. 3. The ratios of integrated data strength in limited ranges
of j around the prominent resonance enhancement mass regions,
to the strength from the resonance fit (stars) and NMC (squares)
scaling curves integrated over the same j regions.

behavior even in these limited ranges of j at low Q2

where higher twist effects might be expected to be large.
By utilizing new inclusive data in the resonance region

at large x, it has been possible to revisit quark-hadron dual-
ity experimentally for the first time in nearly three decades.
These new data, combined with the extensive global mea-
surements of the F2 structure function from deep inelastic
scattering, allow for precision tests of duality in electron-
nucleon scattering. The original duality observations are
verified, and the QCD moment explanation indicates that
higher twist contributions to the n ! 2 moment of the F2
structure function are small or canceling, even in the low
Q2 regime of Q2 $ 0.5 "GeV!c#2. Duality is observed
to hold for local resonance enhancements individually, as
well as for the entire 1 # W2 # 4 GeV2 resonance region.
In all cases, duality appears to be a nontrivial dynamic
property of the nucleon structure function.
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corrected MRST fit [67] (triangles) at the same (x, Q2) values.

other from a parameterization of SLAC deep inelastic data [69]. In most cases, the integrated perturbative

strength is equivalent to the resonance region strength to better than 5% aboveQ2= 1GeV2. This shows
unambiguously that duality is holding quite well on average in all of the unpolarized structure functions;

the total resonance strength over a range in x is equivalent to the perturbative, PDF-based prediction.

Of some concern is the seeming deviation from this observation in the MRST ratio at the highest

values of Q2 in Fig. 16, where the ratio rises above unity. This rise is not a violation of duality, but

rather is most likely due to an underestimation of large-x strength in the pQCD parameterizations. Higher

Q2 corresponds to large x here and, for comparison with resonance region data at the larger Q2 values,

accurate predictions at large x are crucial. There exists uncertainty in the PDFs at large x, largely due to

the ambiguity in the d/u quark distribution function ratio beyond x ∼ 0.5, which arises from the model
dependence of the nuclear corrections when extracting neutron structure information from deuterium data

(see Refs. [72–75]). Even if nominally deep inelastic data at higher W 2 and Q2, rather than resonance

region data, are compared to the available pQCD parameterizations, the scaling curves do not show

enough strength at large x (x!0.5) and fall uniformly below the data points.
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Fig. 22. F2 structure function per nucleon as a function of ! for hydrogen, deuterium, and iron. The curves are the GRV
parameterization [81] atQ2 = 1GeV2, corrected for the nuclear EMC effect. Errors shown are statistical only.

Because nucleons in the deuteron have the smallest Fermi momentum of all nuclei, ! scaling is not
expected to work in deuterium as well as in heavier nuclei at low W 2 and Q2. However, ! scaling is
observed even in deuterium at extremely low values of W 2 and relatively low momentum transfers.

For Q2!3GeV2, the resonance structure is completely washed out, so that even the most prominent "
resonance is no longer visible.

A compilation of recent F2 structure function data above W 2 = 1.2GeV2 is shown in Fig. 22 for
hydrogen, deuterium, and iron as a function of !, for a variety of momentum transfers ranging from

Q2=0.5GeV2 at low ! toQ2=7GeV2 at the higher ! values.Also shown is the F2 scaling curve for the
nucleon (from the GRV parameterization [81]), corrected for the known nuclear medium modifications

to the structure function. For the proton, the resonance structure is clearly visible and F2 is seen to
oscillate around the scaling curve. For deuterium, and even more so for iron, the resonances become less

pronounced, being washed out by the Fermi motion of the nucleons inside the nucleus. The prominent

peak present in the deuterium data in Fig. 22 (center panel) corresponds to the " resonance. This peak
follows the scaling curve as for the proton, but the other resonance peaks are smeared so much as to be

Nuclear structure 
functions

for larger nuclei, 
Fermi motion 
does resonance
averaging 
automatically !
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Operator product expansion

expand moments of structure functions
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τ = dimension − spin
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Applications of duality

If higher twists are small (duality “works”)

can use single-parton approximation
to describe structure functions

extract leading twist parton distributions

If duality is violated, and if violations are small

can use duality violations to extract 
higher twist matrix elements

learn about nonperturbative
qq or qg correlations 



Lowest moment of g1
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dx g1(x, Q2)
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+ · · ·
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Higher twist terms

1/Q   correction to g   moment 2
1

µ4 =
1

9
M2 (a2 + 4d2 + 4f2)

target mass
correction

quark-gluon
correlations



Higher twist terms

1/Q   correction to g   moment 2
1

µ4 =
1

9
M2 (a2 + 4d2 + 4f2)

f2 → 〈N | ψ̄ G̃µνγν ψ |N〉

d2 → 〈N | ψ̄ G̃µ{νγα} ψ |N〉
twist 3

twist 4



Color polarizabilities

11/Q   correction to g   moment 2

µ4 =
1

9
M2 (a2 + 4d2 + 4f2)

 color electric polarizability

χE =
1

3
(4d2 + 2f2) ∼ 〈"ja × "Ea〉z

Ji (1995), Schafer, Mankiewicz, ... (1995)

 color magnetic polarizability

χB =
1

3
(4d2 − f2) ∼ 〈j0

a
"Ba〉z

jµ

a = gsψγµ
taψ



Color polarizabilities

response of collective color electric and magnetic fields
to spin of nucleon
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χ
p
E = 0.026 ± 0.015 (stat) ± 0.021 (sys)

χ
p
B = −0.013 ± 0.007 (stat) ± 0.011 (sys)

Compare with theoretical  calculations:

χ
p
E χ

p
B

Instanton −0.03 0.02

MIT bag 0.05 0.02

QCD sum rules −0.04 0.01

Lattice ? ?
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high-precision An
1 data of the Jefferson Lab E99-117 ex-

periment [19] at large x. Since the elastic contribution is
included separately, the maximum value of x is defined
for each experiment by the pion electroproduction thresh-
old. The resulting total moments Γn

1 from the world data
are plotted in Fig. 1 for 0.5 < Q2 ≤ 10 GeV2, where the
total uncertainty in each data set is the quadratic sum of
the statistical and systematic uncertainties. The Jeffer-
son Lab experiment E94-010 (filled circles) extends the
range of Q2 with precision data below Q2 = 1 GeV2.
In all cases the data include both the inelastic and elas-
tic contributions, with the latter taken from the fit in
Ref. [20].

1 10
-0.10

-0.05

0

0.05

2
(GeV  )2Q

n
Γ

  
 (

  
  

 )
1

Q
2

SLAC E154SMC

HERMES

SLAC E142

SLAC E143

JLab E94010

FIG. 1: Q2 dependence of Γn

1 from various experiments. The
error bars are a quadratic sum of statistical and systematic
uncertainties. The twist-2 contribution from Eq. (2) is given
by the band with ∆Σ = 0.35, and its width represents the
uncertainty in αs. The elastic contribution is indicated by
the long-dashed curve.

The twist-2 contribution µn
2 is determined by fitting

the neutron data in Fig. 1 assuming there are no higher
twists in the data beyond Q2 = 5 GeV2, from which we
obtain ∆Σ = 0.35±0.08, where the uncertainty is statis-
tical. Using this central value, the twist-2 contribution is
illustrated in Fig. 1 by the shaded band, with the extrema
representing the range of uncertainty associated with the
value of αs in the Wilson coefficients. The exact value of
∆Σ depends somewhat on the x → 0 behavior assumed
in the extrapolation beyond the measured region. How-
ever, since the higher-twist contributions are determined
from the relative variation in Γn

1 from high to low Q2, the
absolute normalization of the leading-twist contribution
does not play a major role in determining fn

2 .
The higher-twist contribution ∆Γn

1 , obtained by sub-
tracting the leading-twist curves in Fig. 1 from data on
the total moment Γn

1 , is shown in Fig. 2 as a function
of 1/Q2 for ∆Σ = 0.35. Here we have used an

2 =
−0.0031(20) for the target mass corrections, obtained
from a fit to the world neutron data [19] at Q2 = 5 GeV2,
and the value dn

2 = 0.0079(48) for the twist-3 matrix el-

ement obtained from SLAC experiment E155X [21]. At
this Q2 value an

2 and dn
2 are dominated by their leading-

twist contributions.
While the Q2 evolution of the (twist-2) an

2 is straight-
forward, the evolution of higher-twist structure func-
tions is in general rather more involved. For the twist-4
fn
2 matrix element the Q2 evolution was computed in

Refs. [6, 22] to leading logarithmic order. In this analy-
sis we assume the leading-twist values for an

2 and dn
2 at

Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn

2 . In prac-
tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn

1 data for Q2 > 0.5 GeV2, using
Eq. (3) with fn

2 and the 1/Q4 correction µn
6 as free pa-

rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be

fn
2 = 0.033± 0.005 , µn

6 = (−0.019± 0.002)M4 , (9)

normalized at Q2 = 1 GeV2. Including the total system-
atic uncertainty for each experiment, we find

fn
2 = 0.034± 0.043 , µn

6 = (−0.019± 0.017)M4 . (10)
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FIG. 2: Higher-twist correction ∆Γn

1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
is a 2-parameter (fn

2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.

Meziani, WM et al,
Phys. Lett. B613 (2005) 148

Neutron g  moment1

extracted from          dataΓ
n

1 Γ
3
He

1

correcting for nuclear effects
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Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn
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tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn

1 data for Q2 > 0.5 GeV2, using
Eq. (3) with fn

2 and the 1/Q4 correction µn
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rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be
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Higher twist contribution to neutron moment



nonperturbative interactions between
quarks and gluons not dominant
at these scales 

suggests strong cancellations between 
resonances, resulting in dominance 
of leading twist

Total higher twist     zero at Q2
∼ 1 − 2 GeV

2
∼
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Enhanced Kinematical Access to the DIS Regime

12 GeV will access the
regime (x > 0.3), where
valence quarks dominate

12 GeV JLab Upgrade

high luminosity with higher energy

unique probe of high-Q  , high-x region2
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CHL-2CHL-2

Upgrade magnetsUpgrade magnets

and powerand power

suppliessupplies

Enhance equipment inEnhance equipment in

existing hallsexisting halls

Add new hallAdd new hall

CEBAF at 12 GeV

12 GeV JLab Upgrade
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Gluonic Excitations and the Origin of Confinement
The quarks in a meson are sources of a color electric

flux which is trapped in a flux tube connecting the

quarks. The formation of the flux tube is related to

the self-interaction of gluons via their color charge.

Flux

tube

forms

between

qq

linear potential

From G. Bali

• Flux tubes result in a linear confining potential
• Do flux tubes apply to light-quark systems?
• Very little is known about gluonic (or flux-tube)

excitations
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from within flux tube
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under water
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First excited state of flux tube has JPC=1+- or 1-+

combined with S=1 for quarks results in

Photons couple to exotic mesons via  !

VM  transition (same spin configuration)

Photons Preferred for Flux Tube Excitations

JPC = 0-+    0+-    1+-     1-+    2-+     2+-

exotic

(mass ~ 1.7 – 2.3 GeV)

Normal mesons:  JPC = 0-+     1+-    2-+

Double-blind Monte Carlo
simulation:

2 % exotic signal clearly
visible
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world data. For x > 0.4, the precision of An
1 data has been

improved by about an order of magnitude. This is the first

experimental evidence that An
1 becomes positive at large x.

Among all model-based calculations [3, 6, 10, 11, 20, 22], the

trend of our data is consistent with the RCQM predictions [6]

which suggest that An
1 becomes increasingly positive at even

higher x. However they do not agree with the BBS [10] and
LSS(BBS) [11] parameterizations in which HHC is imposed.

Our data are in good agreement with the LSS 2001 pQCD fit

to previous data [21] and a global NLO QCD analysis of DIS

data using a statistical picture of the nucleon [23].

Assuming the strange quark distributions s(x), s̄(x),∆s(x)
and∆s̄(x) to be negligible in the region x > 0.3, and ignoring
any Q2 dependence, one can extract polarized quark distribu-

tion functions based on the quark-parton model as

∆u + ∆ū

u + ū
=

4

15

gp
1

F p
1

(4 + R
du) − 1

15

gn
1

Fn
1

(1 + 4Rdu) ;

∆d + ∆d̄

d + d̄
=

4

15

gn
1

Fn
1

(4 +
1

Rdu
) − 1

15

gp
1

F p
1

(1 +
4

Rdu
) ,

where Rdu = (d + d̄)/(u + ū). We performed a fit to the
world gp

1/F p
1 data [30] and used Rdu extracted from pro-

ton and deuteron structure function data [40]. Results for

TABLE II: Results for the polarized quark distributions. The three

errors are those due to the gn
1 /F n

1 statistical error, g
n
1 /F n

1 systematic

error and the uncertainties of gp
1/F p

1 and R
du fits.

x (∆u + ∆ū)/(u + ū) (∆d + ∆d̄)/(d + d̄)

0.33 0.565 ± 0.005+0.002
−0.002

+0.025
−0.026 −0.274 ± 0.032+0.013

−0.013
+0.010
−0.018

0.47 0.664 ± 0.007+0.002
−0.002

+0.060
−0.060 −0.291 ± 0.057+0.018

−0.018
+0.032
−0.034

0.60 0.737 ± 0.007+0.003
−0.003

+0.116
−0.116 −0.324 ± 0.083+0.031

−0.031
+0.085
−0.089

(∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄) extracted from
our gn

1 /Fn
1 data are listed in Table II.

Figure 2 shows our results along with HERMES data [41].

The dark-shaded error band is the uncertainty due to ne-

glecting the strangeness contributions. To compare with

the RCQM prediction which is given for valence quarks,

the difference between ∆qV /qV and (∆q + ∆q̄)/(q + q̄)
was estimated and is shown as the light-shaded band. Here

qV (∆qV ) is the unpolarized (polarized) valence quark dis-

tribution for u or d quark. Both errors were estimated us-
ing the CTEQ6M [42] and MRST2001 [43] unpolarized par-

ton distribution functions and the positivity conditions that

|∆q/q| ! 1, |∆q̄/q̄| ! 1 and |∆qV /qV | ! 1. Results shown
in Fig. 2 agree well with the predictions from RCQM [6]

and LSS 2001 NLO polarized parton densities [21]. The re-

sults agree reasonably well with the statistical model calcula-

tion [23] but do not agree with the predictions from LSS(BBS)

parameterization [11] based on hadron helicity conservation.

In summary, we have obtained precise data on the neutron

spin asymmetry An
1 and the structure function ratio gn

1 /Fn
1

in the deep inelastic region at large x. Our data show a

(!
u

 +
 !

u
)/
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 +
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)

(!
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 !
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 +
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FIG. 2: Results for (∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄) in
the quark-parton model, compared with HERMES data [41], the

RCQM predictions [6], predictions from LSS 2001 NLO polarized

parton densities [21], the statistical model [23], and pQCD-based

predictions incorporating HHC [11]. The error bars of our data in-

clude the uncertainties given in Table II. The dark-shaded error band

on the horizontal axis shows the uncertainty in the data due to ne-

glecting s and s̄ contributions. The light-shaded band shows the dif-
ference between ∆qV /qV and (∆q + ∆q̄)/(q + q̄) that needs to be
applied to the data when comparing with the RCQM calculation.

clear trend that An
1 becomes positive at large x. Combined

with the world proton data, the polarized quark distributions

(∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄) were extracted.
Our results agree with the LSS 2001 pQCD fit to the previous

data and the trend agrees with the hyperfine-perturbedRCQM

predictions. The new data do not agree with the prediction

from pQCD-based hadron helicity conservation, which sug-

gests that effects beyond leading order pQCD, such as the

quark orbital angular momentum may play an important role

in this kinematic region. Extension of precision measure-

ments of An
1 to higher x and wider Q2 range is planned with

the future JLab 12 GeV energy upgrade.
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DOE Critical Decisions

2013 ??Science begins!Approve Start of

Operations

CD-4

2008/9 ??Construction begins in earnestApprove Start of

Construction

CD-3

2006/7 ??Second Lehman review to establish budget,

schedule and performance

Long-lead procurements begin

Request construction funding

Approve

Performance

Baseline

CD-2

~August

2005

Lehman review of CDR and approval

PED funds can be spent

Approve Preliminary

Baseline Range

CD-1

April 2004Formal CDR work begins using DOE funds

R&D for CDR begins

PED funds can be requested

Acquisition plan developed

Serious search for non-DOE/NP funding

Approve Mission

Need

CD-0

TimeImplications of CD ApprovalDOE MeaningCD
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Statement by Dr. Raymond Orbach before
the House Committee on Appropriations

Subcommittee on Energy and Water
March 15, 2005

In FY 2006 funds are provided to continue R&D 

activities for a potential 12 GeV Upgrade of the Continuous

Electron Beam Accelerator Facility (CEBAF). These 

investments will poise the facility  for a cost-effective upgrade 

that would allow insight on the mechanism of “quark 

confinement” – one of the compelling unanswered puzzles 

of physics.



The End


