Extraction of Resonances from

EBAC-DCC (Dynamical Coupled-Channel) Model

Satoshi Nakamura (EBAC, JLab)

Introduction

Extraction of N^* information from πN data is important !

 $\ast\,$ Understanding spectrum and structure of $N^\ast\,$ within QCD and hadron structure models

Steps to extract N^*

- 1. Construct a reaction model through analysis of data
- 2. From the constructed model, resonance properties (pole position,

vertex form factor) are extracted with analytic continuation

 πN scattering amplitude near a pole $(E \sim M_R)$

$$F_{\pi N}(E) \sim \frac{\overline{\Gamma}(M_R) \overline{\Gamma}(M_R)}{E - M_R} + (\text{regular terms})$$

Parameters characterizing Resonance

- * Pole position of amplitude : M_R
- * $N^* \to MB$ decay vertex : $\overline{\Gamma}(M_R)$

POLE SEARCH !

Suzuki, Sato, Lee, PRC **79**, 025205 (2009) arXiv:0910.1742 Multi-layered structure of complex energy plane

e.g., single-channel meson-baryon scattering

$$T(p',p;E) = V(p',p) + \int dqq^2 V(p',q) G(q,E) T(q,p;E)$$

Multi-layered structure of scattering amplitudes

e.g., single-channel meson-baryon scattering

$$T(p',p;E) = V(p',p) + \int dqq^2 V(p',q) G(q,E) T(q,p;E)$$

Multi-layered structure of scattering amplitudes

e.g., single-channel meson-baryon scattering

$$T(p',p;E) = V(p',p) + \int dqq^2 V(p',q) G(q,E) T(q,p;E)$$

Multi-layered structure of scattering amplitudes

e.g., single-channel meson-baryon scattering

$$T(p',p;E) = V(p',p) + \int dqq^2 V(p',q) G(q,E) T(q,p;E)$$

N-channel case $\implies 2^N$ Riemann sheets

2-channel case \implies 4 Riemann sheets

(channel 1, channel 2) = (p, p), (u, p), (p, u), (u, u)

p: physical sheet

u: unphysical sheet

How to choose Riemann sheet of complex E-plane

$$T(p',p;E) = V(p',p) + \int_{C} dqq^2 V(p',q) G_{MB}(q,E) T(q,p;E)$$
$$G_{MB}(q,E) = \frac{1}{E - E_M(q) - E_B(q) + i\epsilon} , \qquad E_X(q) = \sqrt{q^2 + m_X^2}$$

How to choose Riemann sheet of complex E-plane

$$T(p',p;E) = V(p',p) + \int_{C} dq q^{2} V(p',q) G_{MB}(q,E) T(q,p;E)$$
$$G_{MB}(q,E) = \frac{1}{E - E_{M}(q) - E_{B}(q) + i\epsilon} , \qquad E_{X}(q) = \sqrt{q^{2} + m_{X}^{2}}$$

Re (E)

How to choose Riemann sheet of complex E-plane

$$T(p',p;E) = V(p',p) + \int_{C} dqq^2 V(p',q) G_{MB}(q,E) T(q,p;E)$$
$$G_{MB}(q,E) = \frac{1}{E - E_M(q) - E_B(q) + i\epsilon} , \qquad E_X(q) = \sqrt{q^2 + m_X^2}$$

Re (E)

Choose momentum integral path to avoid singularities

Complex Momentum planes

Path to see unphysical sheet

Path to see physical sheet

Procedure to find a pole position

- 1. Choose a complex energy
- 2. For the chosen energy, choose an appropriate momentum path (avoid singularity, select sheet)
- 3. With the chosen path, solve Lippmann-Schwinger equation

to obtain T-matrix

4. Repeat the above steps 1-3, until a complex energy,

which gives singular T-matrix, is found.

The energy is the pole position.

More Practical ! More Detail !

$$T_{\alpha\beta} = t_{\alpha\beta}^{NR} + t_{\alpha\beta}^{R} \qquad (\alpha, \beta = \pi N, \eta N, \pi \Delta, \rho N, \sigma N)$$

$$t^R_{\alpha\beta} = \sum_{i,j} \bar{\Gamma}_{\alpha,i} [G_{N^*}]_{ij} \bar{\Gamma}_{\beta,j}$$

$$ar{\Gamma}_{lpha,j} = \Gamma_{lpha,j} + \sum_{\gamma} \int_C dq q^2 t_{lpha\gamma} G_{\gamma} \Gamma_{\gamma,j}$$

$$[G_{N^*}^{-1}]_{ij} = (E - m_{N_i^*})\delta_{i,j} - \Sigma_{i,j}(E)$$

$$\Sigma_{i,j}(E) = \sum_{\gamma} \int_C dq q^2 \Gamma_{\gamma,i} \ G_{\gamma} \ \bar{\Gamma}_{\gamma,j}$$

At pole,
$$\det[G_{N^*}^{-1}] = 0$$
 because $[G_{N^*}]_{ij} = \frac{C_{ij}}{\det[G_{N^*}^{-1}]}$

Table 1: The resonance pole positions M_R [listed as (Re M_R , -Im M_R)] Re(E) ≤ 2000 MeV and -Im(E) ≤ 250 MeV [PRL **104**, 042302 (2010)]

	$M_{N^*}^0$	M_R (JLMS)	Location	PDG
S_{11}	1800	(1540, 191)	(uuuupp)	(1490 - 1530, 45 - 125)
	1880	$(1642, \ \ 41)$	(uuuupp)	(1640 - 1670, 75 - 90)
P_{11}	1763	$(1357, \ \ 76)$	(upuupp)	(1350 - 1380, 80 - 110)
	1763	(1364,105)	(upuppp)	
	1763	(1820, 248)	(uuuuup)	(1670 - 1770, 40 - 190)
P_{13}	1711			(1660 - $1690, 57$ - $138)$
D_{13}	1899	$(1521, \ \ 58)$	(uuuupp)	(1505 - $1515, 52$ - $60)$
D_{15}	1898	$(1654, \ 77)$	(uuuupp)	(1655 - 1665, 62 - 75)
F_{15}	2187	$(1674, \ \ 53)$	(uuuupp)	(1665 - 1680, 55 - 68)
S_{31}	1850	(1563, 95)	(u-uup-)	(1590 - 1610, 57 - 60)
P_{31}	1900			(1830 - 1880, 100 - 250)
P_{33}	1391	(1211, 50)	(u-ppp-)	(1209 - 1211, 49 - 51)
	1600			(1500 - 1700, 200 - 400)
D_{33}	1976	(1604,106)	(u-uup-)	(1620 - 1680, 80 - 120)

Evaluation of Residue !

Suzuki, Sato, Lee, arXiv:0910.1742

$\underline{\pi N}$ residue

$$t_{\alpha\beta}^{R} = \sum_{i,j} \bar{\Gamma}_{\alpha,i} [G_{N^{*}}]_{ij} \bar{\Gamma}_{\beta,j} \qquad (\alpha = \beta = \pi N)$$

$$[G_{N^{*}}^{-1}]_{ij} = (E - m_{N_{i}^{*}})\delta_{i,j} - \Sigma_{i,j}(E)$$
For $E \to M_{R}$, $[G_{N^{*}}(E)]_{ij} = \frac{\chi_{i}\chi_{j}}{E - M_{R}}$

$$\sum_{j} (G_{N^{*}}(M_{R})^{-1})_{ij} \chi_{j} = 0 \implies \sum_{j} [m_{N_{i}^{*}}\delta_{ij} + \Sigma(M_{R})_{ij}] \chi_{j} = M_{R} \chi_{i}$$

$$M_{R}: \text{ eigenvalue }, \quad \chi_{i}: \text{ eigenvector}$$

$$t^R(E \to M_R) \sim \frac{\bar{\Gamma}^R \bar{\Gamma}^R}{E - M_R} \propto \frac{Re^{i\phi}}{E - M_R}$$

 $\bar{\Gamma}^R = \sum_j \chi_j \bar{\Gamma}_j (p = p^0, E = M_R)$

	JLMS		GWU-VPI		Cutkosky		Jülich	
	R	ϕ	R	ϕ	R	ϕ	R	ϕ
$P_{33}(1210)$	52	-46	52	-47	53	-47	47	-37
$P_{11}(1356)$	37	-111	38	-98	52	-100	48	-64
(1364)	64	-99	86	-46	-	-		
(1820)	20	-168	-	-	9	-167	_	-

• Larger difference in P_{11} resonance

Analysis	P11 poles (MeV)				
JLMS	$(1357, \ 76)$	(1364, 105)			
CMB	$(1370, \ 114)$	$(1360, \ 120)$			
GWU/VPI	(1359, 82)	(1388, 83)			
Jülich	(1387, 74)	(1387, 71)			

 $\Rightarrow \text{Simultaneous fit to inelastic channels } (\pi N \to \pi N, \pi \Delta, \rho N, \sigma N)$ could improve the agreement cf S. Ceci et al., PRL **97**, 062002 (2006) * $\gamma^{(*)}N \to N^*$ transition form factor

$$t_{\alpha\beta}^{R} = \sum_{i,j} \bar{\Gamma}_{\alpha,i} [G_{N^{*}}]_{ij} \bar{\Gamma}_{\beta,j} \qquad (\alpha = \pi N, \ \beta = \gamma^{(*)}N$$
$$= \sum_{i,j} \bar{\Gamma}_{\alpha,i} \frac{\chi_{i}\chi_{j}}{E - M_{R}} \bar{\Gamma}_{\beta,j} \qquad \text{for } E \to M_{R}$$
$$= \frac{\bar{\Gamma}_{\alpha}^{R} \bar{\Gamma}_{\beta}^{R}}{E - M_{R}}$$

Definition of helicity amplitude in EBAC-DCC model

$$A_{3/2}(Q^2) = X < N^*, s_z = 3/2 | -\vec{J}(Q^2) \cdot \vec{\epsilon}_{+1} | N, s_N = 1/2 >$$
$$= XX' \, \bar{\Gamma}^R_{\gamma^{(*)}N}(Q^2, M_R, \lambda_\gamma = 1, \lambda_N = -1/2)$$

 $A_{3/2}$ is complex

Definition based on Breit-Wigner parameterization

$$A_{3/2} = \frac{\left[l(l+2)\right]^{1/2}}{2} \left(\mathcal{E}_{l+} - \mathcal{M}_{l+}\right)$$
$$\mathcal{M}_{l\pm} \equiv \operatorname{Im}\left[M_{l\pm}(W = M_{BW})\right] / c_{kin}$$

• $A_{3/2}$ is real

The magnetic N- Δ (1232) transition form factor $G_M^*(Q^2)$

Suzuki et al., arXiv:0910.1742

Suzuki et al., arXiv:0910.1742

Data from CLAS collaboration arXiv:0909.2349; 0906.4081

Real part dominates

 \Rightarrow good agreement with previous analysis based on BW parameterization

Suzuki et al., arXiv:0910.1742

circles (triangles) are real (imaginary) parts

Large imaginary parts, two poles

 \Rightarrow direct comparison with previous analysis is not meaningful