AN APPLICATION OF DISCRIMINANT ANALYSIS TO DETERMINE THE DEMAND FOR INDUSTRIAL FLOOD PLAIN LOCATION

A Report Submitted to the: U. S. Army Engineer Institute for Water Resources Kingman Building Fort Belvoir, Virginia 22060

> by University of Missouri (St. Louis)

Under Contract No. DACW73-73-C-0044

Approved for public release; distribution unlimited.

DECEMBER 1974

IWR PAPER 74-P8

į

UNCLASSIFIED	
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO IWR PAPER 74-P8 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Sublitie) AN APPLICATION OF DISCRIMINANT ANALYSIS	
TO DETERMINE THE DEMAND FOR INDUSTRIA	L Final 6. PERFORMING ORG. REPORT NUMBER
FLOOD PLAIN LOCATION	S. FERFORMING ONG. REFORT NUMBER
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(*)
Andre Corbeau Carl F. Meyer	DACW73-73-C-0044
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASH AREA & WDRK UNIT NUMBERS
University of Missouri (St. Louis) St. Louis, Missouri	AREA & WORK ONLY NOMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
US Army Engineer Institute for Water Resources	December 1974
Kingman Building Fort Belvoir, Virginia 22060	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
	IS. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimite	IS. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimite	IS. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution unlimite	IS. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimited	TSe. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimite	TS. DECLASSIFICATION/DOWNGRADING SCHEDULE

1

1

AN APPLICATION OF DISCRIMINANT ANALYSIS TO DETERMINE THE DEMAND FOR INDUSTRIAL FLOOD PLAIN LOCATION

A Report Submitted to the: U. S. Army Engineer Institute for Water Resources Kingman Building Fort Belvoir, Virginia 22060

> by University of Missouri (St. Louis)

> > Andre Corbeau Carl F. Meyer

Under Contract No. DACW73-73-C-0044

Approved for public release; distribution unlimited.

DECEMBER 1974

l

IWR PAPER 74-P8

Copies may be purchased from:

National Technical Information Service U. S. Department of Commerce Springfield, Virginia 22151

This report is not to be construed as necessarily representing the views of the Federal Government or of the U. S. Army Corps of Engineers.

ē.

TABLE OF CONTENTS

1

ļ

1

]

-

.

Page

SUMMARY	1
INTRODUCTION	2
DATA COLLECTION PROCEDURE	2
COMPOSITION OF DATA BASE	5
STATISTICAL METHODOLOGY	6
CONCLUSIONS	11
SUGGESTIONS FOR FUTURE RESEARCH	12
APPENDIX A - LIST OF EXHIBITS	13
APPENDIX B - LIST OF TABLES	22
BIBLIOGRAPHY	51

i

SUMMARY

The purpose of this study was to identify the factors which motivate firms to locate on flood plains. This objective was accomplished by gathering data on the characteristics of manufacturing and commercial establishments in the St. Louis area and analyzing these data to determine and quantify any statistical differences between firms located both on and off flood plains. The research effort may be divided into four major phases: data collection, isolation of potential classification variables, determination of appropriate functions to classify a given firm as either on or off the flood plain, and simulation of these functions to determine the effect of flood risk on location decisions.

Three hundred firms were interviewed during the data collection phase of the study, and information such as annual dollar sales, annual total shipping cost, employee cost, and square footage of the site were obtained. A total of forty-two items is included in the final data base.

A list of potential candidates to be classification variables was next developed, using the statistical technique of factor analysis. Of the original forty-two variables collected, thirty-one were selected to be possible for inclusion in the classification functions.

This set of thirty-one was then reduced to six for manufacturing firms, and four for commercial by applying the technique of discriminant analysis to the data of the candidate variables. This final set of classification variables, which includes flood risk, constitutes the arguments of the classification functions generated by the discriminant analysis technique for the manufacturing and commercial observations available.

Simulation of these functions to study the effect of flood hazard on location decisions was accomplished by varying the values of the flood risk variable and observing how the functions then classify on flood plain observations as off, and vice versa. The flood risk variable is the frequency of flooding in years to which a particular flood-prone firm is susceptible. By increasing the flood frequency, thus decreasing the flood risk, the functions developed by discriminant analysis should classify currently-located on flood plain firms as off flood plain. By comparing the number and type (by flood frequency) of firms misclassified as the flood risk level is varied, the effect of flood risk on location may be found.

INTRODUCTION

This study was implemented to accumulate more information about the factors which motivate firms to locate on a flood plain. The objectives were twofold: to gather data on the characteristics of industrial and commercial establishments in the St. Louis region and to analyze these data to determine any statistical differences between those establishments located on the flood plain and those located off the flood plain.

The procedures and techniques used in the research were based upon a similar study on coal shipments in the upper Ohio River region, "An Application of Discriminant Analysis to the Division of Traffic Between Transport Modes" (4). For this project, observations of several variables, e.g., annual tonnage, travel time and cost of shipment were gathered; discriminant analysis was used as a statistical tool to classify observations into one of two populations; and finally, a demand function was developed for waterway transportation. The success of this project prompted the initiation of the research described in this report.

DATA COLLECTION PROCEDURE

The procedures developed and implemented to gather the requisite data for the analysis may be divided into three segments:

- A. Determination of the flood plains in the survey area.
- B. Mechanical processes of data collection.
- C. Computer data management and software system.

A. Determination of the flood plains in the survey area. The delineation of the flood plains, defined to be of a maximum onehundred year frequency, was developed in conjunction with the St. Louis District Corps of Engineers. The determination of specific flood hazard areas was based upon hydrologic data applied to recent topographic maps. A portion of East St. Louis and Granite City, Illinois was also examined for flood plain extent but, upon field investigation, it was found that there was insufficient occupancy on these flood plains to merit further consideration.

B. <u>Mechanical process of data collection</u>. The rationale for the data collection processes which were developed and implemented was based upon the fact that part of the information sought from the firms to be included in the survey was sensitive and could best be obtained through personal interviews. A list of establishments located on the flood plain was generated with their SIC (Standard Industrial Classification) code. These SIC codes were used to generate a matching list of firms located off the flood plain.

Initial contact with the firms selected was by means of an introductory letter. The letter was followed within a few days by a telephone call arranging an appointment with the appropriate person at the company. Thus the data collection process consisted of four parts: building an inventory of on-off firms to be contacted, constructing an effective letter of introduction to be mailed to the manager or officer of the selected companies, designing the questionnaire to be used during the interview, and training the field personnel who would perform the interviews.

The list of industrial and commercial establishments located on the flood plain was obtained through surveys of the areas designated. The name, address, and specific business of the firm was collected. To this information was added the telephone number, SIC code, and zip code (to be used in scheduling appointments). A corresponding list, matched by SIC code, was then generated for off flood plain industrial and commercial firms using various directories for the St. Louis region. The complete inventory of companies to be sampled was kept on index cards, one card per company, containing name, address, flood plain designation, SIC code, zip code, telephone number, and the name of the addressee (obtained by telephone inquiry of the firm).

The introductory letter was composed during the early stages of the survey so that it could be tested for effectiveness. The original version was found to be too long and too explicit. The letter was then revised to its present form, as shown in Exhibit A.

The questionnaire used during the interviews was revised several times before reaching its final form as shown in Exhibit B. The development of the questionnaire entailed the simultaneous solution of two problems: what information was to be collected, and how to extract it from the interviewee. The original list of items sought

was revised only once, to include both book and insurance dollar valuations on contents and/or inventory in the building, and whether the firm was the original occupant of the site. The major effort was directed to the order in which the questions were asked and the specific phrasing of the more sensitive inquiries. Initial responses reported by the field personnel were especially helpful in developing the final version.

A few comments on some parts of the questionnaire are in order, since some of the items are not self-explanatory. Items 5, 6, 8, 9, 10, and the "cost" part of 7 are in dollar figures. Item 7 was tailored to manufacturing or commercial categories because of the difference in accounting for indirect employees. Item 8 represents an attempt to attach a dollar figure to represent the size of the site. Not all categories in this item will have entries per interview. For example, if a firm owns the land it occupies, it will neither lease nor rent the site. If the firm rents or leases, there should be no tax information available. Dollar values on any rent or lease item refer to the annual amount paid. Dollar values on the ownership items refer to market or replacement value.

Graduate students were employed to perform the actual interviews, and undergraduate students were used to make the telephone calls to obtain and schedule the interviews.

The graduate students were coached on the questionnaire, and trained to effectively obtain the data without introducing statistical bias. This was done by avoiding reference to flood plain location until the interview was nearly complete. All the interviewers were rehearsed to give complete assurance of the confidentiality of the data.

The telephone solicitors were also trained and provided with a script to recite when arranging appointments. In addition to obtaining appointments, the solicitors also had the responsibility of scheduling interviews within a time-geographic constraint to enable the interviewers to make the maximum number of calls per day.

C. <u>Computer data management and software system</u>. The information on the completed interview forms, and that on the corresponding index card for the firms, was coded on special forms and keypunched. Data management consisted of updating the master

disk file, sorting this file, and creating subfiles for analytical computer runs. <u>The Statistical Analysis System</u> developed by North Carolina State University was used exclusively for this purpose. In addition, several Fortran interface programs were written to allow SAS-created subfiles to be accessed by the Biomedical Discriminant Analysis computer programs.

COMPOSITION OF DATA BASE

The information contained in the completed data base is shown in Exhibit C. The addresses of industrial and commercial establishments located on flood plains were supplied to the St. Louis District Corps of Engineers, who field checked the specific locations and attached to each the appropriate flood frequency in years. This variable can assume the values of 10, 25, 50 and 100 years.

The distribution and sample sizes are shown below:

	On Flood Plains	Off Flood Plains	Totals
Manufacturing	107	93	200
Commercial	49	52	101
Totals	156	145	301

A further breakdown by two-digit SIC code and flood plain designation may be found in Table 1. As this table indicates, the match by SIC between on and off flood plains is reasonably close. An exact one-to-one correspondence could not be obtained because of the geographic restrictions on the survey area. Once a category had been exhausted from the on flood plain inventory of firms, it could not be replaced. In other cases, there were no like-category firms off flood plains willing to participate. Finally, the presence of some off flood plain categories not matched is due to the fact that the off flood plain firms were interviewed simultaneously with on flood plain and the particular on flood plain establishment that generated an SIC category might later refuse to be interviewed, while the corresponding off flood plain interview has already been obtained.

As a point of interest, the companies from the pool that were not interviewed were classified by reason for their non-participation and aggregated. About nine hundred firms collected in the total inventory were not interviewed; over fifty percent simply refused, and six percent were found to be branch offices where no data were available. Over fifty-eight percent of the rejections were from off flood plain establishments. A more detailed statistical breakdown of the non-contributory companies may be found in Table 2.

The data were examined and initial statistical analyses performed preparatory to the discriminant analysis phase of the study. The result of this preliminary effort was to produce a subset of the variables which would subsequently be used for further analysis. This list of the major variables constitutes Exhibit D. The variables not included in this subset were eliminated in every instance because very few or no observations had values for them.

A punched card copy of the complete data base accompanies this report. The format for these cards may be found in Exhibit E.

STATISTICAL METHODOLOGY

The objectives of the statistical analysis phase of the study were to determine any significant differences between manufacturing and commercial establishments with respect to their location on or off the flood plain, and to quantify the differences by discriminant analysis. Further, the demand for flood plain location was to be estimated by simulating over the discriminant functions developed by varying the values of the flood frequency variable, and tracing the resultant misclassification of firms from on to off flood plain, and from off to on flood plain.

The analysis was begun with several sets of factor analysis, applied to selected subsets of the data. Factor analysis is a technique used to reduce the number of variables needed to characterize statistically a population. This reduction process is accomplished by the creation of surrogate variables or factors. The number of factors generated depends on how many are needed to capture the information represented by the original variables in aggregate and, in general, is considerably less than the number of original variables.

For this study, factor analysis was applied to yield a preliminary set of variables which might be used in the discriminant analysis phase of the research. The data were segmented into three categories, on flood plain, off flood plain and on-off flood plain combined, for both manufacturing and commercial establishments. Factor analysis was applied to each of the six data subsets described above and the results are displayed in Tables 3 through 8. Table 3 contains the factors for the on-off flood plain observations for manufacturing establishments, i.e., all manufacturing establishments. Six factors were developed for this data subset and the numbers indicate which variables constitute the specific factors. The largest number (absolute value) in each row identifies the factor for the variable. Thus, the variables DLR-SALE, OPR-CST, and SHIP-TOT are combined into factor 1 for all manufacturing firms. Similarly, the factors for the other subsets are contained in Tables 4 through 8.

Since the assumption underlying the research project was that the values for the variables for flood plain establishments would differ from the values for off flood plain firms, the results of the factor analysis were used as follows. Those variables which did not fall into a common factor under each subset, on, off, and combined, were considered as potential contributors to the discriminant analysis. For example, the industrial park code and length of occupancy constitute a factor in Tables 3, 4 and 5; consequently, these variables were dropped from further consideration. On the other hand, occupancy constitutes a factor by itself in Tables 3 and 4 but is combined with five others in Table 5. The difference between the on flood plain and off flood plain factors suggests that occupancy should be inserted into the discriminant analysis. For the commercial observations, comparing Tables 7 and 8, it may be observed that dollar sales, operating cost, and employee cost might reflect the difference between on and off flood plain locations.

That there is a difference between the on-off observations from either manufacturing or commercial firms can be seen from the number of factors representing the different populations. For manufacturing, seven factors are required for on flood plain, five factors for off. For commercial, only one factor was generated for the on observations, while two were needed for the off flood plains.

The results of the factor analysis indicated that the variables relating to building and inventory would be reasonable candidates for discriminant function variables; however, many of the observations for these variables were missing (either due to the nature of the variable or to the unwillingness of the establishment to provide the information). The resolution of this problem was to create two surrogate variables, as shown in Exhibit D. The building surrogate was defined to be the maximum of the dollar value of the building if owned, the insurance value, or the book or insurance valuation on the contents/ inventory.

The results of the factor analysis yielded a reduced set of variables as potential candidates for the discriminant analysis phase of the research. These variables were: square footage under roof, original occupancy code, building and inventory surrogates, length of occupancy, employee cost, shipping costs, and annual dollar sales.

The next stage was to apply discriminant analysis to attempt to quantify the difference in characteristics between on and off flood plain observations for both manufacturing and commercial firms. The discriminant analysis technique may be applied to any number of populations, assumed to be different from each other on the basis of some qualitative aspect. In this study there are two populations: on and off the flood plain.

The purpose of applying the technique is to statistically generate one linear function of the criterion variables for each population which will represent the properties of that population. Given the appropriate pair of functions, an observation may then be classified as on-off by evaluating both functions at the values of the criterion variables of the observation. The observation is then assigned to that population whose corresponding function has the greater absolute value.

For this study, the actual statistical analysis was produced by the Bio-Medical computer programs written at the University of California at Los Angeles. Initial computer runs of the discriminant analysis programs on the original data yielded cross-product matrices whose elements exceeded the field size allowed. In addition to being unable to obtain readable output, these extremely large numbers prevented inversion of the dispersion matrix; consequently, many of the variables were scaled by dividing by appropriate constants. The (scaled) values of the variables that were used for a series of various discriminant

8

I

analysis runs are shown in Tables 10 - 13, while Table 9 contains the scale factors used for those variables so indicated.

In addition to variable scaling, the nature of the data base dictated another slight modification. Due to non-response, unavailability or other reasons, some observations for variables were missing. This problem was sclved by deleting from the analysis those manufacturing or commercial establishments whose number for employee cost, operating cost, or dollar sales was missing. Also for manufacturing only, the values for the building and inventory surrogates were required to be non-zero. These deletions led to varying sample sizes for the discriminant analysis runs.

Discriminant analysis was undertaken to develop functions for manufacturing establishments both on and off flood plains and for commercial establishments both on and off flood plains.

The most significant set of discriminant functions produced is displayed in Table 14. As may be observed from the Chi-Square values obtained, these functions are highly significant for both manufacturing and commercial firms. To reinforce these results, a stepwise discriminant analysis was performed employing all the variables listed in Tables 10 - 13. The statistical tests indicated that a more significant function could be obtained by replacing dollar sales with total shipping costs. This was attempted, and the resulting functions for both manufacturing and commercial were slightly more significant, but the classification was not as good as that for the functions in Table 14.

The various discriminant functions developed for the manufacturing and commercial establishments each indicated the importance of the variable, original occupancy, in the analysis. Because this variable may take one of only two values, it was decided that its inclusion may introduce an element of statistical bias. The variable was replaced by total shipping cost, to form the discriminant functions to be used in the simulations. These functions are shown in Table 15. The functions for manufacturing are significant at the 95% level; those for commercial are significant at the 99% level.

Table 16 contains the discriminant functions actually used in the simulations. For these simulations flood frequency was added as a

variable, with those observations designated as off flood plains arbitrarily assigned a flood frequency value of 200 years. This value was deemed large enough for discriminating properly, but not so large as to cause numerical difficulties.

The rationale for simulating over these discriminant functions by varying the values of the flood frequency is to determine the effect of flood risk on location decisions. As the flood frequency is increased, thus decreasing the risk to the firms located on flood plains, the discriminant functions should misclassify these firms as off flood plain. Similarly, if flood frequency for the off flood plain firms is decreased, thus increasing the flood risk to these companies, the discriminant functions should misclassify these as on flood plain.

A total of four simulation runs was obtained, decreasing and increasing the flood risk to both manufacturing and commercial firms. The initial, correct classifications when the discriminant functions are applied to the original data are shown below.

Manufacturing			Co	mmerci	<u>al</u>
	On	Off		On	Off
On	50	0	On	48	0
Off	0	49	Off	0	50

A summary of the four simulations is shown in Table 17. For either manufacturing or commercial observations, the results labeled as "decrease risk" represent increasing the flood frequency of the on flood plain firms from their current values to a maximum of 200 years, in 30-year increments. The results labeled "increase risk" represent decreasing the flood frequency of the off flood plain firms from their artificial level of 200 years down to ten years, in decrements of 30 years. The "number changed" column reflects the number of firms subsequently misclassified as a result of a risk level change.

Examination of these simulation results appears to substantiate the difference in characteristics between on and off flood plain firms. For example, for either manufacturing or commercial firms, those located off flood plains are classified as on when the flood frequency

drops to 140 years. Those firms located on flood plains, however, are not classified as off until the flood frequency is at least as high as 190 years for manufacturing and 160 years for commercial.

Tables 18 - 21 contain the detailed breakdown of the four simulations, consisting of the classification matrix for each level of risk change, the list of observation numbers misclassified and their corresponding SIC codes, and a tabulation of those misclassified by their original flood frequency values.

These tabulations may be used to develop some locational traits between manufacturing and commercial firms with respect to flood risk.

For example, observe the difference between manufacturing and commercial as to when the first misclassification of selected flood frequencies occurs. For manufacturing, the first 50 year missed is at a simulated value of 140, the first 50 year missed for commercial is a simulated value of 110, a difference of 30 years. This pattern may be seen to continue for the first 25 year missed, and the first 10 year missed.

It is apparent that the simulation approach using discriminant analysis, as attempted and illustrated by this project, is a promising area of research. To continue, however, requires understanding of the nature of the flood hazard data needed for effective analysis, and the flood frequency data obtained.

Since the discriminant analysis technique is designed to separate populations, based on the separate data of each, attributing consistently distinct values of a variable to one population will nullify latent differences embodied in the other variables; i.e: cause perfect but not necessarily existent classification. The use of appropriate, not automatically discriminatory, flood hazard data should enable useful results to be obtained with the statistical procedures presented here.

CONCLUSIONS

The principal finding of the research effort is that there is significant statistical difference between both manufacturing and commercial firms located on flood plains and those located off the flood plain. Further, the classification functions developed significantly classify on flood

plain observations as on, and off flood plain observations as off. The techniques used to develop the set of criterion variables, the classification functions, and the simulation to produce the effects of flood hazard are well worth further research effort. The difficulty encountered during the simulation phase of this study was due to the nature of the flood risk data. By attempting to quantify flood hazard by the use of flood frequencies, an arbitrary but constant characteristic was required to be imposed on the off flood plain observations. This resulted in perfect, but not necessarily existent, classification regardless of the other variables which were included as the arguments of the functions.

SUGGESTIONS FOR FUTURE RESEARCH

The procedures and techniques used in this project should provide meaningful simulations for the study of flood risk in location decisions. However, it must be observed that quantification of the flood hazard variable should be such that automatic discrimination between on and off flood plains is avoided.

APPENDIX A

LIST OF EXHIBITS

1.	Exhibit A	Introductory Letter
2.	Exhibit B	Questionnaire
3.	Exhibit C	Contents of Data Base
4.	Exhibit D	Major Variables
5.	Exhibit E	Data Formats

.

.

.

.

.

- -

EXHIBIT A

INTRODUCTORY LETTER

X X X X

Dear

In the coming weeks the School of Business Administration, University of Missouri-St. Louis will conduct a research project for the United States Army Corps of Engineers. This project is designed to study the factors underlying the demand for industrial and commercial land in metropolitan areas.

Your firm has been selected randomly to participate in our project. The number of firms included in our sample is small, and your help is essential if the project is to be completed successfully.

Within the next few days we will contact your office to arrange an appointment with you or your representative for a fifteen-minute interview to gather the following information: annual dollar sales volume, tangible assets (insurance valuation) within broad ranges, and the following percentages of total operating costs: direct labor, transportation (by mode), state and local property taxes, and rent if applicable.

The University of Missouri-St. Louis and the Corps of Engineers appreciate your cooperation in this research activity, and assure you that all information acquired will be held in the strictest confidence and used only for statistical purposes.

Sincerely,

Andre B. Corbeau Assistant Professor Management Science

ABC:lml

	EXHIBIT B QUESTIONNAIRE	
1.	Length of occupancy years.	
2.	Original occupant yes no	
(Not asked) 3.	Industrial Park	
	Shopping Center	
	Office Building	
	Other	
4.	Sq. footage under roof (ground area	f multi-storied
, _	Site Acreage	
5.	Annual sales volume	
6.	Total Annual Operating Cost (Sales Minus Profit)	
	Shipping Cost-total	Truck
		Rail
		Water
		Air
7.	Employees	2010
	MFG. Number Cost	COMM. NUMBER COST
	Total Total	
	Direct Sales Indirect Admin.	
0	Indirect	
8.		Equipment
	Lease: Site Equipment	
(Optional) 0	Rent: Site Equipment	
(Optional) 9.	State and local property tax	BOOK Value
10.	Ruilding	
,	Paul	
	Contents/Inventory	-
11.	What consideration, if any, have you	
	mat constantion, it any, have you	green to riood
	in your business planning?	
	in your business planning? 15	

۰ مع

_ _ _ _ _ _ _

EXHIBIT C CONTENTS OF DATA BASE

Industrial Park Code; 1 = Yes, 0 = No Shopping Center Code; 1 = Yes, 0 = NoOffice Building Code; 1 = Yes, 0 = NoSquare Footage Under Roof Site Acreage Dollar Sales (Annual) Annual Operating Cost Total Shipping Cost Total Truck Cost Total Rail Cost Total Barge Cost Total Air Freight Cost Total Number of Employees Total Employee Cost Number of Direct or Sales Employees Cost of Direct or Sales Employees Number of Indirect or Administrative Employees Cost of Indirect or Administrative Employees Number of Commercial Indirect Employees Cost of Commercial Indirect Employees Dollar Valuation of Owned Land Dollar Valuation of Owned Buildings Dollar Valuation of Owned Equipment Annual Amount of Lease on Site Annual Amount of Lease on Equipment

Annual Amount of Rent on Site Annual Amount of Rent on Equipment Annual State and Local Property Taxes Dollar Insurance Value of Building Dollar Book Value of Building Dôllar Insurance Value of Equipment Dollar Book Value of Equipment and the second of the second Flood Plain Designation; 1 = 0n, 2 = 0ffSIC Code, 4 digits Length of Occupancy in Vears Type Code; 0 = Manufacturing, 1 = Commercial Flood Frequency in Years Dollar Insurance Value on Combents/Inventory Bollar Book Wallue on Contents/Inventory Original Occupancy (Code; 0 = No Response

> 11 = YYes 22 = NNo

> > ş

ł

Hocation Designation

Location Reason

Company Name

Company Address

EXHIBIT D MAJOR VARIABLES

NAME	UNITS	ABBREVIATION
Operating Cost	Dollars	OPR COST
Shipping Total	Dollars	SHIP TOT
Truck	Dollars	TRUCK
Rail Cost	Dollars	RAIL
Total Number Employees	Count	EMP NUM
Total Cost of Employees	Count Dollars Count	EMPCST
Hamber of Pirces Smprejees	Count	DS EMP N
Cost of Direct Employees	Dollars '	DSTEMPTC
Square Footage Under Roof	Dollars	SQ FOOT
Site Acreage	Dollars	ACRES
Annual Dollar Sales Volume	Dollars	DLR SALE
Number of Indirect Employees	Count	IA EMP N
Cost of Indirect Employees	Dollars	IA EMP C
Dollar Amount on Land Owned	Dollars	OWN LAND
Dollar Amount on Building Owned	Dollars	OWN BLDG
Dollar Amount of Equipment	Dollars	OWN EQU IP
Annual Site Rental Cost	Dollars	RNT_SITE
Annual Site Lease Cost	Dollars	LES_SITE
Industrial Park Location	Coded yes-no	IND PARK
Dollar Insurance Valuation of		
Building	Dollars	IVAL_BDG
Dollar Insurance Valuation of		_
Equipment	Dollars	IVAL_EQP
Dollar Book Valuation of		_
Equipment	Dollars	BVAL_EQP
Annual Equipment Leased Cost	Dollars	LES_EQIP
Dollar Book Valuation of		_
Building	Dollars	BVAL_BDG
Dollar Insurance Valuation of		
Contents/Inventory	Dollars	CN_INV_I
Dollar Book Valuation of		
Contents/Inventory	Dollars	CN_INV_B
MAX (OWN_BLDG, BVAL_BDG,	_	
IVAL BDG)	Dollars	BLDG
MAX (CN_INV_I, CN_INV_B)	Dollars	INVEN
Original Occupancy	0 = no response	,
Original Occupancy	l = orig. occup.	OCCUP
Lunuth of Degunancy in Moore	2 = not orig. occup.	
Length of Occupancy in Years Flood Frequency in Years	Number of Years	LNG_YRS
From Frequency In rears	Number of Years	FLD_FREQ

18

÷

۰.

EXHIBIT E DATA FORMATS

The data for any observation is contained on six cards. The formats and items contained on these cards is as follows. All numeric fields are right-justified, all alpha fields are left-justified.

Card 1	cc	Item
	1 - 4	Observation Number
	8 - 9	Industrial Park Code; 1 = Yes, 0 = No
	10 - 11	Shopping Center Code; $l = Yes$, $0 = No$
	12 - 13	Office Building Code; $1 = Yes$, $0 = No$
	14 - 23	Square Footage Under Roof
	24 - 3 ³	Site Acreage
	34 - 43	Dollar Sales (Annual)
	44 - 53	Annual Operating Cost
	54 - 63	Total Shipping Cost
	80	Card Number = 1
Card 2	cc	,
	1 - 4 ,	Observation Number
	8 - 17	Total Truck Cost
	18 - 27'	Total Rail Cost
	28 - 37	Total Barge Cost
,	38 - 47	Total Air Freight Cost
	48 - 52	Total Number of Employees
	53 - 62	Total Employee Cost
	63 - 67	Number of Direct or Sales Employees
	68 - 77	Cost of Direct or Sales Employees
	80	Card Number = 2

Card 3	cc	Item
	1 - 4	Observation Number
	8 - 12	Number of Indirect or Administrative Employees
	13 - 22	Cost of Indirect or Administrative Employees
	23 - 27	Number of Commercial Indirect Employees
	28 - 37	Cost of Commerical Indirect Employees
	38 - 47	Dollar Valuation of Owned Land
	48 - 57	Dollar Valuation of Owned Buildings
	5 8 - 67	Dollar Valuation of Owned Equipment
	68 - 77	Annual Amount of Lease on Site
	80	Card Number = 3
Card 4	cc	Item
	1 - 4	Observation Number
	8 - 15	Annual Amount of Lease on Equipment
	16 - 23	Annual Amount of Rent on Site
	24 - 31	Annual Amount of Rent on Equipment
	32 - 36	Annual State and Local Property Taxes
	37 - 46	Dollar Insurance Value of Building
	47 - 56	Dollar Book Value of Building
	57 - 66	Dollar Insurance Value of Equipment
	67 - 76	Dollar Book Value of Equipment
	80	Card Number = 4
Card 5	cc	Item
	1 - 4	Observation Number
	8 - 12	Flood Plain Designation; $l = On$, $2 = Off$
	13 - 17	SIC Code, 4 digits
	18 - 22	Length of Occupancy in Years

I

, I

20

i

.

Card 5	cc	Item
(cont.)	23 - 27	Type Code; 0 = Manufacturing, 1 = Commercial
,	28 - 32	Flood Frequency in Years
	33 - 42	Dollar Insurance Value on Contents/Inventory
	43 - 52	Dollar Book Value on Contents/Inventory
	53 - 62	Original Occupancy Code; 0 = No Response 1 = Yes 2 = No
	80	Card Number = 5
Card 6	cc	Item
	1 - 4	Observation Number
	8 - 23	Location Designation (Alpha)
	29 - 56	Location Reason (Alpha)
	80	Card Number = 6

ļ

F

••

APPENDIX B

•

1

ŀ

LIST OF TABLES

.

1.	Table	1	Distribution of Two-Digit SIC Code and Flood Plain Status
2.	Table	2	Frequency Distribution of Non-Participating Companies by Rejection Code
3.	Table	3	Factor Analysis for All Manufacturing Firms
4.	Table	4	Factor Analysis for All On Flood Plain Manu- facturing Firms
5.	Table	5	Factor Analysis for All Off Flood Plain Manu- facturing Firms
6.	Table	6 ·	Factor Analysis for All Commercial Firms
7.	Table	7	Factor Analysis for All On Flood Plain Com- mercial Firms
8.	Table	8	Factor Analysis for All Off Flood Plain Com- mercial Firms
9.	Table	9	Scale Factors
10.	Tab le	10	Variables and Scaled Values Used in Discriminate Simulation for Manufacturing - On
11.	Table	11	Variables and Scaled Values Used in Discriminate Simulation for Manufacturing - Off
12.	Table	12	Variables and Scaled Values Used in Discriminate Simulation for Commercial - Off
13.	Table	13	Variables and Scaled Values Used in Discriminate Simulation for Commercial - On
14.	Table	14	Discriminant Function (Without Flood Frequency)
15.	Table	15	Simulation Function (Without Flood Frequency)
16.	Table	16	Discriminant Functions Used in Simulations
17.	Table	17	Simulation Summary

I F

18.	Table 18	Simulations - Manufacturing Decrease Risk
19.	Table 19	Simulations - Manufacturing Increase Risk
20.	Table 20	Simulation: - Commercial Increase Risk
21.	Table 21	Simulations - Commercial Decrease Risk

.

DISTRIBUT	LON OF	TWO-DIGIT	SIC	CODE	AND	FLOOD	PLAIN	STATUS
SIC	ON	OFF			SIC	2 9	ON	OFF
14	0	1			39	I	0	1
15	4	5			42		13	3
16	0	1			47	,	1	1
17	3	5			50) _	15	10
20	4	3			51		5	6
22	1	2			52	2	1	0
23	0	4			53	3	0	1
24	2	1			55	5	2	4
25	1	1			56	;	0	1
26	4	4			57	,	5	6
27	6	7			58	}	0	2
28	11	14			59)	0	3
29	1	O			65	•	1	0
. 30	5	1			70)	1	0
31	1	1			72	2	0	3
32	6	5			73	3	0	1
33	6	2			75	5	3	9
34	16	17			76	i	0	1
35	21	13			89)	1.	0
36	9	2			94	ł	1	1
37	1	0		т	TALS	: 19	56	145
38	5	3						

TABLE	1
-------	---

-

1

L

.

FREQUENCY	DISTRIBU	IDN	OF NOM	-PARTICIPATING
C	OMPANIES	BY R	EJECTIO	ON CODE

REJC_CD*	FREQUENCY	PERCENT
1	451	50.731
2	59	6.637
3	50	5.624
4	94	10.574
5	235	26.434
TOTALS	889	100.000

*REJC	CD	Rejection code:	

Ĵ

1

Ĵ

1

Î

Ĩ

- 1 refused
 - 2 distance
 - 3 branch only
 - 4 non-existent
 - 5 inappropriate

FREQUENCY DISTRIBUTION OF NON-PARTICIPATING COMPANIES BY FLOOD PLAIN CODE

FLDPLN*	FREQUENCY	PERCENT
F	368	41.395
x	521	58.605
TOTALS	889	. 100.000

*FLDPLN Flood plain code: F = on

X = off

FACTOR ANALYSIS FOR ALL MANUFACTURING FIRMS 1 2 3 4 5 -0.00214 0.12868 0.24362 0.79464 -0.05743 0 11769 0 40983 -0 65907 10262 00215

INU_PARK

<u> 6 </u>

-0.25764

.978

SQ_FOO1	0.11769	0.40983	-0.65907	-0.18263	0.00315	-0.24865
ACRES	-0.13181	0.14172	-0.68672	-0.19186	0.02296	-0.10244
DLR_SALE	0.79025	0.33727	-0.24274	-0.16860	0.22690	-0.08956
OPR_COST	0.81217	0.35303	0.27875	-0.10804	-0.18500	-0.07119
SHIP_TOT	0.85329	0.00173	-0.10630	0.02442	0.15904	0.10745
EMP_CST	0.31201	0.54176	-0.30369	-0.12093	0.17626	-0.24406
OWN_LAND	0.23051	0.08746	-0.66496	0.00902	0.25274	0.12732
OWN_BLDG	0.33270	0.15732	-0.79159	0.05217	0.26437	0.02520
OWN_EQIP	0.22357	0.11642	-0.20670	-0.07507	0.85619	0.05748
IVAL_BDG	0.35557	0.00788	-0.70564	-0.09940	0.11439	-0.25993
BVAL_BDG	0.07639	0.72484	-0.46621	0.06843	-0.04031	-0.02711
IVAL_EQP	0.17324	0.05193	-0.17041	-0.02393	0.84655	-0.12215
BVAL_EQP	-0.00856	0.75189	0.01365	-0.15148	0.51864	0.01158
LNG_YRS	0.14550	0.23614	-0.00173	-0.80411	0.06752	-0.19989
CN_INV_I	0.30710	0.02977	-0.52162	-0.06319	0.43209	0.06482
CN_INV_B	0.25651	0.85860	-0.05479	-0.01457	-0.01913	0. 0 8051
OCCUP	0.02454	-0.00208	0.12183	-0.03478	-0.02730	0.91625

FACTOR	VARIANCE	PERCENT
1 2 2	2.69883 2.66978 3.35143	19.85 19.63
3 4 5 6	1.45546 2.20545	24.65 10.70 16.22
5 6	2.20545 1.21656	16.22 8.95

26

TABLE 3

TABLE	4
-------	---

1

1

I

Ń

•

FACTOR ANALYSIS FOR ALL ON FLOOD PLAIN MANUFACTURING FIRMS

0

	1	2	3	4	5	6	7
IND_PARK	-0.10228	-0.05458	0.28568	-0.09498	-0.25165	0.78187	-0.06433
SQ_FOOT	0.10452	-0.29084	-0.18445	0.01568	0.00319	-0.32635	0. 72677
ACRES	-0.07103	-0.07502	-0.80885	-0.01463	-0.09419	-0.29045	0. 19466
ULK_SALE	0.76302	-0.29485	-0.06332	0.21350	-0.07444	-0.25283	0.3 1507
OPR_COST	0.77397	-0.31495	-0.05392	0.16275	-0.01094	-0.15882	0.42093
SHIP_TOT	0.93798	-0.03493	-0.11520	0.16189	0.06747	0.00208	0.02339
EMP_CST	0.18979	-0.39371	0.07745	-0.02033	-0.26365	-0.15799	0.65364
OWN_LAND	0.37691	-0.12044	-0.80559	0.24184	-0.04161	0.06417	0.0 9066
OWN_BLDG	0.47021	-0.24865	-0.39487	0.45990	0.14936	0.13258	0.4 1688
OWN_EQIP	0.33691	-0.25932	-0.25307	0.78655	0.02444	-0.09131	-0.01699
IVAL_BDG	0.38301	-0.02663	-0.27729	0.28963	0.01656	-0.02677	0.7 0155
BVAL_BDG	0.19942	-0.74907	-0.27055	0.08564	0.08793	0.11916	0.40 578
IAVT EOD	0.12832	-0.05558	0.03754	0.85546	-0.12972	-0.06149	0.21473
BVAL_EQP	0.08236	-0.85064	-0.06034	0.36114	-0.02580	-0.23743	-0.087 72
LNG_YRS	0.11446	-0.32819	0.08453	0.04173	-0.23415	-0.72467	0.27880
CN_INV_I	0.09943	-0.04137	-0.18470	0.54211	0.19182	-0.03914	0.70223
CN_INV_B	0.24234	-0.77953	-0.02118	-0.01644	0.06336	-0.08746	0.39 860
occup	0.02948	-0.05536	0.09543	-0.05552	0.92853	-0.04609	-0.00160

FACTOR	VARIANCE	PERCENT
1	2.89247	19.01
2	2.58776	17.01
3	1.87095	12.30
4	2.24926	14.78
5	1.15987	7.62
6	1.55786	10.24
7	2.89713	19.04

27

9

•

	FACTOR	ANALYSIS	FOR ALL OFF	FLOOD PLAIN	MANUFACTURING	FIRMS
		1	2.	3	4	5
INU_PA	RK	-0.12891	0.23893	0.04743	-0.1313	0.77365
SQ_FOO	r	0.15373	0.16003	-0.82019	0.29492	-0.02880
ACRES		0.09262	0.03995	-0.88321	0.12234	-0.0647 3
DLR_SA	LE	0.12106	0.32604	-0.20045	0.82302	0.0763 3
OPR_COS	sr	0.09475	0.27263	-0.19415	0.80678	0.08674
SHIP_TO	זיט	0.05499	-0.01231	-0.20112	0.85006	-0.0389 0
EMP_CS	r	0.38651	0.42085	-0.16523	0.71621	-0.04016
OWN_LA	٩D	0.17977	0.04315	-0.17883	0.69683	-0.19410
OWN_BLI	DG	0.14650	-0.10926	-0.67722	0.57055	-0.09261
OWN_EQ	[P	0.93939	-0.04634	-0.01950	. 0.24043	-0.04762
IVAL_B	DG	0.03831	-0.22452	-0.60767	0.48293	-0.12678
BVAL_BI	DG ·	-0.02581	0.59599	-0.62851	0.08652	-0.06157
IVAL_E	QP .	0.91153	-0.05901	-0.16013	0.28986	- 0.089 04
BVAL_E	3 ħ	0.68522	0.63811	-0.13520	0.03483	-0.0288 3
LNG_YRS	5 ·	-0.00908	0.11404	0.01654	0.09413	-0.84376
CN_INV	I	0.19197	-0.25661	0.02308	0.73488	-0.08264
CN_1NV	в	-0.05725	0.89915	0.03136	0.13159	0.1307 1
OCCUP	-	-0.00564	-0.04200	0.60444	-0.01113	-0.0982 6

i

FACTOR	VARIANCE	PERCENT
1	2.50390	18.14
2	2.16351	15.67
3	3.26697	23.67
4	4.42714	32.07
• 5	1.44266	10.45

TABLE 5

TABLE 6

ĺ

1

1

1

1

1

Ĩ

1

1

Î

1

-

-

FACTOR ANALYSIS FOR ALL COMMERCIAL FIRMS

	1
SQ_FOOT	0.72045
ACRES	0.75262
DLR_SALE	0.82655
OPR_COST	0.83180
INVEN	0.87821
BLDG	0.80973
EMP_NUM	0.90647
EMP_CST	0.85725

TABLE 7

İ,

Î

1

1

1

1

1

1

Î

-

FACTOR ANALYSIS FOR ALL ON FLOOD PLAIN COMMERCIAL FIRMS

	1
SQ_FOOT	0.80889
ACRES	0.74162
DLR_SALE	0.85244
OPR_COST	0.86802
INVEN	0.90053
BLDG	0.81964
EMP_NUM	0.90157
EMP_CST	0.82731

TABLE 8

FACTOR ANALYSIS FOR ALL OFF FLOOD PLAIN COMMERCIAL FIRMS

	. 1	2
SQ_FOOT	0.88791	0.15416
ACRES	0.86889	0.00941
DLR_SALE	0.11325	0.98120
OPR_COST	0.05604	0.98750
INVEN	0.70990	0.19495
BLDG	0.76758	0.12486
EMP_NUM	0.84096	0.45685
EMP_CST	0.50581	0.83354

1

1

1

1

1

J

FACTOR	VARIANCE	PERCENT
1	3.61551	55.33
2	2.91888	44.67

.

ı

-

1

Ï

Ī

1

I

1

I

1

I

]

- -

.

SCALE FACTORS

EMP_CST .	100,000
DLR_SALE	1,000,000
SHIP_TOT	10,000
SQ_FOOT	10,000
INVEN	100,000
BLDG	10,000
FLD_FREQ	10

-

- -

.

5

Í

1

.

VARIABLES AND SCALED VALUES USED IN DISCRIMINATE SIMULATION FOR MANUFACTURING - ON

SEQ	SQ_FOOT	OCCUP	INVEN	BLDG	DLR_SALE	LNG_YRS	EMP_CST	SHIP_TOT
59	8.400	2	2.000	60.00	1.250	12	4.000	15.000
71	1.300	1	2.000	27.70.	2.215	21	3.650	0.800
72	8.000	2	2.250	60.00	2.300	21	4.860	12.650
74	1.600	2	0.150	24.00	0.350	13	0.810	0. 500
79	2.600	2 2 1	1.605	26.00	1.000	35	1.260	2.250
82	5.000		2.500	75.00	8.400	72	16.800	4.200
86	6.200	ī	2.500	50.00	4.000	27	6.850	0.000
87	0.675	2	1.000	5.50	0.200	25	0.416	0.088
89	1.600	2	2.500	12.50	2.250	21	1.600	2.000
90	12.000	2	3.000	100.00	4.000	8	10.000	10.000
93	3.000	ī	4.000	100.00	5.000	55	20.000	6.000
103	3.600	ĩ	0.050	15.00	1.000	19	2.000	0.000
104	0.900	2	0.010	6.00	0.700	10	1.790	0.100
105	0.150	1	0.020	1.20	0.015	13	0.100	0. 000
106	1.500	ī	2.000	12.00	1.200	4	2.750	0.600
109	1.150	ĩ	0.500	9.00	1.000	15	5.000	1.200
113	6.800	ī	0.380	70.00	1.000	25	3.660	0.000
114	15.246	ī	6.100	37.00	1.000	30	2.960	4.150
115	0.150	0 1 2 2 1 1 2 1 1 1 2 1 1 1 2 2 1 1	0.020	1.70	0.048	36	0.335	0.000
119	1.000	2	1.000	7.50	0.750	3	0.600	0.700
121	4.000	ī	8.667	32.40	4.173	15	7.225	4.650
122	0.070	ī	0.030	4.82	0.450	3	1.400	0.000
123	0.400	ī	1.600	55.00	2.130	24	8.260	0.800
125	2.500	1 1	2.500	40.00	2.000	3	4.000	8.000
128	0.250	ō	0.770	50.00	5.760	20	1.600	20.600
131	4.500	ī	1.500	25.00	3.000	12	15.000	32.500
133	6.000	ī	5.000	75.00	1.000	12	4.750	10.000
136	3.000	ī	1.250	20.00	4.000	23	2.730	80.000
138	2.500	1 1 1 1	0.900	30.00	3.500	7	14.000	1.650
143	7.500		10.000	45.00	6.000	18	15.000	0.000
144	0.400	1	0.150	6.60	0.110	16	0.120	1.200
145	9.000	2	12.630	110.00	8.879	58	21.930	0.000
146	0.360	ī	0.110	4.00	0.119	4	0.480	0.000
147	0.660	1	0.200	7.00	0.300	14	0.400	0.900
148	2.300	1 2 1 1 2 1 1 2 1 2 1	2.400	25.00	1.800	2	0.600	4.000
. 149	0.940	2	0.050	10.50	1.111	3	2.900	0.000
152	0.550	1	0.250	6.00	0.120	16	0.750	0.000
153	2.100	1	2.115	25.00	1.000	5	1.600	0.000
156	6.200	2	10.000	110.00	5.500	39	11.000	30.000
157	3.000	1	0.900	40.00	1.250	17	7.800	6.250
173	6.500	1	1.450	52.50	7.400	6	30.458	72. 520
174	1.700	1	- 1.000	20.00	6.400	4	25.344	126.720
175	0.720	1	1.200	20.00	0.750	2	2.137	3.563
181	2.200	1	2.750	9.50	1.200	8	4, 400	2.900
183	7.300	1	0.650	70.00	2.500	22	4.750	40.375
237	2.800	3	0.110	1.10	0.650	7	2.120	20.000
238	0.350	2	0.005	3.00	0.100	2	0.378	0.000
239	10.600	2	15.000	148.40	6.500	55	11.350	30.000
242	4.500	1	2.800	50.00	2.750	7	4.200	15.000
248	1.800	1	0.600	44.40	1.000	19	5.000	1.000

33

-- -

2

1

1

1

VARIABLES AND SCALED VALUES USED IN DISCRIMINATE SIMULATION FOR MANUFACTURING - OFF

SEQ	SQ FOOT	OCCUP	INVEN	BLDG	DLR_SALE	LNG YRS	EMP_CST	SHIP_TOT
	-	2	0.400	2.000	2.000	<u> </u>	0.800	3. 100
24 46	1.300 9.700	1	3.000	100.000	3.000	50	8.000	3.000
40	0.400	2	0.100	4.000	0.100	28	0.400	0.010
48	1.200	22	0.150	30.000	0.160	1	0.655	0.030
. 50	2.400	2	1.800	20.000		4	1.500	2.000
. 50	0.400	2	0.006	1.103		13	0.410	0.100
51	0.190	2	0.005	1.600		5	0.500	0. 100
52	3.900	2	0.050	150.000		28	8.340	0.100
· 5 7	2.200	2	1.000	39.600		9	5.400	4.050
58	3.000	2	1.800	15.000		42	2.000	5.000
	0.750	2	0.200	9.000		5	1.250	0.000
60 61	9.200	2	6.250	120.000		5 7	2.530	5.500
61 62	0.227	2	0.010	2.500		11	0.350	0.100
65	8.200	2	7.500	100.000		2	10.000	2.379
66	0.800	2	0.250	6.000		16	0.270	0.000
67	1.700	2	1.000	25.000		18	0.850	11.520
68	0.600	2	0.410	3.000		8	0.875	0.200
		2 2 2 2 1 2 2 2 1 2 2 2 2 1 2 1 2 1 2 1	0.010	6.000		32	0.300	0.000
84	0.800	1	0.010				4.750	35.625
160	2.750	2	2.000	50.000		15 9	7.510	0.000
188	4.500	I 2	5.000	50.000		2		
194	0.420	2	0.090	1.800	0.180	3	0.256	0.900
206	0.500	1.	0.100	8.000		30	1.000	0.050
209	4.000	2 1	0.120	70.000	3.500	22	8.000	6.000
211	1.830	1	1.500	22.500		19	6.000	0.000
212	0.750	1	1.170	10.000	1.000	13 '	2.240	0.260
214	0.280	2 1	0.050	4.000		13	0.200	0.750
218	0.800	1	0.300	6.500		95	1.000	0.000
219	1.200	2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2	0.240	4.000		5	3.030	0.000
220	2.000	2	0.170	10.000	0.300	7	0.740	0.000
221	1.300	1	0.175	80.000		69	8.750	3.100
222	1.200	2	0.001	7.500		15	1.200	0.500
224	0.378	1	0.095	2.500		30	0.360	0.000
226	0.500	2	0.500	3.500	0.300	25	0.320	2.500
227	1.000	2	7.200	11.000	4.000	11	3.060	7.200
261	0.750	2	0.050	7.000		2	0.850	0. 000
262	4.000	1	2.000	35.000		10	7.000	0.000
274	5.500	2	0.100	10.000		1	8.000	0.500
278	2.600	2	1.000	5.000		2	0.800	0.000
281	0.250	2	0.120	4.000	2.000	42	5.250	0.000
284	2.000	2	. 1.500	22.500		40	1.500	2.0 00
290	1.900	2	3.500	7.000		3	4.000	1.960
291	1.300	1 2 2 1	0.350	30.000		6	0.280	0.000
292	0.600	2	2.000	3.200		22	0.500	0.000
295	0.260	2	0.150	2.500	0.600	8	2.920	0.000
296	10.000	1	18.000	151.379		5	31.087	0. 000
297	0.900	22	0.260	13.500		15	0.800	0.000
301	0.500	2	0.200	8.000	0.455	7	2.014	0.000

34

•

_ _ .

· · ·

1 W

1.4.18

محجا يرتق المراجع الأفرانيية

٠

ł

2

:

ł

VARIABLES AND SCALED VALUES USED IN DISCRIMINATE SIMULATION FOR COMMERCIAL - OFF

SEQ	OCCUP	EMP_CST	DLR_SALE	LNG_YRS	SHIP_TOT	SQ_FOOT
່	0	0.583	0.150	40	0.110	0.240
2	ŏ	0.600	0.270	17	1.000	0.700
ĩ	ŏ	0.700	0.175	7	0.100	0.240
4	ŏ	0.200	0.100	9	0.017	0.420
5	ŏ	0.450	0.125	5	0.000	0.500
7	Ō	0.640	0.440	2	7.500	1.000
9	Ō	0.250	0.150	3	0.000	0.350
10	1	1.842	1.197	32	0.574	0.420
11	0	3.000	8.000	15	16.000	8.000
14	0	0.350	0.125	4	0.000	0.050
20	0	0.355	0.260	5	0.015	2.830
21	0	0.961	0.048	23	0.000	0.350
22	0	3.152	1.750	11	3.940	3.800
23	0	3.970	6.000	3	2.000	4.800
26	0	2.724	0.850	141	0.000	2.250
27	0	0.500	0.215	25	0.000	0.380
28	0	2.354	1.300	8	0.000	4.986
30	0	1.120	0.500	1	3.500	0.500
31	0	0.937	0.032	46	0.000	0.495
36	0	0.241	0.148	2	0.080	0.160
44	2	0.140	0.023	2	0.025	0.120
49	2	0.540	0.110	8	0.030	4.000
55	0	12.500	4.000	33	24.000	11.000
83	2	0.065	0.500	3	0.000	0.080
85 179	2 0	1.090	0.700	9 2	0.000	0.750
193		0.684 0.250	0.800 0.185	2	0.540	0.500
205	•2	0.350	0.700	6	0.100 0.010	0.480
207	22	0.190	0.125	9	0.150	0.288 0.260
208	2	0.440	0.300	8	0.053	0.200
210	2	0.240	0.279	5	0.000	0.210
217	2	0.450	0.130	20	0.000	0.750
225	2	1.400	0.500	1	0.000	0.900
230	2	0.400	0.024	2	. 0.000	0.099
231	2	0.600	0.300	9	0.600	0.600
241	1	3.370	3.000	4	1.000	7.080
247	2	4.000	0.550	13	0.000	2.080
254	1	1.520	1.400	2	1.300	0.880
255	1	0.800	0.450	2	0.400	2.300
256	1	1.050	0.300	3	0.900	0.125
260	1	-3.300	0.800	15	0.000	6.500
263	2	0.150	0.050	1	0.000	0.480
266	1	5.700	8.500	. 15	8.000	3.000
269	2	1.800	0.750	· 1	0.000	1.200
270	1	3.500	3.200	3	0.000	0.250
279	2	0.250	0.250	4	• 0.000	0.750
282	2	0.150	0.100	3	0.000	0.150
283 285	2 2	0.200	0.065	2	0.000	1.500
200	4	10.000	5.500	73	0.000	15.000

35

ı

Ţ

-

Ŷ

,

_ _ _ _

		DISCRIMINATE	SIMULATION	FOR COMMERC	IAL - ON	•
SEQ	OCCUP	EMP_CST	DLR_SALE	LNG_YRS	SHIP_TOT	SO_FOOT
13	0	1.132	0.200	47	3.000	0.700
15	ō	1.600	3.900	14	4.050	0.850
17	Ō	0.882	0.150	32	0.106	0.315
18	Ō	0.579	0.350	5	0.466	1.000
19	Ō	0.484	0.608	11	0.000	0.080
42	1	8.750	2.250	6	96.525	22.000
43	1	8.774	1.450	13	137.090	1.960
77	2	0.180	0.180	10	0.100	0.276
80	2	0.060	0.022	18	0.220	0.150
81	2	0.250	0.079	7	0.800	0.053
129	1	3.643	2.225	6	27.317	2.100
130	1	3.840	2.500	5	12.800	7.700
132	1	1.200	3.000	13	216.000	1.200
137	2	1.050	1.500	1	5.640	2.060
139	1	5.480	1.250	7	7.000	2.000
140	1	1.400	7.000	2	5.000	5.000
162	1	18.432	6.400	4	61.440	1.650
168	1	3.395	1.000	6	13.580	0.500
170	2	4.000	1.100	5	10.000	0.753
172	1	3.500	0.500	3	7.500	0.650
176	1	14.143	5.400	4	52.380	2.500
177	0	5.250	1.200	2	11.000	0.500
191	2	0.600	0.400	5	1.000	0.800
196	.2	2.400	2.500	25	36.750	2.750
197	2	2.250	0.500	1	2.450	0.900
198	2	4.760	2.000	5	12.000	2.000
199	1	5.990	3.000	5	170.000	1.600
200	1	17.120 0.300	5.000 0.155	1 73	400.000	4.000 0.090
202	1 2		0.450		0.000	
203 204	2	0.700 0.180	0.049	18 7	0.200 0.005	0.500 0.600
215	1	0.600	0.450	27	0.000	0.900
215	2	0.200	0.070	7	0.000	0.200
246	1	1.750	0.500	30	0.500	0.300
251	2	0.300	0.039	3	0.000	0.130
252	1	1.366	0.670	5	0.076	0.475
265	ī	7.250	5.000	8	0.000	1.020
267	i	-3.620	0.800	9	0.000	0.900
272	ī	4.400	7.000	10	45.000	8.700
276	2	5.441	0.940	15	8.454	1.600
277	ī	9.500	0.180	12	0.000	0.490
286	2	5.200	0.800		0.000	0.660

VARIABLES AND SCALED VALUES USED IN DISCRIMINATE SIMULATION FOR COMMERCIAL - ON

. .

36

.--

;

s

,

, t

.

DISCRIMINANT FUNCTION (Without Flood Frequency)

Variables	Mea	ns		TURING ndard ation	Çœfi	ficients	F Levels
	on	off	<u>on</u>	off			
SQ FOOT	3.51141	2.14755	3.45072	2.53626	. 16 16 4	06467	3.3906
OCCUP	1.24000	1.70213	.51745	.46227	6.20314	8.16343	21.4173
INVEN	2.40343	1.82940	3.33434		40465		.0136
	36.80638			38.89909	.02542	.04395	1.7863
BLDG DLR_SALE	2.38260	1.36242	2.36147		.91487	.71924	1.6778
• ,					-5.89438	-8.33809	
Classificat	ions:	ON	OFF				
	ON	37	13	50			
- ·	OFI		35	47			
					$\chi^2 = 3$	0.194, d.:	f. = 5

COMMERCIAL

Variables		Me	eans		Stan evia		<u>Coeffi</u>	<u>cients</u>	<u>F Levels</u>
OCCUP EMP_CST DLR_SALE	on 1.214 3.855 .1.732	28 97	off .97959 1.63383 1.13114	on .682(4.430 2.011(41	off .92398 2.40472 1.98442	on · 2.05015 .27192 .29172 -2.71484	off 1.61703 .06554 .32686 -1.72356	2.6345 9.1827 .0604
Classifica	tions:	on Off	ON 24 10	OFF . 18 39	42 49				

 $x^2 = 12.19246$, d.f. = 3

1

Ł

۰.,

.

•

5

.

SIMULATION FUNCTION (Without Flood Frequency)

MANUFACTURING

Variables	M	eans	•	Ştan Devia	tion		icients	F Levels
	On T	Off		On	Off	On	Off	
DLR SALE	2.38260	1.362	42 2	.36147	1.36761	.49704	. 30999	.5142
SQ FOOT	3.51141	2.147	55 3	. 45072	2.53626	.30266	.13888	3.2119
INVEN	2.40343	1.529	40 3	. 33434	3.07889	14277	11825	.0535
BLDG	36.80638	27.131	.52 34	.02855	38.89909	.00035	.00914	.8648
SHIP_TOT	11.45731	2.096	47 23	.70131	5.53401	.00794	01253	6.9700
						-1.69697	-1.07388	
Classificat	tions:	ON	OFF					
•	ON	22	28	50	•			
	OF	F 10	37	47				
						$\chi^2 = 12.0$	9709, d.f.	. = 5

COMMERCIAL

				1	Stand	dard			
Variables		Means			Deviation			Coefficients	
	· C)n	Off	. 0	n	Off	On	Off	
DLR SALE	1.73	3254	1.13114	2.01	169	1.98442	.15963	.22500	.2137
EMPCST	3.85	597	1.633 83	4.43	041	2.40472	.24853	.09718	9.1827
SHIP_TOT	32.10	590	1.46824	75.22	220	4.29169	.00188	00546	2.1240
·	٠						-1.34076	89578	
Classificat	tions:		ON	OFF					
		ON	22	20	42				
		OFF	4	45	49		-		
							2		

 $X^2 = 11.79964$, d.f. = 3

Г

38

۰.,

DISCRIMINANT FUNCTIONS USED IN SIMULATIONS

MANUFACTURING

4

Variables	On	Off	F Level With Flood Frequency	F Level Without Flood Frequency
DLR SALE	.26200	85714	10.0570	.5142
SQ FOOT	. 28365	.04448	. 479 3	3.2119
INVEN	14449	12680	.0025	.0535
BLDG	00025	.00615	. 0 39 4	.8648
SHIP TOT	.01616	.02828	.0434	6.9700
FLD_FREQ	.74485	3.69857	1002.4141	N/A
Constant	-3.16048	-37.15889		

COMMERCIAL

Variables	On	Off	F Level With Flood Frequency	F Level Without Flood Frequency
DLR SALE	16256	73021	7.2543	.2137
EMPCST	.25405	.11355	.3073	9.1827
SHIP TOT	00304	02004	2.4401	2.1240
FLD_FREQ	1.22244	3.62424	636.3491	N/A
Constant	-5.40284	-36.60056		

2

SIMULATION SUMMARY

Manufacturing

	Decrea	se risk	Increase risk			
Amo	ount	Number changed	Amount	Number changed		
30	years	9	30 years	8		
60	years	12	60 years	49		
90	years	24				
120	years	49				
150	years	52				
180	years	53				

1

ł

Ì

Commercial

Dec	rease risk	Increas	se risk
Amount	Number changed	Amount	Number changed
30 years	23	30 years	1
60 years	34	60 years	50
90 years	41		
120 years	45		

-

l

Ĵ

3

.

SIMULATIONS - MANUFACTURING DECREASE RISK

1.	Original flood hazard data:		ON	OFF		
		ON	53	0		
		OFF	0	49		
	•					
2.	Increase frequency by 30 (dec	rease	risk):		ON	OFF
				ON	44	9
				OFF	0	49
	Of the 9 on-off missed, all w	vere o	riginal	ly 100	year.	
	Sequence numbers missed are:	72	74	106	122	133
		136	138	149	248	
	SIC numbers missed are:	2653	3441	3831	3498	2 6 48
		3559	3674	3648	3729	
-						
3.	Increase frequency by 60 (dec	rease	risk):		ON	OFF
3.	Increase frequency by 60 (dec	rease	risk):	ON	ON 41	OFF 12
3.	Increase frequency by 60 (dec	rease	risk):	ON OFF		
3.	Increase frequency by 60 (dec Of the 12 on-off missed, all			OFF	41 0	12 49
3.		were o	origina	OFF	41 0	12 49
3.	Of the 12 on-off missed, all	were o	origina	OFF lly 10	41 0 0 year	12 49
3.	Of the 12 on-off missed, all	were o 72	origina 74	OFF lly 10 82	41 0 0 year 106	12 49 122
3.	Of the 12 on-off missed, all Sequence numbers missed are:	were 6 72 136	origina 74 138 3441	OFF 11y 10 82 145	41 0 0 year 106 149	12 49 122 239
	Of the 12 on-off missed, all Sequence numbers missed are: SIC numbers missed are:	were 6 72 136 2653 3559	origina 74 138 3441 3674	OFF 11y 10 82 145 3469	41 0 0 year 106 149 3831 3648	12 49 122 239 3498 3842
3.	Of the 12 on-off missed, all Sequence numbers missed are:	were 6 72 136 2653 3559	origina 74 138 3441 3674	OFF 11y 10 82 145 3469 3312	41 0 0 year 106 149 3831 3648 ON	12 49 122 239 3498 3842 OFF
	Of the 12 on-off missed, all Sequence numbers missed are: SIC numbers missed are:	were 6 72 136 2653 3559	origina 74 138 3441 3674	OFF 11y 10 82 145 3469	41 0 0 year 106 149 3831 3648	12 49 122 239 3498 3842

41

--

--

	Of the	e 24 o	n-off :	missed	: 12	were c	rigina	11y 100) year	
					12	were c	origina	11y 50	year	
	Seque	nce nu	mbers	missed	are:					
	72	74	82	86	[.] 90	93	106	113	114	119
	121	122	128	131	133	136	138	145	146	149
	174	239	242	248						
	SIC n	umbers	misse	d are:						
	2653	3441	3469	2782	2512	3323	3831	3479	3271	2824
	3585	3498	2812	3444	2648	3559	3674	3312	3561	3648
	3679	3842	3272	3729						
5.	Incre	ase fr	equenc	v bv l	20 (đe	ecrease	e risk)	:	ON	OFF
				, -, , -, -,			,	ON	4	49
								OFF	_	49
	Of th	e 49 o	n-off	missed	: 12	were (origina	11y 10	0 year	
							- origina	-	-	
					15			-	-	
						were o	origian	11y 25	year	
							origian origina	-	-	
	Seque	nce nu	mbers	missed	9		-	-	-	
	Seque 59	nce nu 71	mbers 72	missed 74	9		-	-	-	90
	-				9 are:	were (origina	- 11y 10	year	90 119
	59 93	71	72	74	9 arc: 79	were o	origina 86	- 11y 10 87	year 89	
	59 93	71 103	72 104	74 105	9 arc: 79 106	were 6 82 109	origina 86 113	- 11y 10 87 114	year 89 115	119
	59 93 121	71 103 12 2	72 104 123 146	74 105 125	9 arc: 79 106 12 8	were (82 109 131	origina 86 113 133	11y 10 87 114 136	year 89 115 138	119 143
	59 93 121 144 174	71 103 122 145 175	72 104 123 146 181	74 105 125 147	9 arc: 79 106 12 9 148	were 6 82 109 131 149	origina 86 113 133 152	87 114 136 153	year 89 115 138 156	119 143
	59 93 121 144 174 SIC n	71 103 122 145 175	72 104 123 146 181 misso	74 105 125 147 183	9 arc: 79 106 128 148 237	were 6 82 109 131 149 238	86 113 133 152 239	87 114 136 153	year 89 115 138 156	119 143
	59 93 121 144 174 SIC n	71 103 122 145 175 umbers	72 104 123 146 181 misso	74 105 125 147 183 d arc:	9 are: 79 106 128 148 237 3545	were (82 109 131 149 23% 3469	origina 86 113 133 152 239 2782	11y 10 87 114 136 153 242	year 89 115 138 156 248	119 143 157

ι

42

8

I

1

	2842	3313	3561	2651	3585	3648	3544	355 9	2851	3079
	3679	3841	1541	2823	3 273	2221	3842	3272	3729	
6.	Incre	ase fr	equenc	y by l	50 (de	crease	risk)	:	ON	OFF
			-					ON	1	52
								OFF	0	49
	Of th	e 52 o	n-off	misseđ	: 12	were o	rigina	11y 10	0 year	
					15	were o	rigian	11y 50	year	
				9	16	were o	rigina	11y 25	year	
					9	were o	rigina	11y 10	year	
	Seque	nce nu	mbers	missed	are:					
	59	71	72	74	79	82	86	87	89	9 0
	93	95	103	104	105	106	109	113	114	115
	117	119	121	122	123	125	128	131	133	136
	138	143	144	145	146	147	148	149	152	153
	156	157	173	174	175	181	183	237	238	239
	242	248								
	SIC n	umbers	misse	d are:						
	3079	3451	2653	3441	35 45	3469	2782	3542	2512	3323
	20 87	2842	3423	3565	2831	3544	3 479	3 27 1	3443	3352
	3352	2824	3585	3498	35 69	2819	2812	3444	2648	3559
	3674	3494	2842	3313	35 61	2651	3585	3648	3544	3559
	2851	3079	3469	3679	3841	1541	2823	327 3	2221	3842
	3272	3729								

Î

1

I

۱

-

--- ---

SIMULATIONS - MANUFACTURING INCREASE RISK

1.	Orig <mark>in</mark>	al flo	od haz	ard da	ta:		ON	C	OFF			
					c	N	53		0			
					c	OFF	0	4	49			
	•.	-										
2.	Decre	ase fr	equenc	y by 3	0 (inc	reas	se 1	(isk)		ON	OI	
									ON	53)
									OFF		4]	L
	Of th	e 8 on	-off m	issed,	all w	vere	ori	igina:	11y 20	00 yea	r.	
	Seque	nce nu	mbers	missed	arc:							
	46	61	63	65	188	21	3	227	296			
	SIC n	umbers	misse	d are:								
	2653	2842	2842	2599	2851	208	34	3964	289	9		
3.	Decre	ase th	e freq	uency)	by 60	(ind	crea	ase ri	isk):		ON	OFF
			-	• •		•				ON	53	0
										OFF	.49	0
				missed		were	≥ 2(00 yea	ar.			
	Seque	nce nu	mbers	missed	are:							
	24	46	47 ,	48	50	51	Ľ	52	53	57	58	3
	60	61	62	63	65	66	5	67	68	84	160	ט
	188	194	206	209	211	212	2	213	214	218	219	•
	220	221	222	224	226	227	7	261	262	274	278	3
	281	284	290	291	2 92	295	5	296	297	301		

SIC numbers missed are:

____ · · -

-

3496	2653	3599	2393	2 819	3444	3544	3548	2752	3496
3581	2842	3421	2842	25 99	3272	3498	3566	2824	3232
2851	3441	3599	2753	3831	3429	2084	2819	1442	1731
30 79	3321	3423	2499	2851	3964	3429	2891	367 9	3143
1611	3442	3861	2893	3 425	1731	2899	3642	3292	

SIMULATIONS - COMMERCIAL INCREASE RISK

1.	Origi	nal fl	ood ha	zard d	ata:		ON	OFF		
					0	N	48	0		
					о	FF	0	50		:
_		_			~					
2.	Decre	ase fr	equenc	у бу 3	0 (inc	rease	risk):		ON	OFF
								ON	48	0
					_		_	OFF	1	49
					as ori	ginall	.y 200	year.		
	Seque	nce nu	mber m	issed:	38					
	SIC n	umber	missed	: 571	9					
з.	Decre	ase fr	equenc	y by 6	0 (inc	rease	risk):		ON	OFF
								ON	48	0
								OFF	50	0
	Of th	e 50 o	n-off	missed	, all	were c	origina	ally 20	0 year	•
		e 50 o nce nu				were c	origina	ally 20	0 year	•
						were c 7	origina 9	11y 20 10	0 year 11	. 14
	Seque	nce nu	mbers	missed	are:		-	-	-	
	Seque l	nce nu 2	mbers 3	missed 4	are: 5	7	9	10	11	14
	Seque 1 20	nce nu 2 21	mbers 3 22	missed 4 23	are: 5 26	7 27	9 28	10 30	11 31	14 36
	Seque 1 20 38	nce nu 2 21 44	mbers 3 22 49 217	missed 4 23 55	are: 5 26 83 230	7 27 85 231	9 28 179 241	10 30 193 247	11 31 205 254	14 36 207 255 285
	Seque 1 20 38 208 256	nce nu 2 21 44 210	mbers 3 22 49 217 263	missed 4 23 55 225 266	are: 5 26 83 230 269	7 27 85 231	9 28 179 241	10 30 193 247	11 31 205 254	14 36 207 255
	Seque 1 20 38 208 256	nce nu 2 21 44 210 260	mbers 3 22 49 217 263 misse	missed 4 23 55 225 266 d arc:	are: 5 26 83 230 269	7 27 85 231 270	9 28 179 241 279	10 30 193 247	11 31 205 254 283	14 36 207 255 285
	Seque 1 20 38 208 256 SIC n	nce nu 2 21 44 210 260 umbers	mbers 3 22 49 217 263 misse	missed 4 23 55 225 266 d arc:	are: 5 26 83 230 269	7 27 85 231 270	9 28 179 241 279 7513	10 30 193 247 282	11 31 205 254 283	14 36 207 255 285
	Seque 1 20 38 208 256 SIC n 7261	nce nu 2 21 44 210 260 umbers 5999	mbers 3 22 49 217 263 misse 5531	missed 4 23 55 225 266 d arc: 5331	are: 5 26 83 230 269 5812	7 27 85 231 270 5712	9 28 179 241 279 7513	10 30 193 247 282 5531	11 31 205 254 283 5722	14 36 207 255 285 1 9441
	Seque 1 20 38 208 256 SIC n 7261 7525	nce nu 2 21 44 210 260 umbers 5999 7538	mbers 3 22 49 217 263 misse 5531 5148	missed 4 23 55 225 266 d arc: 5331 5722	are: 5 26 83 230 269 5812 5812	7 27 85 231 270 5712 5531	9 28 179 241 279 7513 7531	10 30 193 247 282 5531 5086	11 31 205 254 283 5722 7538	14 36 207 255 285 1 9441 5531

;

.

TABLE	2	1
-------	---	---

-

.

· · · '

SIMULATIONS - COMMERCIAL DECREASE RISK

1.	Origi	nal fl	ood ha	zard d	ata:		ON	OFF		
						ON	48	0		
						OFF	0	50		
2.	Incre	ase fr	equenc	у bу 3	0 (dec	rease	risk):		ON	OFF
								ON	25	23
								OFF	0	50
	Of th	e 23 o	n-off	missed	, all	were	origina	11y 10	0 year	•
	Seque	nce nu	mbers	missed	are:					
	18	19	132	137	139	140	168	170	176	196
	197	198	199	203	204	215	246	252	265	267
	272	276	286							
	SIC n	umbers	misse	d are:						
	8911	5084	4226	5099	5039	5014	5072	5141	5081	5013
	5713	5023	4212	5712	7 53 8	7538	5511	5722	4212	4212
	5211	5761	4214			•				
3.	There	nco fr	0(11050	w hv 6	0 (doc	1 703 0 0	risk):		ON	OFF
.د	Incre		equenc	урув	0 (000	rease	IISN/.	ON	14	34
								ON	0	50
	Of th	0 34 0	n-off	missod	. 20	Noro	origina			
			-01£	misseu			origina	-	_	
	Seque	nce nu	mbers	missed		were	origina	шу 50	year	
	18	19	129	130	132	137	139	140	162	168
	170	172	176	177	187	191	196	197	198	199
	200	202	204	215	216	246	252	265	267	268
	272	275	276	286		_ • •	=			• •

48

.

	SIC n	umbers	misse	d are:							
	8911	5084	5039	5039	4426	5099	5039	5014	5031	5076	
	5141	5039	5081	4783	4225	5074	5013	5713	5023	4212	
	4212	6531	7538	7538	7539	5511	5722	4212	4212	4212	
	5211	7011	5761	4214							
	T	+ +	- F		h	(]		-l= \ -	0	.Nf	
4.	Incre	ase th	c rreq	uency	by 90	(decre	ase ri			N	OFF
										7	41
										0	50
	Of th	e 41 o	n-off	missed			-	lly 10	-		
					6	were o	rigina	11y 50	year		
					6	were o	rigina	11y 25	year		
					1	was or	iginal	ly 10	year		
	Seque	nce nu	mbers	missed	are:						
	15	18	19	77	80	81	129	130	132	137	
	139	140	162	168	170	172	176	177	187	191,	
	196	197	198	199	200	202	203	204	215	216	
	246	251	252	265	267	268	272	275	276	2 7 7	
	286										
	SIC n	umbers	misse	d are:							
	5147	8911	5084	5085	5712	5531	5039	503 9	4226	50 99	
	5039	5014	5031	5072	5141	503 9	5081	4783	4225	5074	
	5013	5713	502 3	4212	421 2	6531	5 7 12	7538	7 53 8	7539	
	5511	9441	5722	4212	4212	4212	5211	7011	5761	421 2	
	4214										
r.	Thomas	200 LL	~ f ====		L. 100	13			_		0.75
5.	incre	ase th	e rreq	uency	DY 120	(decr	ease r			N	OFF
									ON	3	45

•

OFF 0

50

-

...

Of th	e 45 o	n-off	missed:	28	were	origina	11y	100) year	
				6	were	origina	lly	5 0	year	
				8	were	origina	11y	25	year	
				3	were	origina	1 1 y	10	year	
Seque	nce nu	mbers	missed	are:	•					
13	15	17	18	19	42	43	77	,	80	81
129	130	132	137	139	140	162	168	}	170	172
176	177	187	191	196	197	198	199)	200	202
203	204	215	216	246	251	252	265	6	267	268
272	275	276	277	286						
SIC n	umbers	misse	d arc:							
5148	5147	4221	8911	5084	4214	4214	508	15	5712	5531
5039	5039	4226	50 99	5039	5014	5031	507	2	5141	5039
5081	4783	4225	5074	5013	571:	5023	421	.2	4212	6531
5712	7538	7538	753 9	5511	944]	L 5722	421	.2	4212	4212
5 21 1	7011	5761	4212	4214		-				

BIBLIOGRAPHY

- 1. Anderson, R. L., and T. A. Bancroft (1952), <u>Statistical Theory in</u> Research. New York, McGraw-Hill Book Co.
- 2. Anderson, T. W. An Introduction to <u>Multivariate Statistical</u> Analysis. New York, Wiley, 1958.
- 3. Anderson, T. W., and Rubin, H. "Statistical Inference in Factor Analysis," Pages 111-150 of Volume V of <u>Proceedings of the</u> <u>Third Berkeley Symposium on Mathematical Statistics and</u> <u>Probability.</u> Berkeley: University of California Press, 1956.
- 4. Antle, Lloyd G., and R. W. Haynes. "An Application of Discriminant Analysis to the Division of Traffic Between Transport Modes," Center for Economic Studies, U. S. Army Engineer Institute for Water Resources, Alexandria, Virginia. IWR 71-2.
- 5. Bartlett, M. S. "Multivariate Analysis," Supplement to the Journal of the Royal Statistical Society. 1947, 9, 176-197.
- Brown, G. "Discriminant Functions," <u>Ann. Math. Stat.</u>, 18, 1947. 514-528.
- 7. ______. "Basic Principles for Construction and Application of Discriminators," J. Clin. Psych., 6, 1950. 58-61.
- Bryan, J. G. "The Generalized Discriminant Function: Mathematical Foundation and Computational Routine," <u>Harvard</u> <u>Educational Review. 21, 1951. 90-95.</u>
- 9. Bryant, E. C. "Statistical Analysis," Second edition, McGraw-Hill, New York. 1966.
- 10. Cooley, William W., and P. R. Lohnes. "Multivariate Data Analysis, New York, John Wiley and Sons, 1971.
- 11. Geisser, S. "Estimation associated with linear discriminants," Annals of Mathematical Statistics. 38, 1967. 807-817.
- 12. Golant, S., and Burton, I. "Avoidance Response to the Risk Environment," Department of Geology, University of Toronto, National Hayards Research Paper #6. 1970.
- 13. Harman, H. H. "Modern Factor Analysis," University of Chicago Press, Second Edition. 1967.
- 14. Hoel, P. G. "Introduction to Mathematical Statistics," John Wiley and Sons, New York, 1947.

- 15. Kates, R. W. "Industrial Flood Losses: Damage Estimation in the Lehigh Valley," Research Paper #98. Department of Geography, University of Chicago, 1965.
- 16. Kendall, M. G. "A Cause in Multivariate Analysis," Hafner Publishing Company, New York. 1957.
- 17. Mahalanobis, P. C. "On the Generalized Distance in Statistics", Proceedings of the National Institute of Science, India, 1936, 12, 49-55.
- 18. Morrison, D. F. <u>Multivariate Statistical Methods</u>. New York: McGraw-Hill, 1967.
- 19. Peters, William S., and G. W. Summers, "Statistical Analysis for Business Decisions", Prentice-Hall, Englewood Cliffs, New Jersey, 1968.
- 20. Porebski, O. R. "On the Interrelated Nature of the Multivariate Statistics Used in Discriminatory Analysis", <u>The British Journal</u> of Mathematical and Statistical Psychology, 1966, 19, Part 2, 197-214.
- 21. Rao, C. R. Linear Statistical Inference and Its Applications. New York: Wiley, 1965.
- 22. _____ "Tests With Discriminant Functions in Multivariate Analysis", Sankhya, 7, 407-414.
- 23. "On the Distance Between Two Populations", Sankhya, 9, 251-253.
- 24. "Statistical Inference Applied to Classificatory Problems. II. The Problem of Selecting Individuals for Various Duties in a Specified Ratio", <u>Sankhya</u>, 11, 107-116.
- 25. "A General Theory of Discrimination when the information about alternative population distributions is based on samples," <u>Annals of Mathematical Statistics</u>, 25, 1954. 651-670.
- 26. Roder, W. "Attitude and Knowledge on the Topeka Flood Plain," Papers on Flood Plains. University of Chicago Press, Department of Geography. Research Paper # 60, 1961.
- 27. Rulon, P. J. "Distinctions between discriminant and regression analysis and a geometric interpretation of the discriminant function," <u>Harvard Educational Review</u>, 21, 1951. 80-90.

- 28. Rulon, P. J., Tiedeman, D. V., Tatsuoka, M. M., and Langmuir, C. R. <u>Multivariate Statistics for Personnel Classification</u>. Wiley, New York, 1967.
- 29. Saarinen, T. F. and Sima, J. "Coping with Environmental Stress, Great Plains Farmers and the Sudden Storm," <u>Annals of the λΛG</u> Volume 59, 1969.
- 30. Saupe, J. L. "Factorial-Design Multiple-Discriminant analysis: A Description and an illustration," <u>Ammerican Educational</u> Research Journal, 2, 1965. 175-184.
- 31 Tatsuoka, M. M., and Tiedman, D. V. "Discriminant Analysis," <u>Review of Educational Research</u>, Washington D. C.: American Educational Research Association, 1954.
- 32. White, G. F. <u>Human Adjustments to Floods</u>. Department of Geography, University of Chicago, Research Paper # 29, 1945.
- 33. <u>Choice of Adjustments to Floods</u>. Research Paper #93, 1964.
- 34. Williams, E. J. "Regression Analysis," John Wiley and Sons, New York, 1959.