

Outline

- Baseline performance of a photofission facility
- Target and power issues
- Science with a photofission facility

HRIBF as a two driver facility

- We are developing a proposal for a turn-key electron accelerator (e-machine), capable of providing CW ~ 100kW beams with energies at or above 25 MeV.
- This accelerator would be dedicated to producing neutron-rich species by photofission of actinide targets.
- Such an accelerator is by far the most cost effective means to achieve in-target fission rates in the mid 10¹³/s scale.
- Target development to support operation at >10¹³f/s (~50kW) is well in hand. Thus we are confident we can reach fission rates about 25 times larger than current HRIBF capability.
- The increase in fission rate is not, however a good comparative metric.
 - Photofission is a "colder" process than proton induced fission.
 - It results in lower actinide excitation, and less neutron evaporation from both the excited actinide system and the fragments.
 - Consequently production of very neutron-rich species can be enhanced by a substantial factor compared to 50 MeV proton induced fission, at the same fission rate.
- An improved ORIC (with axial injection) would offer substantially increased capability for the proton-rich program

RIB production by photofission

National Laboratory

UT-BATTELLE OAK RIDGE NATIONAL LABORATORY

Conservative target design for performance determination

 ρ =3 g/cm³ d=3 cm (0.3 R_M) t=30g/cm² 5X₀ (10cm) M=212 g

 ρ =6 g/cm³ d=3 cm (0.6 R_M) t=30g/cm² 5X₀ (5cm) M=212 g

Photofission yields

- 10¹³ f/s "easily" achieved
- About 20x current HRIBF
- But real gain >> 20x

Photofission target issues/ limitations Direct bombardment

- e-beam directly incident on targets
- If 10¹³ goal is to be met, beam energies less than ~80 MeV may give problems using current target technology without further testing and or development.

Photofission target issues Converter + target

Beam energy

An example of a somewhat more aggressive design Similar power required

r=6 g/cm3 d=6 cm (0.6 R_M) t=30g/cm2 (5X₀) M=494 g

2.3 x UC_x front surface area compared to 3 cm dia. Cylinder

Conclusions

• 10¹³ f/s can be achieved with 50 kW facility

- Requires only modest sized targets
 - 3 cm x 5 c m (212 g)
- <10 kW deposited in target</p>
- 25 MeV e beam can be used with converter
 - Rhodotron technology can be considered
- 3-5 x 10¹³ can be achieved with larger targets and higher beam powers
 - 500g to 1kg & 100-150 kW
 - What is release time

U(γ,f) vs U(p,f) 1 GeV

U(γ,f) vs U(p,f) 1 GeV

CAK RIDGE National Laboratory

UT-BATTELLE OAK RIDGE NATIONAL LABORATORY

U(γ,f) vs U(p,f) 1 GeV

Photo-fission yield

In target

Photo-fission yield From ion source

HRIBF beams directly from the ion source - unaccelerated beams (produced via photofission of U-238 at 10¹³ fissions/second) Beam Intensity (ions/sec) 1011 10¹⁰ 10⁹ 108 10 10 10 10 10³ 100 1 - 10 п 0.001 - 0. 26 30 36 38 40 34

INATIONAL LADORATORY

OAK RIDGE NATIONAL LABORATORY

Photo-fission yield Post-accelerated

Broad program to study

reactions with and structures of neutron-rich nuclei

- Structure studies: Isospin-dependent changes in
 - single-particle properties
 - collectivity
 - symmetries
 - pairing
- Reaction studies:
 - interplay between structure and reaction (SHE synthesis)
 - one- and multi-nucleon transfer
- Domain: Uncharted- or barely-explored regions
 - at or near doubly magic ⁷⁸Ni & ¹³²Sn
 - around magic numbers Z=28, 50 and N=50, 82
 - new transitional nuclei (N=50-60, 82-90)
 - unexplored deformed nuclei (N~90)
- Newly developed techniques and detectors

Measurements to probe shell structure far from stability

- Gross properties:
 - Masses (binding energies)
 - Half lives
 - Radii
 - Level densities
 - $\sigma(n,\gamma)$ -- related to r-process abundances, [use (d,p)]
- Single-particle properties:
 - Energy, spin, parity, spectroscopic factors, g-factors
 - Parallel momenta in knock out reactions (fast beams)
- Collective properties:
 - Low-lying energy spectra (*e.g.*, 2⁺ states, 4⁺)
 - B(E2) & electromagnetic moments
 - Higher spin states (band structures)

We will have an unparalleled opportunity to use transfer, decay and in-beam spectroscopic tools to employ these probes in uncharted regions of n-rich nuclei.

Science highlights with eMachine

 \rightarrow Will test the evolution of nuclear structure to the extremes of isospin

 \rightarrow Will improve our understanding of the origins of the heavy elements

Decay studies pushing the frontier of n-rich nuclei 2-3 MeV/u mixed isotope Clover Ge detectors (4)

t_{1/2} & βn rates for many r process nuclei are accessible Energy levels test evolving nuclear structure The evolution of single-particle levels and shapes in very neutron-rich nuclei beyond the N=50 shell closure β-decay experiments with postaccelerated (3 MeV/u) *pure* neutron-rich RIBs, Oct-Nov 2006

beam	T _{1/2} (s)	main results	
⁷⁶ Cu	0.65	βn-branching ratio I _{βn}	
⁷⁷ Cu	0.46	l _{βn} , ν- levels in N=47 ^{΄77} Zn	
⁷⁸ Cu	0.35	$I_{\beta n}$, I^{π} of $^{78}Cu_{49}$ revised	
⁷⁹ Cu	0.19	$\beta n\gamma$ decay observed first time	
⁸³ Ga	0.30	βnγ,βγ, νs _{1/2} in N=51 ⁸³ Ge	
⁸⁴ Ga	0.085	2+ in N=52 ⁸⁴ Ge, vs _{1/2} in ⁸³ Ge	
⁸⁵ Ga	~0.07 ?	rate of 0.1pps	
		22	

Jeff Winger et al., RIB-108 and 122

The evolution of single-particle levels and shapes in very neutron-rich nuclei beyond the N=50 shell closure

Transfer reactions: shell structure of n-rich nuclei Single-particle states around closed shells provide a fundamental shell model test

Example: (d,n)-like reactions \rightarrow neutron s.p. levels

Recoils detected in coincidence

protons detected in Si-array

Single-particle transfer near ⁷⁸Ni and ¹³²Sn <u>Reactions of interest</u> (d,p) (⁹Be,⁸Be) (³He,d) (³He,α) (⁷Li,⁸Be)

with the eMachine

RIB

lon	Intensity (ions/s)	t _{1/2} (s)
⁸⁴ Ge	3x10⁵	0.9
⁸⁸ Se	3x10 ⁴	1.5
⁹⁶ Sr ⁹⁸ Sr	7x10⁴ 1x10⁴	1.1 0.65
¹³⁴ Sn	3x10 ⁶	1.0
¹³⁸ Te ¹⁴⁰ Te	5x10 ⁶ 2x10⁴	1.4 ?

Neutron transfer reactions

Accessible at HRIBF

Accessible with e-machine

Coulomb excitation in n-rich systems

Probes the evolution of collective motion in loosely-bound, neutron-rich nuclei

With eMachine: neutron-rich nuclei from N=50 to N=82 (and

beyond) are accessible

•	lon	Intensity (ions/s)	t _{1/2} (s)
	⁸⁴ Ge	3x10⁵	0.9
	⁸⁸ Se	3x10 ⁴	1.5
	⁹⁸ Sr	1x10 ⁴	0.65
	¹³⁶ Sn	700	0.25
	¹³⁸ Te ¹⁴⁰ Te	5x10 ⁶ 2x10⁴	1.4 ?

Coulex (1-step)

Accessible at HRIBF

Accessible w e-machine

Multi-step Coulex

Accessible at HRIBF

Accessible w e-mach

Heavy ion fusion reactions

Probes the influence of neutron excess on fusion at and below the Coulomb barrier → important for superheavy element synthesis

with eMachine

lon	Intensity (ions/s)	t _{1/2} (s)
⁹² Br	2x10⁵	0.34
¹³⁴ Sn ¹³⁶ Sn	3x10 ⁶ 600	1.0 0.25

More n-rich projectiles Further below barrier ¹³⁴Sn below 10 mb

Transfer reaction studies on the same system will help to understand reaction mechanism

Unattenuated angular correlations: Theory & experiment

Magnetic moment: RIV attenuated angular correlations

g-factor measurements

Accessible at HRIBF

Accessible w e-mach

OAK RIDGE NATIONAL LABORATORY

National Laboratory

RISAC Science Drivers & the electron driver

- Nuclear Structure
 - Probing the disappearance of shells
 - Spectroscopy & reactions in ¹³²Sn, ⁷⁸Ni regions
 - Evolution of collective motion
 - We can probe ¹¹²Zr and ⁹⁶Kr<u>regions</u> (not ¹⁵⁶Ba)
 - Neutron Skins
 - Structure/reaction studies of the most n-rich
 - SHE
 - Reactions with ¹³²Sn (~10⁹) and vicinity
 - For Z=112, N=184, reaction mech. Studies with ^{92,94}Sr (10^{6,} 10⁷)
- Nuclear Astrophysics
 - Decay spectroscopy (β n, τ)
- Stockpile Stewardship
 - Surrogate reaction s (n transfer, etc.)

Photo-fission yield From ion source

HRIBF beams directly from the ion source - unaccelerated beams (produced via photofission of U-238 at 10¹³ fissions/second) Beam Intensity (ions/sec) 1011 10¹⁰ 10⁹ 108 10 10 10 10 10³ 100 1 - 10 п 0.001 - 0. 26 30 36 38 34 INATIONAL LADORATORY

OAK RIDGE NATIONAL LABORATO

A Photo-fission Facility -Driver

- Requirements
 - ~25 MeV or higher, CW, turnkey
 - 100 kW or more at 25 MeV
 - 80 kW or more at 50 MeV
- Turnkey options
 - 25 MeV rhodotron
 - 50 MeV SC linac
- Costs are similar

Conclusion

- An electron-beam based facility can produce intense beams in a cost-effective way
- Such a facility would be competitive world-wide for neutron-rich beams until FRIB is available
- Cost containment is important
- There is a relatively short window during which such a facility is relevant.

