Mixed-Mode Calculations

within the Nuc ear Shell Model.

$>$ The idea: to combine the best shell model methods available:

- m-scheme spherical shell-model
- $\mathrm{SU}(3)$ symmetry based shell-model
>Developers ...
- Vesselin Gueorguiev $\mathbf{H} \square=\mathbf{E} \square$
- Jerry Draayer
- Erich Ormand
- Calvin Johnson
m-scheme states

凸
SU(3) states
$(\mathbf{H}-\mathbf{E g}) \square=0$

Problems that we understand well

$H=H_{1}(\square)+H_{2}(\square)+\ldots \longleftarrow$ What about more than one exactly solvable part beyond Transition from phase one the perturbative regime? to phase two should occur.

Maybe two or more different sets of basis states could be employed to understand such problems ...

Two-Mode Toy System

Particle in 1D box

Harmonic Oscillator

Particle in a 1D box subject to harmonic oscillator potential.

The Challenge in Nuclei...

Nuclei display unique characteristics:

- Single-particle Features
- Pairing Correlations
- Deformation/Rotations

Nuclear Shell-Model Hamiltonian

$H=\square_{i} \square a_{i}^{+} a_{i}+\square_{i, j, k, l} V_{i j k l} a_{i}^{+} a_{j}^{+} a_{k} a_{l}=\square_{i} \square i N_{i}+\square Q \cdot Q+U_{\text {residual }}$
where a_{i}^{+}and a_{i} are fermion creation and annihilation operators,
\square and $V_{i j k l}$ are real and $V_{i j k l}=V_{k l i j}=\square V_{j i k l}=\square V_{i j k}$
$>$ Spherical shell-model basis states are eigenstates of the onebody part of the Hamiltonian - single-particle states.
$>$ The two-body part of the Hamiltonian H is dominated by the quadrupole-quadrupole interaction $\mathrm{Q} \cdot \mathrm{Q} \sim \mathrm{C}_{2}$ of $\mathrm{SU}(3)$.
$>\mathrm{SU}(3)$ basis states - collective states - are eigenstates of H for degenerate single particle energies \square and a pure $\mathrm{Q} \cdot \mathrm{Q}$ interaction.

SU(3) Basics

The SU(3) SO(3) Reduction

- $\mathbf{S U}(3)$ generators as $\mathbf{S O}(3)$ tensors:

$$
\begin{aligned}
& {\left[L_{m}, L_{m^{\prime}}\right]=\square \sqrt{2}\left(1 m 1 m^{\prime} \mid 1 m+m^{\prime}\right) L_{m+m^{\prime}}} \\
& {\left[Q_{m}, L_{m^{\prime}}\right]=\square \sqrt{6}\left(2 m 1 m^{\prime} \mid 2 m+m^{\prime}\right) Q_{m+m^{\prime}}} \\
& {\left[Q_{m}, Q_{m^{\prime}}\right]=3 \sqrt{10}\left(2 m 2 m^{\prime} \mid 1 m+m^{\prime}\right) L_{m+m^{\prime}}}
\end{aligned}
$$

Algebraic quadruple operator:

$$
\begin{aligned}
& Q_{m}^{(a)}=(4 \square / 5)^{1 / 2}\left(r^{2} Y_{2, m}\left(\square_{r}, \square_{r}\right)+b^{4} p^{2} Y_{2, m}\left(\square_{p}, \square_{p}\right)\right) \\
& H_{0}=r^{2}+b^{4} p^{2}, \quad \vec{L}=\vec{r} \square \vec{p}
\end{aligned}
$$

- State labels: |($\square, \square) \square \mathrm{lm}_{1}>$
+ ($\bar{\square}, \square)$ - SU(3) irrep labels
- l - total orbital angular momentum
$\star \mathbf{m}_{\mathbf{1}}$ - angular momentum projection (laboratory axis)
- $\square \quad$ - angular momentum projection (body-fixed axis)

The reduction $\mathrm{SU}(3) \quad \mathrm{SU}(2) \quad \mathrm{U}(1)$

- $\mathbf{S U (3)}$ generators as $\mathbf{S U (2)}$ tensors:
$\uparrow\left\{\mathrm{Q}_{0} ; \mathrm{L}_{0}, \mathrm{Q}_{+2}, \mathrm{Q}_{-2}\right\} \quad \square \quad \mathrm{U}(\mathbf{1}) ; \mathrm{SU}(\mathbf{2})$
$\rightarrow\left\{\mathrm{L}_{+1}, \mathrm{Q}_{+1}, \mathrm{~L}_{-1}, \mathrm{Q}_{-1}\right\} \square 2$ conjugate $\left[1 /{ }_{2}\right]$ irreps of $S U(2)$ with $[= \pm 3$
- State labels: $\operatorname{l(\square ,\square)} \square \mathbf{n}_{\square} \mathbf{m}_{\mathbf{l}}>$
+ ($\overline{\mathrm{L}, \mathrm{D}) ~-~ S U(3) ~ i r r e p ~ l a b e l s ~}$
- \square - quadruple moment
+ \mathbf{m}_{1} - third projection of the angular momentum
+ \mathbf{n}_{\square} - number of oscillator quanta in (x, y) plane for $(\square, 0)$ irreps
- Label's values:

$$
\begin{aligned}
& \rightarrow \mathbf{n}_{\square}=0,1, \ldots, \square+\square \\
& \uparrow \mathrm{m}_{\mathrm{l}}=\square \mathrm{n}_{\square}, \square \mathrm{n}_{\square}+2, \ldots, \mathbf{n}_{\square}
\end{aligned}
$$

Basis States

Strong $\mathbf{S U}(3)$ coupling:
$\operatorname{INS}(\square, \square) \square \mathbf{n}_{\square}, \mathrm{m}_{1}, \mathrm{~m}_{\mathrm{S}}>=$
$\square<\mathrm{SU}_{\mathrm{p}}(3) \mathrm{SU}_{\mathrm{n}}(3)\left|\mathrm{SU}(3)><\mathrm{SU}_{\mathrm{Sp}}(2) \mathrm{SU}_{\mathrm{Sn}}(2)\right| \mathrm{SU}_{\mathrm{S}}(2)>$ $I N_{p} S(\square, \square) \square n_{\square}, m_{1}, m_{s}>_{p} \quad I N_{n} S(\square, \square) \square n_{\square}, m_{1}, m_{s}>_{n}$
$+\mathrm{SU}(3) \quad \mathrm{SU}(4) \quad \mathrm{SU}(3) \quad \mathrm{SU}_{\mathrm{S}}(2) \quad \mathrm{SU}_{\mathrm{T}}(2)$ leading irreps

neutrons

protons

Similar, but much simpler construction of m-scheme basis states: just configurations with same total M_{J}.

The Shell-Model Hamiltonian

$$
H=\square_{i} \square a_{i}^{+} a_{i}+\bigsqcup_{i, j, k, l} V_{i j k l} a_{i}^{+} a_{j}^{+} a_{k} a_{l}, \quad \square_{i} \square a_{i}^{+} a_{i} \square \bar{\square}\left(\square n_{i}+\square_{i} l_{i} \cdot s_{i}+\square_{i} l_{i}^{2}\right)
$$

Single-particle energies

SU(3) Symmetry Breaking in the pf-shell nuclei

Low Energy States SU(3) Structure

Realistic spin-orbit ($l \cdot s$) single particle energy splitting!

Turn off the s.p.e. spin-orbit splitting!

Coherent state structure in ${ }^{48} \mathrm{Cr}$ using Kuo-Brown-3 interaction.

Eigenvalue Problem in an Oblique Basis

Spherical basis states $\mathbf{e}_{\mathbf{i}} \quad \mathrm{SU}(3)$ basis states \mathbb{E}_{\square}

Overlap matrix g

$$
\hat{g}=\begin{array}{ll}
\square\left\langle e_{i} \mid e_{j}\right\rangle & \left\langle e_{i} \mid E_{\square}\right\rangle \\
\square\left\langle E_{\square} \mid e_{j}\right\rangle & \left\langle E_{\square} \mid E_{\square}\right\rangle \square=B^{1} \\
\square D^{+} & 1 \square
\end{array}
$$

The eigenvalue problem

$$
H \square=E \square \square \hat{H} \cdot \hat{D}=E \hat{g} \cdot \hat{\square}
$$

Example of an Oblique Basis Calculation: ${ }^{24} \mathbf{M g}$

We use the Wildenthal USD interaction and denote the spherical basis by $\operatorname{SM}(\#)$ where \# is the number of nucleons outside the $\mathrm{d}_{5 / 2}$ shell, the $\mathbf{S U (3)}$ basis consists of the leading irrep $(8,4)$ and the next to the leading irrep, $(9,2)$.

Model Space	SU3 $(8,4)$	SU3+ $(8,4) \&(9,2)$	GT100	SM(0)	SM(1)	SM(2)	SM(4)	Full
Dimension $(\mathrm{m}$-scheme $)$	23	128	500	29	449	2829	18290	28503
$\%$	0.08	0.45	1.75	0.10	1.57	9.92	64.17	100

Visualizing the $\mathrm{SU}(3)$ space with respect to the SM space using the naturally induced basis in the $\mathrm{SU}(3)$ space.

SU(3) basis space
SU(3) basis space

SM space

SM(2) \& SU3+
SM(4) \& SU3+

Better Dimensional Convergence!

Ground State Convergence for $\mathbf{2 4 M g}$

Ground State Convergence for ${ }^{44} \mathrm{Ti}$

Level Structure ${ }^{24} \mathbf{M g}$

Oblique Basis Spectral Results

Level Structure for ${ }^{44} \mathrm{Ti}$

Oblique Basis Results

Eigenvectors
Overlaps With The Exact Eigenvectors For 44Ti

Eigenvectors

Summary

$>$ The spin-orbit interaction drives the breaking of the $\mathrm{SU}(3)$ symmetry in the lower pf-shell.
$>$ The nuclear interaction has a clear two-mode structure: s.p.e. and $\mathrm{SU}(3)$ invariant two-body part...
$>$ Use of two different sets of states can enhance our understanding of complex systems.
\Rightarrow There is better dimensional convergence.
$>$ Correct level order of the low-lying states.
$>$ Significant overlap with the exact states.

- 10% versus 64% for ${ }^{24} \mathrm{Mg}(\operatorname{good} \operatorname{SU}(3)$ limit)
- 50% versus 84% for ${ }^{44} \mathrm{Ti}$ (poor $\mathrm{SU}(3)$ limit)

