
ÿThe idea: to combine the best shell model methods
available:

• m-scheme spherical shell-model
• SU(3) symmetry based shell-model

ÿDevelopers …
– Vesselin Gueorguiev
– Jerry Draayer
– Erich Ormand
– Calvin Johnson

(H - Eg)Y=0

HY = EY
m-scheme states

SU(3) states



Maybe two or more different sets of basis states could
be employed to understand such problems …

perturbative regime

What about more than one
exactly solvable part beyond
the perturbative regime?

Problems that we understand well

† 

H = H0 + V

exactly solvable (symmetry at play)

† 

H = H1(a) + H2(b) + ...
† 

H = H0

Transition from phase one
to phase two should occur.



Two-Mode Toy System
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The Challenge in Nuclei...
Nuclei display unique characteristics:

• Single-particle Features
• Pairing Correlations
• Deformation/Rotations

Rotations

Closed
Shell

Closed
Shell

Pairing Vibrations



Nuclear Shell-Model Hamiltonian

† 

H = eiai
+ai

i
Â + Vijkl

i, j ,k,l
Â ai

+a j
+akal  = eiNi

i
Â + cQ ⋅ Q + Uresidual

where ai
+ and ai are fermion creation and annihilation operators,

ei and Vijkl  are real and Vijkl = Vklij = -V jikl = -Vijlk

ÿ Spherical shell-model basis states are eigenstates of the one-
body part of the Hamiltonian - single-particle states.

ÿ The two-body part of the Hamiltonian H is dominated by the
quadrupole-quadrupole interaction Q·Q ~  C2 of SU(3).

ÿ SU(3) basis states - collective states - are eigenstates of H for
degenerate single particle energies e and a pure Q·Q interaction.



SU(3) Basics
The SU(3) …  SO(3) Reduction

u SU(3) generators as SO(3) tensors:
Lm , Lm'[ ] = - 2(1m1m' | 1m + m' )Lm + m'

Qm , Lm'[ ] = - 6(2m1m' | 2m + m' )Qm + m'

Qm , Qm'[ ] = 3 10(2m2m' | 1m + m' )Lm + m'

† 

Qm
(a ) = 4p /5( )1/ 2 r2Y2,m qr,fr( ) + b4 p2Y2,m qp,fp( )( )

H0 = r2 + b4 p2,       L = r ¥ p

u State labels:  |(l,m)klml>
F (l,m) - SU(3) irrep labels
F   l      - total orbital angular momentum
F  ml    - angular momentum projection (laboratory axis)
F  k      - angular momentum projection (body-fixed axis)

Algebraic quadruple operator:



u  SU(3) generators as SU(2) tensors:
F  {Q0; L0,Q+2, Q-2}    Æ  U(1) ;  SU(2)
F  {L+1 ,Q+1, L-1, Q-1}  Æ  2 conjugate [1/2]

irreps of SU(2) with e= ± 3

u State labels:  |(l,m) e nr ml>
F (l,m) - SU(3) irrep labels
F    e    - quadruple moment
F   ml   - third projection of the angular

momentum
F   nr   - number of oscillator quanta in (x,y)

plane for (l,0) irreps

u Label’s values:
F e   = -l-2m, -l-2m +3, ..., 2l+m

F nr  =  0, 1, ..., l+m

F ml  = -nr ,-nr+2, ...,  nr

 The  reduction SU(3) … SU(2) ƒ U(1) 
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Basis States
Strong SU(3) coupling:

 | N S (l,m) e,  nr ,  ml , mS >=  
 S  <SUp(3) SUn(3) | SU(3)> <SUSp(2) SUSn(2) | SUS(2)>

| Np S (l,m) e,  nr ,  ml , mS >pƒ | Nn S (l,m) e,  nr ,  ml , mS >n

F SU(3) ƒ  SU(4) … SU(3) ƒ  SUS(2) ƒ  SUT(2)  leading irreps

e   =   4
e   =   1
e   =   1
e   =  -2
e   =  -2
e   =  -2

ml =  0
ml =  1
ml = -1
ml =  2
ml =  0
ml = -2

protonsprotonsneutronsneutrons

Similar, but much simpler construction of m-scheme basis states:

just configurations with same total MJ.



The Shell-Model Hamiltonian

† 

H = eiai
+ai

i
Â + Vijkl

i, j ,k,l
Â ai

+a j
+akal ,       eiai

+ai
i

Â Æ e niÂ + a ili ⋅ si + b ili
2( )

Single-particle energies



SU(3) Symmetry Breaking
in the pf-shell nuclei

Realistic spin-orbit (l⋅s)
single particle energy
splitting!

Turn off the s.p.e.
spin-orbit splitting!

(l⋅s)

Low Energy States SU(3) Structure
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Low Energy States SU(3) Structure, 
No Spin-Orbit Interaction 
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Coherent state structure in  48Cr
using Kuo-Brown-3 interaction.



Eigenvalue Problem in an Oblique Basis
®Spherical basis states ei         ®SU(3) basis states Ea

 

® Overlap matrix g

† 

ˆ g =
ei e j ei Eb

Ea e j Ea Eb

Ê 

Ë 
Á 

ˆ 

¯ 
˜ =

1 m

m+ 1
Ê 

Ë 
Á ˆ 

¯ 
˜ 

† 

Hy = Ey  fi   ˆ H ⋅ ˆ y = E ˆ g ⋅ ˆ y 

® The eigenvalue problem



We use the Wildenthal USD interaction and denote the spherical basis by
SM(#) where # is the number of nucleons outside the  d5/2 shell, the SU(3) basis
consists of the leading irrep (8,4) and the next to the leading irrep, (9,2).

Example of an Oblique Basis Calculation:  24Mg

Visualizing the SU(3) space
with respect to the SM space
using the naturally induced
basis in the SU(3) space.

SM(4) & SU3+

SU(3) basis space

SM spaceSM space

SU(3) basis space

SM(2) & SU3+

10064.179.921.570.101.750.450.08%

285031829028294492950012823Dimension
(m-scheme)

FullSM(4)SM(2)SM(1)SM(0)GT100SU3+
(8,4) &  (9,2)

SU3
(8,4)

Model Space

Insert portrait slides



Ground State Convergence for 44Ti

50%

84%

16%



24Mg



Level Structure for 44Ti

Oblique Basis Results



Overlaps With The Exact Eigenvectors For 44Ti

50%
84%

10%
64%



Summary
ÿThe spin-orbit interaction drives the breaking of the SU(3)
symmetry in the lower pf-shell.
ÿThe nuclear interaction has a clear two-mode structure:

s.p.e. and SU(3) invariant two-body part…

ÿ Use of two different sets of states can enhance our
understanding of complex systems.
ÿThere is better dimensional convergence.
ÿCorrect level order of the low-lying states.
ÿSignificant overlap with the exact states.

• 10% versus 64% for 24Mg (good SU(3) limit)
• 50% versus 84% for 44Ti (poor SU(3) limit)


