

Mixed-Mode Calculations within the Nuclear Shell Model.

- The idea: to combine the best shell model methods available:
 - m-scheme spherical shell-model
 - **SU(3)** symmetry based shell-model

> Developers ...

- Vesselin Gueorguiev $H\Psi = E\Psi$
- Jerry Draayer
- Erich Ormand
- Calvin Johnson

Problems that we understand well

exactly solvable (symmetry at play)

perturbative regime

- $H = H_0$
- $H = H_0 + V$
- $H = H_1(\alpha) + H_2(\beta) +$

What about more than one exactly solvable part beyond the perturbative regime? Transition from phase one to **phase two** should occur.

Maybe two or more different sets of basis states could be employed to understand such problems ...

Two-Mode Toy System

Particle in 1D box Harmonic Oscillator Particle in a 1D box subject to harmonic oscillator potential.

The Challenge in Nuclei...

Nuclei display unique characteristics:

- Single-particle Features
- Pairing Correlations
- Deformation/Rotations

Nuclear Shell-Model Hamiltonian

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \sum_{i,j,k,l} V_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l} = \sum_{i} \varepsilon_{i} N_{i} + \chi Q \cdot Q + U_{\text{residual}}$$

where a_i^+ and a_i are fermion creation and annihilation operators, ε_i and V_{ijkl} are real and $V_{ijkl} = V_{klij} = -V_{jikl} = -V_{ijlk}$

> Spherical shell-model basis states are eigenstates of the onebody part of the Hamiltonian - **single-particle states**.

> The two-body part of the Hamiltonian H is dominated by the **quadrupole-quadrupole interaction** Q·Q ~ C_2 of SU(3).

> SU(3) basis states - collective states - are eigenstates of H for degenerate single particle energies ε and a pure Q·Q interaction.

SU(3) Basics

The SU(3) \supset SO(3) Reduction

◆ SU(3) generators as SO(3) tensors:

$$\begin{bmatrix} L_m, L_{m'} \end{bmatrix} = -\sqrt{2}(1m1m' \mid 1m + m')L_{m+m'}$$
$$\begin{bmatrix} Q_m, L_{m'} \end{bmatrix} = -\sqrt{6}(2m1m' \mid 2m + m')Q_{m+m'}$$
$$\begin{bmatrix} Q_m, Q_{m'} \end{bmatrix} = 3\sqrt{10}(2m2m' \mid 1m + m')L_{m+m'}$$

Algebraic quadruple operator:

$$Q_{m}^{(a)} = (4\pi/5)^{1/2} (r^{2}Y_{2,m}(\theta_{r},\phi_{r}) + b^{4}p^{2}Y_{2,m}(\theta_{p},\phi_{p}))$$
$$H_{0} = r^{2} + b^{4}p^{2}, \quad \vec{L} = \vec{r} \times \vec{p}$$

• State labels: $|(\lambda,\mu)\kappa lm_l\rangle$

- + (λ,μ) SU(3) irrep labels
- ↓ I total orbital angular momentum
- + $\mathbf{m}_{\mathbf{l}}$ angular momentum projection (laboratory axis)
- κ angular momentum projection (body-fixed axis)

The reduction $SU(3) \supset SU(2) \otimes U(1)$

◆ SU(3) generators as SU(2) tensors:

 $\blacklozenge \{\mathbf{Q}_0; \mathbf{L}_0, \mathbf{Q}_{+2}, \mathbf{Q}_{-2}\} \rightarrow \mathbf{U}(1) \ ; \ \mathbf{SU}(2)$

+ {L₊₁,Q₊₁,L₋₁,Q₋₁} → 2 conjugate [¹/₂] irreps of SU(2) with ε= ± 3

- State labels: $I(\lambda,\mu) \in n_{\rho} m_{l}$ >
 - + (λ,μ) SU(3) irrep labels
 - + ϵ quadruple moment
 - m₁ third projection of the angular momentum
 - \mathbf{n}_{ρ} number of oscillator quanta in (x,y) plane for (λ ,0) irreps

Label's values:

+
$$\varepsilon = -\lambda - 2\mu, -\lambda - 2\mu + 3, ..., 2\lambda + \mu$$

+ $n_{\rho} = 0, 1, ..., \lambda + \mu$
+ $m_{l} = -n_{\rho}, -n_{\rho} + 2, ..., n_{\rho}$

Basis States

Strong SU(3) coupling:

$$\begin{split} | \mathbf{N} \mathbf{S} (\lambda, \mu) \varepsilon, \mathbf{n}_{\rho}, \mathbf{m}_{1}, \mathbf{m}_{S} > = \\ \mathbf{\Sigma} \langle \mathbf{SU}_{p}(3) \mathbf{SU}_{n}(3) | \mathbf{SU}(3) \rangle \langle \mathbf{SU}_{Sp}(2) \mathbf{SU}_{Sn}(2) | \mathbf{SU}_{S}(2) \rangle \\ | \mathbf{N}_{p} \mathbf{S} (\lambda, \mu) \varepsilon, \mathbf{n}_{\rho}, \mathbf{m}_{1}, \mathbf{m}_{S} >_{p} \otimes | \mathbf{N}_{n} \mathbf{S} (\lambda, \mu) \varepsilon, \mathbf{n}_{\rho}, \mathbf{m}_{1}, \mathbf{m}_{S} >_{n} \end{split}$$

→ SU(3) \otimes SU(4) \supset SU(3) \otimes SU_S(2) \otimes SU_T(2) leading irreps

Similar, but much simpler construction of m-scheme basis states: just configurations with same total M_J .

The Shell-Model Hamiltonian

SU(3) Symmetry Breaking in the pf-shell nuclei

Low Energy States SU(3) Structure

Eigenvalue Problem in an Oblique Basis

Example of an Oblique Basis Calculation: ²⁴Mg

We use the **Wildenthal USD interaction** and denote the **spherical basis** by SM(#) where # is the number of nucleons outside the $d_{5/2}$ shell, the **SU(3) basis** consists of the leading irrep (8,4) and the next to the leading irrep, (9,2).

Model Space	SU3	SU3+	GT100	SM(0)	SM(1)	SM(2)	SM(4)	Full
	(8,4)	(8,4) & (9,2)						
Dimension	23	128	500	29	449	2829	18290	28503
(m-scheme)								
%	0.08	0.45	1.75	0.10	1.57	9.92	64.17	100

Visualizing the SU(3) space with respect to the SM space using the naturally induced basis in the SU(3) space.

Insert portrait slides

Better Dimensional Convergence!

Ground State Convergence for 24Mg

Number of Basis States

Ground State Convergence for ⁴⁴Ti

Number of Basis States

Level Structure ²⁴Mg

Oblique Basis Spectral Results

Level Structure for ⁴⁴Ti

Oblique Basis Results

Eigenvectors

Eigenvectors

Summary

> The **spin-orbit interaction** drives the **breaking of the SU(3)** symmetry in the lower pf-shell.

The nuclear interaction has a clear two-mode structure: s.p.e. and SU(3) invariant two-body part...

➤ Use of two different sets of states can enhance our understanding of complex systems.

- ≻There is better dimensional convergence.
- Correct level order of the low-lying states.
- Significant overlap with the exact states.
 - 10% versus 64% for ²⁴Mg (good SU(3) limit)
 - 50% versus 84% for ⁴⁴Ti (poor SU(3) limit)