
The National Security Agency’s Review of Emerging Technologies

High
Confidence
Software
and
Systems

High
Confidence
Software
and
Systems

The Next Wave is published to disseminate technical advancements and research activities in telecomm-
unications and information technologies. Mentions of company names or commercial products do not
imply endorsement by the US Government.

Letter from the Guest Editor

For years the National Security Agency (NSA) has pursued research in high confidence
software and systems (HCSS) technologies to improve the assurance of security critical
algorithms, protocols, software, and hardware. Along the way, NSA has been a leader in the
development of a national, collaborative community of HCSS researchers and sponsors, some of
whom are represented in this issue of The Next Wave (TNW).

HCSS research has primarily focused upon developing foundational technology and
techniques, yielding components and systems that are “correct by construction.” HCSS research
has also been aimed at creating analytic techniques to assess and improve the quality of existing
code and specifications. Over the years, HCSS research projects have delivered significant
advances within both developmental and analytic areas, and yet substantial questions remain
unanswered:

can one obtain high assurance that security has been achieved?

or worse, are of unknown provenance?

 This issue of TNW provides a glimpse into the multi-faceted research strategy gaining
traction within and beyond the HCSS community—a strategy that attempts to tackle tough
questions such as those identified above. Each facet of the strategy, whether preventive or
analytic, will require better evidence—evidence capable of supporting an objective assessment
that the system in question meets specified requirements. In short, the need for evidence-based
assurance is the core tenet of each approach discussed here. Additionally, each article in this issue
highlights the strong overlap between preventive and analytic methods, with an emphasis on the
early application of analytic methods in the development process. When used at the earliest stages
in the process, analytic methods guide development choices, thereby lessening engineering risks.

 In closing, it would be irresponsible to publish this issue of TNW without explicitly
acknowledging the one person I consider to be the heart of the HCSS community within the United
States—Dr. Helen Gill from the National Science Foundation. Dr. Gill has worked tirelessly
within this community, giving of her time, her talent, and her wisdom. Dr. Gill exemplifies the

William B. Martin,
Chief, High Confidence Software and Systems Division

The Next Wave is published to disseminate technical advancements and research activities in telecomm-
unications and information technologies. Mentions of company names or commercial products do not
imply endorsement by the US Government.

kprewit
Typewritten Text

kprewit
Typewritten Text

kprewit
Typewritten Text

	
		

	

FEATURES

4	 A Letter from Sir Tony Hoare

5	 Empowering the Experts:
	 High-Assurance, High-Performance,
	 High-Level Design with Cryptol

14	 A High-Assurance Methodology for
	 the Development of Security Software

22	 Correct by Construction:
	 Advanced Software Engineering

32	 Verified Software in the World

34	 Software for Dependable Systems:
	 Sufficient Evidence?

44	 Critical Code:
	 Software Producibility for Defense

50	 Cyber-Physical Systems

	

	

	

C O N T E N T S

I heartily welcome this special issue of
The Next Wave. It gives a realistic picture of the
advancing state of the art in the specification,
design, implementation, and certification of high
confidence computer systems.

This topic has interested me since the 1960s,
when I first encountered an article by Bob Floyd
on Assigning Meanings to Programs. At that time,
I judged this was a topic highly suited to pure
academic research, a career on which I was just
embarking. Like other scientific investigators, we
hoped to enlarge scientific understanding of what
computer programs do, and how and why they
work. We hoped to test the range of applicability
of scientific theory by experimental verification of
real programs. We were driven by ideals of total
program correctness, and total certainty achieved
by mathematical proof.

As in other mature branches of science (e.g.,
physics, chemistry, and most recently biology),
the fundamental research has now reached a point
where it can be applied in engineering practice. As
in other branches of engineering, the key to this
technology transfer has been the availability of
powerful programme analysis and theorem-roving
tools. They are based soundly on scientific theory,
but conceal this fact to an appropriate degree from
their users. The tools are now subject to continuous
improvement in the light of realistic academic
and industrial experiments, and by exploiting
the increasing performance of algorithms for
logical and mathematical reasoning by computer.

Theoretical research now can use the experimental
method as a means of differentiating, selecting,
and improving the relevant theories for solution of
existing and future problems.

The articles in this issue concentrate on
advances in tools and experiments. They explicitly
outline the remaining deficiencies and difficulties,
but I hope that they give sufficient evidence to
encourage a wider range of pioneering applications,
leading at a sensible rate towards general adoption
of computer-assisted programming methods, both
by software engineers and by their customers.

About the author
In 1980, Sir Tony Hoare received the ACM

Turing Award for his “fundamental contributions
to the definition and design of programming
languages,” and in 2000 he was awarded the
Kyoto Prize for his “pioneering and fundamental
contributions to software science.” These two
awards represent the top international accolades
available to a computer scientist. Also in 2000 he
was knighted by Her Majesty the Queen for services
to education and computer science. Sir Tony is now
Emeritus Professor at Oxford University, and works
as a Senior Researcher at Microsoft Research in
Cambridge.

4 A Letter from Sir Tony Hoare

A Letter from Sir Tony Hoare

The Next Wave n Vol 19 No 1 n 2011 5

Cryptographer as designer
You are a highly skilled crypto-

grapher charged with designing a custom,
state-of-the-art encryption solution for
protecting mission-critical information.
There are explicit and competing
requirements for the implementation—
throughput, size, power utilization,
operation temperature, etc.—that may
affect the implementation.

You produce a design and want
to see how it matches up with the
implementation requirements. How
would you proceed?

Typically, you find an expert
hardware designer who translates your
algorithm into VHDL (a hardware
description language), and then runs
proprietary tools to characterize the
implementation. If it uses too much power,

or has insufficient throughput, or..., the
hardware designer iteratively tweaks the
design until it is “good enough.”

But how do you know if it still
works the way you intended?

Typically, the design is fabricated
(if it is an ASIC—application-specific
integrated circuit) or loaded into an FPGA
(field-programmable gate array), placed

into a test harness, and blasted with test

vectors. If it works, great. Otherwise, the

search begins to find the error.

And what if a security hole; for

example, a malicious counter or a back

door; was introduced? Would you even

know?

There must be a better way.

Empowering the Experts:
High-Assurance, High-Performance,
High-Level Design with Cryptol

A domain-specific language (DSL) is a programming language targeted
at producing solutions in a given problem domain by enabling subject-
matter experts to design solutions in terms they are familiar with

and at a level of abstraction that makes most sense to them. In addition, a
good DSL opens the way for powerful tool support: simulations for design
exploration; automatic testing and generation of test harnesses; generation
of highly specialized code for multiple targets; and generation of formal
evidence for correctness, safety, and security properties.

Figure 1: Traditionally, the
crypto developer must be highly
trained and expert at balancing
a myriad of often conflicting
requirements.

Image Source: Galois, Inc.

6 Empowering the Experts: High-Assurance, High-Performance, High-Level Design with Cryptol

Cryptol: A better way
The Cryptol specification language

was designed for the National Security
Agency (NSA) as a public standard for
specifying cryptographic algorithms [1].
The Cryptol tools provide a development
path for cryptographic modules across the
entire software process, from specification
and implementation to verification and
certification. Cryptol tools significantly
reduce overall life-cycle costs by
addressing the key cost drivers in the
deployment of cryptography.

Rapid design cycle

Cryptol specifications are
fully executable, allowing designers
to experiment with their programs
incrementally as their designs evolve.
The Cryptol tools support a refinement
methodology that bridges the conceptual
gap between specification and low-level
implementation, thereby reducing time
to market. For example, Cryptol allows
engineers and mathematicians to program
cryptographic algorithms on FPGAs as if
they were writing software.

Reusable specification

The Cryptol tools provide a
platform-neutral specification language
that generates implementations on multi
ple platforms. Cryptol tools can generate
software implementations, hardware
implementations, and formal models for
verification, all from a single Cryptol
program.

Accelerated certification

A Cryptol reference specification
becomes the formal documentation for
the cryptographic module, eliminating
the need for separate and voluminous
English descriptions. In addition, Cryptol
verification tools show functional
equivalence between the specification
and the implementation at various stages
of the toolchain.

Design: The Cryptol
language

Cryptol [1] is a pure functional
language built on top of a polymorphic
type system that has been extended with
size polymorphism and arithmetic type
predicates designed to capture constraints
that arise naturally in cryptographic
specifications.

Figure 2 shows an excerpt from
the AES specification [2] that describes
the generator inputs and outputs, and the
corresponding Cryptol definition. The
text to the left of => ([128],[64*k]) in the
Cryptol definition describes quantified
type variables and predicates on them. In
this case, the type is size polymorphic,
relying on the size variable k. The

predicates constrain the range of values
the quantified size variables can accept;
here, k must be between 2 and 4. To the
right of the =>, we see the actual type.
The function has two inputs: a 128-
bit word containing the plaintext and a
64*k-bit wide key. The function outputs
another 128-bit word, the ciphertext. Note
the precise correspondence of the type to
the English description in the standard.

Figure 3 shows a Cryptol code
snippet—a specification for the core of
the DES algorithm. Note the compact
mathematical function notation and the
definition of sequence structures and bit
sizes. The Cryptol Reference Manual [4]
has many more examples as well as a
detailed description of the language.

Figure 2: The constraints and requirements from the Advanced Encryption Standard
(AES) [2] can be translated directly into Cryptol types, as shown above. The colored
text shows the linkage between English constraint and Cryptol type.

From Section 3.1 of the AES definition [2]:

The input and output for the AES algorithm each consist of sequences
of 128 bits... The Cipher Key for the AES algorithm is a sequence of
128, 192 or 256 bits. Other input, output and Cipher Key lengths are
not permitted by this standard.

In Cryptol:
{k}{k>= 2, 4 >= k)
	 => ([128],[64*k]) -> [128]

Image Source: Galois, Inc.

des : ([64],[56]) -> [64];
initial

permutation

plaintext

([] []) []
des (pt, key) = permute (FP, last)

where {
pt’ = permute (IP, pt);
iv = [| round (lr key rnd) f^

L0 R0

K1

iv = [| round (lr, key, rnd)
|| rnd <- [0 .. 15]
|| lr <- [(split pt’)] # iv
|];

L1=R0 R1=L0^f(R0,K1)

K
2last = join (swap (iv @ 15));

swap [a b] = [b a];
}; L2=R1 R2=L1^f(R1,K2)

f^ 2

round : ([2][32], [56], [4]) -> [2][32];
round([l r], key, rnd) = [r (l^f(r, kx))]

where {
k d(k d)

L15=R14 R15=L14^f(R14,K15)

K16

kx = expand(key, rnd);
f(r,k) = permute(PP, SBox(k^permute(EP, r)));

}; R16=L15^f(R15,K16) L16=R15

f^

inverse initial
permutation

ciphertext

Image Source: Galois, Inc.

Figure 3: The Data Encryption Standard (DES) algorithm is a block cipher that
uses a 56-bit symmetric key. The diagram above is taken from the Standard [3].
Cryptol uses parallel stream comprehensions to interleave data and lazy evaluation
to encapsulate multiple computational stages in a single statement. Colors and
shapes are used to help relate the program text to the diagram. Details of the
language can be found in [4] and at www.cryptol.net.

The Next Wave n Vol 19 No 1 n 2011 7

FEATURE

Implement:
The Cryptol FPGA

Type 1 cryptographic devices
protect information of national
importance. The information assurance
standards for such products are
correspondingly high. In addition, crypto
modernization requirements mandate field
programmability, and various operational
requirements call for a reduced space,
weight, and power footprint.

FPGAs offer a compelling platform
to address these needs. They are field
updatable by design, offer tremendous
performance potential, and have fewer
nonrecurring engineering costs than
traditional ASIC designs.

However, FPGA development
still requires the considerable time and
talents of skilled hardware designers,
which increases development time
and costs. Mainstream design tools
supplied by FPGA vendors have more
in common with VLSI (very-large-
scale integration) design tools than with
modern programming environments.
These design tools automatically limit
the user population to designers trained in
VLSI design.

The Cryptol FPGA generator
introduces a new design flow that allows
engineers and mathematicians to program
cryptographic algorithms on FPGAs
in a high-level language incorporating
concepts and constructs familiar to
cryptologists. The vision is that instead
of demanding low-level hardware design
knowledge, users are able to express their
designs and programs at a much higher
level of abstraction and take advantage
of powerful automated mechanisms
for generating, placing, and routing the
circuits.

In some ways, the mathematics
behind a cryptographic specification is
like a hardware description. Both give
unambiguous specification of how bits
are to be handled and how bit-level

operations are to be applied. But there
the resemblance ends. Sequences, which
appear repeatedly in the mathematical
descriptions of crypto algorithms,
have many different instantiations as
hardware. At one extreme, the sequence
can be spread out in space as side-by-
side parallelism. At the other extreme,
the sequence can be laid out in time as
consecutive values held in a register, or
over many registers in a pipeline. Many
combinations of these are also possible.

The Cryptol FPGA generator uses a
wide variety of engineering heuristics to
pick an appropriate translation of a Cryptol
function to an FPGA configuration that
will make effective and efficient use of
the silicon. The user can also provide
pragmas (compiler commands) about
space/time mappings, thereby guiding the
translation process without compromising
the integrity of the original specification.

The declarative quality of Cryptol,
which makes Cryptol a good specification
language, also plays a key role in the
effectiveness of automatic generation
of FPGA cores. In contrast, the inherent
sequentiality of mainstream program
ming languages makes them a poor match
for the highly parallel nature of FPGAs.

Creating high-performance
designs

The Cryptol FPGA generator
produces cores whose throughput and
area usage have been comparable to
(and in some cases better than) hand-
coded VHDL/Verilog. For example, an
implementation of 128-bit AES for the
Xilinx Virtex 4 FPGA has been generated
with clock rates in excess of 200 MHz
(which translates to throughput of better
than 25 Gbps) using only 6912 slices (25
percent of the slices on the chip) and 100
Block RAMs (62 percent of the available
Block RAMs). Theoretical results based
on Xilinx tools indicate that 500 MHz (65
Gbps) is achievable by these cores.

High-level exploration of
the design space

Good design is always at the root of
great performance. One of the key factors
in Cryptol’s performance results is its
ability to explore the implementation
design space at a very high level. A
Cryptol developer can experiment with
many different microarchitectures in the
course of a few days, covering ground
that would otherwise take weeks or
months using traditional methods. A
variety of implementation approaches can
be modeled and characterized quickly.

For example, at the Cryptol level,
a straightforward idiom identifies pipe-
lined functional units in hardware. Recall
the specification for DES shown in Figure
3. The designer has created a pipelined
version of the round function by hand
by factoring the high-level Cryptol
specification, as shown in Figure 4. The
Cryptol FPGA generator produces an
efficient pipelined circuit, also shown in
Figure 4 on page 8.

High-level design exploration pro-
vides a profound advantage in the devel-
opment of high-performance algorithms
(or in algorithms meeting other design
constraints). The key is the speed with
which the developer is able to iterate the
design, the bottleneck of hardware design.
A crypto developer can produce rapid de-
sign iterations using the Cryptol Toolkit,
effectively increasing productivity by up
to an order of magnitude over traditional
VHDL development.

Trust: The Cryptol
verification framework

The FPGA generator uses semantic
models to establish the correctness of
the process. To gain final assurance,
Cryptol developer Galois provides an
automatic equivalence checker to prove
that the actual code that will run on the
FPGA is equivalent to the reference
implementation.

8 Empowering the Experts: High-Assurance, High-Performance, High-Level Design with Cryptol

The Cryptol equivalence checker
utilizes state-of-the-art SAT (Boolean
satisfiability) and SMT (satisfiability
modulo theories) solvers as proof engines,
together with custom heuristics and
techniques. For example, the equivalence
checker can show the equivalence of an
AES specification written in Cryptol
with an unrolled, pipelined VHDL
implementation of AES generated from
Cryptol and passed through the Xilinx
toolchain all the way to place and route.

Two classes of problems

Cryptol’s verification framework
has been designed to address equivalence-
and safety-checking problems.

The equivalence-checking problem
asks whether two functions, f and g, agree
on all inputs. Typically, f is a reference
implementation of some algorithm,
following a standard textbook-style
description, and g is a version optimized
for time and/or space for a particular
target platform. The equivalence-
checking framework allows a developer
to formally prove that f and g are
semantically equivalent, ensuring that
the often very complicated and extensive
optimizations performed during synthesis
have not introduced bugs. Note that the
final implementation g does not need to
be in Cryptol—an important use case of
the verification framework is to verify that
third-party algorithm implementations
(typically in VHDL) are functionally
equivalent to their high-level Cryptol
versions. In this case, Cryptol acts as a
hardware/software verification tool [5].

The safety-checking problem is
about run-time exceptions. Given a
function f, we would like to know if f’s
execution can perform operations such as
division by zero or index out of bounds.
These checks are essential for increasing
the reliability of Cryptol-generated
implementations, since they eliminate the

round : [inf]([2][32],[56]) -> [inf]([2][32],[56]);
round data0 = data3

where {
data1 = [zero] # [| (expand key ^ permute(EP, r), [l r], key)

|| ([l r] key) <- data0|| ([l r], key) <- data0
|];

data2 = [zero] # [| (SBox(kx), [l r], key)
|| (kx, [l r], key) <- data1
|];

data3 = [zero] # [| ([r (l ^ permute(PP, sb))], key)
|| (sb, [l r], key) <- data2
|];|];

};

key key key key
data0 data1 data2 data3

y

r

l

y

kx

l

r

y

sb

l

r

expand SBox PP

XOR

XOR

y

lpx

r

EP

Figure 4: The code snippet above shows a new implementation of the DES
round function, shown in Figure 3 on page 6. A flow diagram is included, with
colors showing the correspondence between code and diagram element. This
version uses sequence comprehensions that can be performed in parallel
and introduces extra variables that translate into registers and pipelined
operations in the VHDL implementation.

Figure 5: Verification can be performed at various points during the translation,
which allows for high-assurance refinement during development. Note that
the major compiler phases (the flow through the top line) remain outside the
trusted-code base for verification. Trust in the down-arrows, representing
translators from various intermediate forms to formal models, along with the
off-the-shelf equivalence checkers themselves, is all that is needed.

Image Source: Galois, Inc.

Image Source: Galois, Inc.

The Next Wave n Vol 19 No 1 n 2011 9

FEATURE

need for sophisticated run-time exception
handling mechanisms.

The Cryptol toolset comes with a
push-button equivalence/safety checking
framework to answer these questions
automatically for a large subset of the
Cryptol language [6]. Cryptol uses off-
the-shelf SAT/SMT solvers such as
ABC [7] or Yices [8] as the underlying
equivalence-checking engine, translating
Cryptol specifications to appropri
ate inputs for these tools automatically.
However, the use of these external tools
remains transparent to the users, who
only interact with Cryptol as the main
verification tool.

Of course, equivalence checking
applies not only to handwritten programs
but also to generated code. Cryptol’s
synthesis tools perform extensive and
often very complicated transformations
to turn Cryptol programs into hardware
primitives available on target FPGA
platforms. The formal verification
framework of Cryptol allows equivalence
checking between Cryptol and netlist
representations that are generated by
various parts of the compiler, as we will
explain shortly. Therefore, any potential
bugs in the compiler itself are also caught
by the same verification framework. This
is a crucial aspect of the system: proving
the Cryptol compiler correct would be an
extremely challenging if not impossible
task. Instead, Cryptol provides a verifying
compiler that generates code along with a
formal proof that the output is functionally
equivalent to the input.

Design and verification flow
Figure 5 provides a high-level

overview of a typical Cryptol development
and verification flow. Starting with a
Cryptol reference specification, the
designer iteratively refines the program
and “runs” it at the Cryptol command
line. These refinements typically
include various pipelining and structural

transformations to increase speed and/or
reduce space usage. Behind the scenes,
the Cryptol toolchain translates Cryptol to
a custom signal-processing intermediate
representation (SPIR), which acts as a
bridge between Cryptol and FPGA-based
target platforms. The SPIR representation
allows for easy experimentation with
high-level design changes, because it
remains fully executable while also
providing essential timing/space usage
statistics without going through the
computationally expensive synthesis
tasks.

Once the programmer is happy with
the design, Cryptol translates the code to
VHDL, which is further fed to third-party
synthesis tools. Figure 5 shows the flow
for the Xilinx toolchain, taking the VHDL
through synthesis, place and route, and
bit-file generation steps. In practice,
these steps might need to be repeated,
using feedback from the synthesis tools,
until the implementation satisfies the
requirements. The overall approach aims
at greatly reducing the number of such
repetitions by providing early feedback
to the user, at the SPIR level. The final
outcome is a binary file that can be
downloaded onto a Xilinx FPGA board,
completing the design process.

Cryptol’s verification flow is
interleaved with the design process. As
depicted in Figure 5, Cryptol provides
custom translators at various points in
the translation process to generate formal
models in terms of AIG (and‐inverter-
graph) representations [9]. In particular,
the user can generate AIG representations
from the reference (unoptimized) Cryptol
specification, from the target (optimized)
Cryptol specification, from the SPIR
representation, from the post synthesis
circuit description, and from the final
(post-place-and-route) circuit description.
By successive equivalence checking of
the formal models generated at these

check points, Cryptol provides the user
with a high-assurance development
environment, ensuring that the applied
transformations preserve semantic
equivalence. The final piece of the puzzle
for end-to-end verification is generating
an AIG for the bit file generated by the
Xilinx tools, as represented by the dashed
line in Figure 5. At this time, the format of
this file remains proprietary.

Verification for the cryptography
domain: Why this works

Cryptol’s formal verification
framework clearly benefits from recent
advances in SAT/SMT solving. However,
it is also important to recognize that the
properties of cryptographic algorithms
make applications of automated formal
methods particularly successful. This
is especially true for symmetric key
encryption algorithms that rely heavily
on low-level bit manipulations instead
of the high-level mathematical functions
employed by public-key cryptography.

In particular, symmetric-key
cryptographic algorithms almost never
perform control flow based on input data,
in order to avoid attacks based on timing.
The series of operations performed are
typically “fixed,” without any dependence
on the actual input values. Similarly, the
loops used in these algorithms almost
always have fixed bounds; typically these
bounds arise from the number of rounds
specified by the underlying algorithm.
Techniques like SAT-sweeping [10] are
especially effective on crypto‐algorithm
verification, since simulation-based
node-equivalence guesses are likely to
be quite accurate for algorithms that
rely heavily on shuffling input bits.
Obviously, these properties do not make
formal verification trivial for this class of
crypto algorithms; rather, they make the
use of such techniques highly feasible in
practice [11].

10 Empowering the Experts: High-Assurance, High-Performance, High-Level Design with Cryptol

Verify: Evaluating
third-party VHDL
implementations

The process of verification in
Cryptol typically begins with
understanding the high-level interface of
the VHDL implementation under study.
Through Cryptol’s foreign-function
interface, the base interface to the VHDL is
simply imported using Cryptol’s “extern”
declaration capability. Then the required
interface-matching code is written in
Cryptol, mainly implementing the proper
use of control signals. This process makes
the external implementation available at
the Cryptol command prompt, enabling
the user to call it on specific values, pass it
through previously generated test vectors,
essentially making the external definition
behave just like any other Cryptol
function. This facility greatly increases
productivity, since it unifies software and
hardware under one common interface.
Once the reference specification and
the Cryptol/VHDL hybrid expose the
same interface, the user generates formal
models for both of them, and checks for
equivalence.

Challenges ahead
Increasing the coverage of formal

methods. Cryptol’s formal verification
framework works on a relatively large
subset of Cryptol [6]. The main limitation
is in verifying algorithms for all time, i.e.,
programs that receive and produce infinite
streams of data. Currently, Cryptol
can verify such algorithms only up to a
fixed number of clock cycles, effectively
introducing a time bound. While this
restriction is irrelevant for most block-
based crypto algorithms, it does not
generalize to stream ciphers in general.
The introduction of induction capabilities
in the equivalence checker or the use of
hybrid methods combining manual top-
level proofs with fully automated SAT/
SMT-based sub proofs might provide
a feasible alternative for handling such
problems.

 Proving security properties. Not

all properties of interest can be cast as

functional equivalence problems. This

is especially true for cryptography. For

instance, if we are handed an alleged

VHDL implementation of AES, in

addition to knowing that it implements

AES correctly, we would like to be

sure that it does not contain any “extra

circuitry” to leak the key. In general,

we would like to show that an end user

cannot gain any information from an

implementation that cannot be obtained

from a reference specification.

Reducing the size of the trusted
code base. Cryptol’s formal verification

system relies on the correctness of the

Cryptol compiler’s front-end components

(i.e., the parser, the type system, etc.), the

symbolic simulator, and the translators

to SAT/SMT solvers. Note that Cryptol’s

internal compiler passes, optimizations,

and code generators (i.e., the typical

compiler back-end components) are not

in the trusted code base. While Cryptol’s

trusted code base is only a fraction of the

entire Cryptol tool suite, it is nevertheless

a large chunk of code from the open-

source functional programming language,

Haskell. Reducing the footprint of this

trusted code base, and/or increasing

assurance in these components of the

system, is an ongoing challenge.

The Next Wave n Vol 19 No 1 n 2011 11

FEATURE

Cryptol
reference

specification

Symbolic
evaluator

Symbolic
evaluator

Equivalence
checker

Synthesis

Netlist Bitfile

Reference
model

Netlist
model

Handwritten
VHDL

implementation

Q: What can YOU do with Cryptol?
A: Gain assurance about your design.

Van der Waerden’s theorem states that for any
positive integers r and k there exists a positive
integer N such that if the integers {1 2 ...N }
are colored, each with one of r different colors,
then there are at least k integers in arithmetic
progression all of the same color. For any r and
k, the smallest such N is the van der Waerden
number W(r,k).

Van de Waerden numbers are difficult to
compute. In 2007, Dr. Michal Kouril of the
University of Cincinnati established that
W(2,6)=1132 (i.e., 1132 is the smallest
integer N such that every 2-coloring of {1 2
...N} contains a monochromatic arithmetic
progression of length 6) [19]. The most recent
previous result, W(2,5)=178, was discovered
some 30 years earlier. Kouril computed W(2,6)
using a special SAT-solver and clever techniques
to bound the search and employed FPGAs to
speed up the search.

Kouril wrote VHDL to program the FPGAs.
In order to convince himself that the FPGA
ensemble was doing what he expected, he also
expressed his algorithm in Cryptol, generated
formal models for both the Cryptol specification
and the VHDL implementation, and verified that
the two were equivalent!

Why not let Cryptol generate the solution?
So far no one has found a way to prove
unsatisfiability of W(r,k) directly without an
extensive search. The reliance on search makes
the problem hard; and although people have
found ways to generate long partitions without
a monochromatic arithmetic progression [20],
the true test that there are no longer partitions
is currently only possible using a search.

Q: What can YOU do with Cryptol?

A: Create a crypto algorithm and
	 generate test vectors.

“...an experienced Cryptol programmer given
a new crypto program specification and a soft
copy of test vectors can be expected to learn
the algorithm and have a fully functional and
verified Cryptol model in a few days to a week.”

“The AIM crypto engine software engineers
at General Dynamics C4 Systems use the
Cryptol modeling language as part of their
Software Engineering Institute CMM® Level
5 development process. Cryptol provides four
basic benefits leading to the certification of
crypto equipment. First, Cryptol allows the
design engineer to rapidly express an algorithm
in a common mathematical notation, which
is fully executable on the Cryptol interpreter,
providing verification that the algorithm is
completely understood. Second, the Cryptol
notation for the various components of the
algorithm are used to annotate the AIM micro
sequencer code which provides much greater
readability of that extremely dense assembly
language. Third, component testing of AIM
code, from small snippets through major
subroutines is greatly facilitated with Cryptol
generated test vectors derived from end-to-
end test vectors provided in algorithm source
specifications. Finally, Cryptol models are
evolving to directly support the certification
effort...”

Cryptol
reference

specification

Cryptol
interpreter

QuickCheck

Test
vectors

Q: What can YOU do with Cryptol?

A: Produce and refine a family
of designs.

A team of developers from Rockwell Collins,
Inc. and Galois, Inc. has successfully produced
high-speed embedded Cryptographic Equipment
Applications (CEAs), automatically generated
from high-level specifications. An algorithm
core generated from a Cryptol specification for
AES-256 running in Electronic Codebook mode
demonstrated throughput in excess of 16
Gbps. These high-speed CEA implementations
comprise a mixture of software and VHDL,
and target a compact new embedded platform
designed by Rockwell Collins. Notably, almost no
traditional low-level interface code was required
in order to implement these high-performance
CEAs. In addition, automated formal methods
prove that algorithm implementations faithfully
implement their high-level specifications.
Significantly, the Rockwell Collins/Galois team
was able to design, implement, simulate,
integrate, analyze, and test a complex CEA on
the new hardware in less than 3 months.

AES-256, ECB mode,
Virtex-4 technology

Implementation
characteristics

Clockrate

(MHz)

Resources

(slices)

Throughput

(Gbps/
second)

Optimized for
high throughput 127.5 2690 16.3

Optimized to minimize
resource usage 135.1 849 1.2

Handwritten,
minimal size 102.0 2535 0.9

Cryptol
reference

specification

Cryptol
implementation
specification

System
simulation

Symbolic
evaluator

Cryptol
interpreter

Cryptol
compiler

Synthesis

Equivalence
checker

Equivalence
checker

Test
vectors

Test
Vectors

C

VHDL

Netlist

Netlist
model

Bitfile

Reference
model

Symbolic
evaluator

Symbolic
simulator

Implementation
model

Image Source: Galois, Inc.

Image Source: Galois, Inc.
Image Source: Galois, Inc.

12 Empowering the Experts: High-Assurance, High-Performance, High-Level Design with Cryptol

Q: What can YOU do with Cryptol?
A: Gain assurance about someone
	 else’s design.

Skein [12] is a suite of cryptographic hash
algorithms targeted at the NIST SHA-3
competition [13]. At its core, Skein uses a
tweakable block cipher named Threefish. The
unique block iteration (UBI) chaining mode
defines the mode of operation by the repeated
application of the block cipher function.

Galois developed and published a Cryptol
specification for Skein [14]. We have verified two
independently developed VHDL implementations
of Skein against our specification for one 256-
bit input block, generating a 256-bit hash value.

The first verification was performed against
Men Long’s implementation [15]. Long
implemented only the underlying Threefish
encryption and the XOR of input data; we
modified our reference specification to
match. The AIG generated from the Cryptol
specification had 118,156 AND-gates; the
VHDL version was more than five times as
large, with 653,963 AND-gates. Equivalence
checking took about an hour to complete on
commodity hardware using ABC [7].

In this work, we encountered a problem
with Long’s VHDL code that rotated a 64-bit
signal a variable distance. The code was given
different meanings by GHDL [16], simili [17],
and the Xilinx synthesis tools. We removed
the ambiguity by replacing it with the standard
library function rotate_left. Thus, the Cryptol
verification path identified an otherwise
undetected ambiguity bug.

The second verification was performed against
Stefan Tillich’s full Skein implementation [18].
The AIG sizes in this case were 301,085 AND-
gates for the reference Cryptol versus 900,239
AND-gates for the VHDL implementation: about
three times larger. Equivalence checking was
completed in about 18 hours, again using ABC.

Q: What can YOU do with Cryptol?
A: Teach and learn about cryptography, satisfiability theory,....

“Cryptol was quite an experience. We began with simple sequences such as [1 2 3 4] and by
applying ‘@’ and ‘!’ to our list of numbers, we learned the priority/position of each number: when
using @, the order is zero based, [0th 1st 2nd 3rd], and when using !, the order is reversed, [3rd
2nd 1st 0th]. Each number or element contains a certain numbers of bits: 1 (0b1) contains one
bit, 2 (0b10) is two bits, 3 (0b11) is also two bits and 4 (0b100) is three bits.

Once the group grasped the concept of bits, we moved on to shifting and permuting sequences
using split, join, splitBy, groupBy, take, drop, reverse, and transpose. We then applied these fun-
damentals we had learned about Cryptol to interact with its interpreter and to explore some of the
concepts we had learned earlier in the year, such as Pascal’s Triangle, the Fibonacci sequence, the
sum of a series of odds, even, etc. Once that was complete, and given that Cryptol’s intended use
is cryptography, we used Cryptol to encrypt plaintext and decrypt ciphertext for a range of classes
of cryptographic algorithms, to include classic (substitution and transposition) and modern (sym-
metric and asymmetric) cryptographic systems.

We concluded our study of Cryptol by looking into
propositional logic and satisfiability, and ultimately
at a satisfiability solver that could be called from
within the Cryptol interpreter. In our examination
of propositional logic, we were initially forced
to prove our satisfying assumptions by hand
through the construction of small truth tables
with assignments of values with the goal of having
the formula evaluate to ‘true’, that is, they were
satisfied. To extend these concepts we utilized
the automated satisfiability solver that we could
call from the Cryptol interpreter. One application
where we were able to represent a problem
within Cryptol and to utilize the satisfiability solver
was in solving Sudoku puzzles. It was an amazing
experience and I will continue to play around with
Cryptol and the satisfiability solver because it was
so very intriguing.”

Q: What can YOU do with Cryptol?
A: Make a MILS FPGA.

The Cryptol Development Toolkit from
Galois provides a tool flow that puts FPGA
implementation into the hands of mainline
developers, improving both productivity and
assurance, without sacrificing performance.

The Xilinx Single Chip Cryptographic (SCC)
technology enables Multiple Independent
Levels of Security (MILS) in a single chip.
These two technologies fit seamlessly into a
single development flow.

The combined solution can address
high-grade cryptographic application
requirements (redundancy, performance,
red/black data, and multiple levels of
security on a single chip) as well as high
assurance development needs (high-
level designs, automatic generation of
implementation from design, automatically-
generated equivalence evidence), and has
the potential to significantly reduce the time
of costs of developing Type-1 cryptographic
applications.

Cryptol
implementation
specification

Equivalence
checker

Equivalence
checker

Netlist
NetlistVHDL

Handwritten
VHDL

implementation

Cryptol
reference

specification

Image Source: Galois, Inc.
Image Source: Galois, Inc.

The Next Wave n Vol 19 No 1 n 2011 13

FEATUREFEATURE

References
[1] Lewis JR, Martin B. Cryptol:
High-assurance, retargetable crypto
development and validation. In:
Proceedings of Military Communications
Conference 2003 (MILCOM 2003);
Oct 2003; Monterey (CA). p. 820–
825. Available at: doi: 10.1109/
MILCOM.2003.1290218

[2] Announcing the AES. NIST; Nov
2001. FIPS Publication 197. Available
at: http://csrc.nist.gov/publications/Pubs
FIPS.html

[3] Data Encryption Standard (DES).
NIST; Oct 1999. FIPS Publication
46–3. Available at: http://csrc.nist.gov/
publications/PubsFIPS.html

[4] Galois, Inc. The Cryptol reference
manual. Available at: http://www.cryptol.
net

[5] L. Erkök L, Carlsson M, Wick A.
Hardware/software co-verification of
cryptographic algorithms using Cryptol.
In: Proceedings of Formal Methods
in Computer Aided Design (FMCAD
‘09); Nov 2009; Austin, (TX). p.
188–191. Available at: doi: 10.1109/
FMCAD.2009.5351121

[6] Erkök L, Matthews J. Pragmatic
equivalence and safety checking in
Cryptol. In: Proceedings of Programming
Languages meets Program Verification
(PLPV’09); Jan 2009; Savannah (GA). p.
73–81. Available at: http://portal.acm.org/
citation.cfm?id=1481860

[7] Mishchenko A. Berkeley Logic
Synthesis and Verification Group. ABC:
System for sequential synthesis and
verification, release 70930. Available at:
http://www.eecs.berkeley.edu/~alanmi/
abc

[8] Yices: An SMT Solver. Available at:
http://yices.csl.sri.com/

[9] Biere A. The AIGER And-Inverter
Graph (AIG) format, version 20071012.
Available at: http://fmv.jku.at/aiger/

[10] Kuehlmann A, Paruthi V, Krohm F,
Ganai MK. Robust Boolean reasoning

for equivalence checking and functional
property verification. IEEE Trans. on
CAD of Integrated Circuits and Systems.
2002;21(12):1377–1394. Available at:
doi: 10.1109/TCAD.2002.804386

[11] Smith EW, Dill DL. Automatic
formal verification of block cipher
implementations. In: Proceedings of the
2008 International Conference on Formal
Methods in Computer-Aided Design
(FMCAD ’08); Nov 2008; Portland
(OR). p. 1–7 Available at: doi: 10.1109/
FMCAD.2008.ECP.10

[12] Ferguson N, Lucks S, Schneier B,
Whiting D, Bellare M, Kohno T, Callas J,
Walker J. The Skein hash function family.
2009. Available at: http: //www.skein-
hash.info

[13] NIST’s Cryptographic hash
algorithm competition. 2008. Available
at: http://csrc.nist.gov/groups/ST/hash/
sha-3

[14] Finne S. A Cryptol implementation
of Skein. Galois, Inc.; 23 Jan 2009.
Available at: http://corp.galois.com/blog/
month/january-2009

[15] Long M. Implementing Skein
hash function on Xilinx Virtex-5 FPGA
platform. 02 Feb 2009. Available at:
http://www.skein-hash.info/downloads

[16] GHDL simulator version 0.26.
Available at: http://ghdl.free.fr/

[17] Symphony EDA. VHDL Simili
simulator version 3.1. Available at: http://
www.symphonyeda.com/products.htm

[18] Tillich S. Hardware implementation
of the SHA-3 candidate Skein. Report
2009/159; Apr 2009. Cryptology ePrint
Archive. Available at: http://eprint.iacr.
org/2009/159

[19] Kouril M, Paul JL. The van
der Waerden number W(2, 6) is
1132. Experimental Mathematics.
2008:17(1):53–61. Available at: http://
www.expmath.org/expmath/contents.
html

[20] Herwig PR, Heule MJH, van
Lambalgen PM, van Maaren H. A new

method to construct lower bounds for van
der Waerden numbers. The Electronic
Journal of Combinatorics. 2007;14(1):R6.
Available at: http://www.combinatorics.
org/Volume_14/v14i1toc.html

Further reading
Hardin DS, Browning SA. HSE final
report, available from the authors.

Hardin DS, editor. Design and verification
of microprocessor systems for high-
assurance applications. 1st ed. Springer;
15 Mar 2010. ISBN-10: 1441915382

Lewis JR, Hoffman C, Browning SA,
Martin WB. A complete design flow
for MILS in a single high-assurance
FPGA. In: Proceedings of the Second
Annual European Reconfigurable Radio
Technologies (ERRT) Workshop; Jun
2010. Mainz, Germany. Available at:
http://groups.winnforum.org/p/cm/ld/
fid=98

McLean M, Moore J. FPGA-based
single chip cryptographic solution.
Military Embedded Systems.
Mar 2007. Available at: http://
www.mil -embedded.com/ar t ic les /
id/?2069

14 A High-Assurance Methodology for the Development of Security Software

1. Introduction
Security systems require especially

high levels of assurance of correctness,
reliability, and security. Researchers
in the National Information Assurance
Research Laboratory (now Trusted
Systems Research) at the National
Security Agency (NSA) with the
assistance of engineers at Rockwell
Collins conducted a project to exercise,
evaluate, and enhance a methodology
for developing high-assurance software
for an embedded system controller.
In this approach, researchers captured
system requirements precisely and
unambiguously through functional
specifications using the Z (pronounced
“zed”) formal specification notation.
Rockwell Collins then implemented these
requirements using an integrated, model-
based software development approach.
The development effort was supported by
a suite of tools that provides automated
code generation and support for formal
verification. The specific system is a
prototype high-speed encryption system,
although the controller could be adapted
for use in a variety of critical systems in

which very high assurance of correctness,
reliability, and security or safety is
essential. In this article, we use the High
Speed Crypto Controller (HSCC) project
to illustrate a development methodology
which we believe is useful in producing
both high quality software and the
assurance evidence to support evaluation.

In order to study advanced high-
speed electronics technology, hardware
research engineers in the NIARL started
a project to build a prototype high-
speed encryption system. The system
architecture they arrived at is shown in
Figure 1.

In this design, the data accelerators
handle input/output functions, data
formatting, and enforcement of some
security policy rules. The encrypt core and
decrypt core perform the actual encryption
and decryption. These six subsystem
blocks are in the high-speed data paths.
The control block manages the subsystem
blocks but lies outside the high-speed
data path. An important consequence of
this architecture is that the HSCC does
not need to be implemented using any
exotic high-speed electronics technology.

The critical HSCC design goals are
high reliability and achieving very high
assurance of functional correctness and
essential security properties. As a result,
project responsibility for implementing
the data accelerators and the crypto cores
remained with the hardware engineering
organization while responsibility for the
HSCC was passed to the High Confidence
Software and Systems (HCSS) Division.

Because of the research mission
of the HCSS division, the project had
two main goals. The first goal was to de-
liver a working controller. The second
goal was to exercise, evaluate, and try to
enhance a strong software development
methodology. Since HSCC is a security
system, the methodology has to support
a full range of development aspects from
requirements through very rigorous
evaluation by independent evaluators. In
addition to being rigorous, it should also
be cost-effective in time and money.

Given the project goals and
the limited resources of our research
organization, we in the HCSS division
needed an industrial partner. We found
the ideal partner in Rockwell Collins.
One reason for teaming with Rockwell

A High-Assurance
Methodology for
the Development
of Security Software

The Next Wave n Vol 19 No 1 n 2011 15

FEATURE

Collins was their capability with the
AAMP7G microprocessor and high-
assurance FPGA development. The
AAMP7G supports strict time and space
partitioning in hardware, and has received
an NSA MILS certification based in part
on a formal proof of correctness of its
separation kernel microcode, as specified
by the EAL-7 level of the Common
Criteria [1]. The formal verification of
the AAMP7G partitioning system was
conducted using the ACL2 theorem
prover and culminated in the proof of a
theorem that the AAMP7G partitioning
microcode implements a high-level
security policy [2].

Perhaps more important than
their hardware capabilities, Rockwell
Collins has a solid approach to
software development. It features an
integrated, model-based development
suite of tools—a toolchain—with a
focus on providing a domain-specific
modeling environment that abstracts
the implementation details, promotes
architectural level design, and provides
automated transformations between
the problem domain formalisms and
the target platform. The tools simplify
code development and facilitate the
application of automated formal analysis
tools. In addition, the toolchain is capable
of interfacing directly to a simulation
environment, providing another level of
assurance of design correctness.

For their part, HCSS researchers
have experience in the Z specification
language [3]. They have written Z
functional specifications and design
descriptions for several internal
development projects [4]. In these
projects, [5,6] HCSS researchers
played the role of customers and read
and commented on draft specifications
and designs in Z written by Praxis
High Integrity Systems. In addition to
experience in the requirements stage of
development, HCSS people are familiar

with the security evaluation work done by
other NSA personnel.

The approach we chose for the
HSCC project was for HCSS researchers
to take the lead in writing control
software requirements in the form of
functional specifications in Z. Rockwell
Collins would take these specifications as
input into their established development
process. They would look for
opportunities to strengthen the process,
including the support for evaluation, or
save time and money by taking advantage
of the formal specifications.

2. Z specification work
Over the last ten years, HCSS

researchers have worked with other
organizations using Z in support of a
variety of development projects. We use
the Z/EVES [7] support tool and have
found it quite suitable for our needs.
Based on our experience, we chose to use
Z to write functional specifications on this
high-assurance controller project.

On this project we tried to follow
good habits acquired over the years. We
think carefully about names and try to

use clear helpful names and well-chosen
abbreviations. We have a house style for
notational details such as capitalization.
The important point is that both writers
and readers of Z benefit greatly from
a consistent style. The specific details
of the style are not nearly as important
as the fact that there is a set of standard
conventions. In our finished documents,
we adhered strictly to the principle that
every Z paragraph was immediately
preceded by an accurate natural language
translation.

Since the HSCC project was to
produce the controller for a crypto
system, we had to describe, at a suitable
level of abstraction, the main work of
the system. On the outbound data path
this includes accepting, filtering, and
formatting unsecured data in the Red
Ingress data accelerator; encrypting in the
encrypt core; and formatting and sending
secure data out in the Black Egress data
accelerator. The inbound data path is a
mirror image with a decrypt core.

From this basic system analysis we
could see what control data structures
had to be provided by the controller to

A High-Assurance
Methodology for
the Development
of Security Software
David Hardin, T. Douglas Hiratzka, Lucas Wagner,
Michael Whalen, D. Randolph Johnson

Figure 1: High-Speed Crypto System functional block diagram

RI_DA
(Red Ingress Data Accelerator)

RE_DA
(Red Engress Data Accelerator)

BE_DA
(Black Egress Data

BI_DA
(Black Ingress Data

EncryptCore

DecryptCore

RedIngress
PolicerDB

RedEgress
PolicerDB

BlackEgress
PolicerDB

BlackIngress
PolicerDB

EncryptDB

DecryptDB

Status

Status StatusStatus

Status Status

FPGA_Info

outControlSAs inControlSAs

Security
ProtocolInfo ControlPending

DB

RedTEK_DB

NetworkConfig

ControlsDB

Control Block

16 A High-Assurance Methodology for the Development of Security Software

properly manage the system. Basically,
the system had to match each incoming
piece of user data with the right crypto-
graphic algorithm and key material.
Secondary functions such as managing
and updating key material were handled
next. We had to define a system control
protocol to convey system management
messages back and forth between the
controller and the other subsystems. After
specifying this basic functionality of the
system and the controller, we worked
on the functional description of the
subsystems.

By way of example, the Z schema
that specifies the controller’s routing table
is shown in Figure 2. The specification
describes the contents of the database,
the maximum size of the database, and
further constraints on the data (e.g., no
duplicate addresses).

The work described in this paper is
part of an ongoing research program. An
early version of a system specification was
written over a period of about 18 months.
It consisted of 185 pages of Z and English.
Using that document, specifications for
the six subordinate subsystems and a
lower level communication protocol,
totaling 290 pages, were written in about
eight months. Finally, the revised High
Speed Crypto (HSC) System Control
Specification, Version 2.0, 27 January
2010, containing 263 pages, was written
in approximately seven months.

3. Model-based
development

Model-based development (MBD)
refers to the use of domain-specific,

graphical modeling languages that can be
executed and analyzed before the actual
system is built. The use of such modeling
languages allows the developers to create
a model of the system, execute it on their
desktops, analyze it with automated tools,
and use it to automatically generate code
and test cases.

3.1 HSCC software
development using MBD

Software for the HSCC system was
developed in two parts. Some code was
hand coded by a human guided by the Z
spec and general engineering knowledge.
Other code was generated using portions
of the tool chain in Figure 3.

System software (drivers and
interrupt/trap handling) and portions of
the high-level application code (message

formatting and control processing) were
implemented in hand-coded SPARK.
This code includes information flow
annotations to enable use of the Praxis
toolchain and to provide assurance of
correctness.

Database transactions were de-
signed and developed using the Rockwell
Collins MBD toolchain, Gryphon [8].
Simulink/Stateflow models were created
for each database transaction. Each model
was then tested via simulation in the Re-
actis tool to discover and correct obvi-
ous errors. When complete, the Gryphon
framework is used to translate the model
into the Prover tool. Gryphon supports
several back-end formal analysis tools,
including Prover, NuSMV and ACL2; for
this project, Prover was deemed to have
the best combination of performance and
automation. Prover is used to exhaus-
tively verify each transaction preserves
properties (derived from Z specifications)
about the database it is acting upon. The
Simulink model proven to be correct was
then used to generate SPARK-compliant
Ada95 for use on the target. Figure 3 il-
lustrates the process flow.

Figure 2: Z specification of the routing table database Figure 2: Z specification of the routing table database

Figure 3: Model-based development process flow

Figure 3:
Model-based
development
process flow

The Next Wave n Vol 19 No 1 n 2011 17

FEATURE

The HSCC software development
process relies on a several tools:

Simulink®, Stateflow®, and
MATLAB® are products of The
MathWorks, Inc. [9] Simulink was chosen
for development because it is the standard
model-based development environment
at Rockwell Collins and has extensive
existing tool support, including support
for formal analysis.

Reactis® [10], a product of
Reactive Systems, Inc., is an automated
test generation tool that uses a Sim-
ulink/Stateflow model as input and auto-
generates test code for the verification
of the model. The test suites may be
used in testing of the implementation for
behavioral conformance to the model, as
well as for model testing and debugging.

Gryphon [8] refers to the Rockwell
Collins tool suite that automatically
translates from two popular commercial
modeling languages, Simulink/
Stateflow® and SCADE™ [11], into
several back-end analysis tools, including
model-checkers and theorem provers.
Gryphon also supports code generation
into SPARK/Ada and C. Gryphon uses
the Lustre formal specification language
as its internal representation and has
been used at Rockwell Collins on several
significant formal verification efforts
involving Simulink models.

Prover [12] is a best-of-breed
commercial model-checking tool for
analysis of the behavior of software and
hard-ware models. Prover can analyze
both finite-state models and infinite-state
models, that is, models with unbounded

integers and real numbers, through the
use of integrated decision procedures for
real and integer arithmetic.

By leveraging its existing Gryphon
translator framework, Rockwell Collins
designed and implemented a toolchain
capable of automatically generating
SPARK-compliant Ada95 source code
from Simulink/Stateflow models.

3.2 Transaction development

Simulink/Stateflow models are used
as the common starting point for both the
implementation and analysis. Each model
corresponds to a single database transac-
tion. Model inputs correspond to SPARK
procedure “in” parameters and outputs
correspond to “out” parameters. Note the
database object used by each transaction
model may appear as both an input and an
output if the database is modified by the
transaction. In this case, the database ob-
ject access appears as an “in-out” param-
eter in the generated code. For each data-
base, one model must be created to initial-
ize the data object, in addition to models
to perform necessary transactions (add,
delete, lookup) on the database. Addi-
tional models are required for the formal
analysis to model invariants on the data-
base object. This topic will be covered in
more detail in subsequent sections.

The screenshot in Figure 4 shows a
sample Simulink model that contains the
Dest_Encr_Addr_Found lookup func-
tion performed on the routing table. This
function performs a lookup in the routing
table to determine if the specified desti-
nation encryptor address is found in the

table. The inputs (at left) are the routing
table (Rt_Tbl) and the destination en-
cryptor address (Dest_Encr_Addr) for
which to search. The output (at right) is
the Boolean value (Found) resulting from
the search. The rectangular block in the
center is a Simulink subsystem block that
implements the database lookup.

Typically, a transaction model
will contain a Stateflow chart inside the
Simulink model. Stateflow is well-suited
to the implementation of the database
operations. The screenshot in Figure 5
shows the contents of the Simulink sub-
system block depicted in Figure 4. The
heavy vertical bar at the left is a Simulink
bus selector. Simulink bus objects are
roughly analogous to a record in Ada or
SPARK. (The Reactis tool does not allow
bus objects as inputs to Stateflow charts,
so a bus selector is used to separate the
component parts of the bus object into
separate inputs to the Stateflow chart.)
The large rounded rectangle block is a
Stateflow chart.

As stated earlier, a model must be
built for each transaction in each database.
In the case of the routing table, these are:

Init – procedure to initialize the routing
table data structure (called upon reset)

Add – database transaction to add a
routing record to the routing table

Delete – database transaction to remove
a routing record from the routing table

Dest_Encr_Addr_Found – database
query to determine existence of
destination encryptor address

Get_Dest_Addr_List – database lookup
to return list of addresses mapped to an
encryptor address

Figure 4: Destination Encryptor Address Found model Figure 5: Stateflow chart inside the model

1

2

Rt_TblRt_Tbl

1
Rt_Tbl

num_routing_records_in

addr_count_list_in

dest_addr_map_in

dest_addr_valid_list_in
found

dest_addr_list_in

dest_addr_revmap_in

dest_encr_addr_list_in

dest_encr_addr

Dest_Encr_Addr

2
Dest_Encr_Addr

Routing Table_dest_encr_addr_found

L

1
Found

1
Found

Dest_Encr_Addr_Found

Dest_Encr_Addr
Found

1
Rt_Tbl

Rt_Tbl

dup_dest_addr_map_entry

dup_dest_addr_map_entry

dup_dest_encr_addr_list_entry

dup_dest_encr_addr_list_entry

dup_dest_addr_list_entry

dup_dest_addr_list_entry

dup_dest_addr_revmap_entry

dup_dest_addr_revmap_entry
no_dups

1

2

3

4

1

2

Rt_TblRt_Tbl

1
Rt_Tbl

num_routing_records_in

addr_count_list_in

dest_addr_map_in

dest_addr_valid_list_in
found

dest_addr_list_in

dest_addr_revmap_in

dest_encr_addr_list_in

dest_encr_addr

Dest_Encr_Addr

2
Dest_Encr_Addr

Routing Table_dest_encr_addr_found

L

1
Found

1
Found

Dest_Encr_Addr_Found

Dest_Encr_Addr
Found

1
Rt_Tbl

Rt_Tbl

dup_dest_addr_map_entry

dup_dest_addr_map_entry

dup_dest_encr_addr_list_entry

dup_dest_encr_addr_list_entry

dup_dest_addr_list_entry

dup_dest_addr_list_entry

dup_dest_addr_revmap_entry

dup_dest_addr_revmap_entry
no_dups

1

2

3

4

18 A High-Assurance Methodology for the Development of Security Software

Get_Dest_Encr_Addr – database lookup
to return encryptor address mapped to a
destination address

Figure 6 shows the interfaces
provided by each model, alongside the
generated SPARK procedure signature.

3.3 Invariant modeling

To perform formal analysis on the
transaction models, it is first necessary
to model any invariants on the data
structures. These invariants are taken
directly from the Z specification. As an
example, the invariants shown in Figure
7 appear in the Z specification for the
routing table.

This specification indicates that no
duplicate destination addresses or dupli-
cate encryptor addresses may appear in
the routing table. These invariants are
checked by the no_dups model (shown
in Figure 8). Given a routing table input
(Rt_Tbl), the model checks that no dupli-

cate destination encryptor addresses exist
in the data structure and sets the output
Boolean values accordingly. Note that the
number of Boolean outputs in the model
is determined by the internal representa-
tion of the routing table data structure,
and that the condition in which all four
Boolean outputs are “false” indicates that
both invariants hold.

3.4 Formal verification

In order to perform the formal
verification of a database transaction, we
need to establish two kinds of properties:
1) data invariants over the databases (as
defined by the Z schemas defining each
database) and 2) transaction requirements
that ensure that the operation performed
by a model matches the Z schema for
that transaction. The necessary models
include both the transaction model and
any invariant models associated with the
relevant database(s).

3.4.1 Proof strategy

The proof strategy employed for
the data invariants is induction over the
sequence of transactions that are per-
formed. We first verify that the Simulink
models responsible for initializing each
database establish the data invariant for
that database. This step provides the
basis for our induction. We then prove
every transaction that modifies a data-
base maintains the invariant for that
database. More concretely, on the “init”
models we use the model checker to de-
termine whether or not the data invariants
hold on the model outputs. For the other
transactions the proof strategy is to assume
the invariants in the input “pre” database
(prior to performing the transaction), and
then use the model checker to determine
whether the invariants hold in the
output “post” database (resulting from
performing the transaction).

We prove all the invariants required
by the Z specification and also additional
invariants involving implementation
details related to realizing the Z databases
in Simulink/Stateflow. For example,
a linked-list representation is used for
many of the finite sets described in the
Z document. In this case, additional
invariants establish that the linked list is
a faithful representation of the finite set.

The transaction requirements for
each operation are specified as additional
properties that must hold on the “post”
database. For example, when deleting an
element, these properties ensure that the

Figure 6: Transaction models and associated SPARK signatures

Figure 7: Z specification invariant sample

Figure 8: Sample invariant model

Figure 6: Transaction models and associated SPARK signatures

Figure 7: Z specification invariant sample

Figure 8: Sample invariant model

Figure 7: Z specification invariant sample Figure 8: Sample invariant model

Figure 6: Transaction models and associated SPARK signatures1

2

Rt_TblRt_Tbl

1
Rt_Tbl

num_routing_records_in

addr_count_list_in

dest_addr_map_in

dest_addr_valid_list_in
found

dest_addr_list_in

dest_addr_revmap_in

dest_encr_addr_list_in

dest_encr_addr

Dest_Encr_Addr

2
Dest_Encr_Addr

Routing Table_dest_encr_addr_found

L

1
Found

1
Found

Dest_Encr_Addr_Found

Dest_Encr_Addr
Found

1
Rt_Tbl

Rt_Tbl

dup_dest_addr_map_entry

dup_dest_addr_map_entry

dup_dest_encr_addr_list_entry

dup_dest_encr_addr_list_entry

dup_dest_addr_list_entry

dup_dest_addr_list_entry

dup_dest_addr_revmap_entry

dup_dest_addr_revmap_entry
no_dups

1

2

3

4

The Next Wave n Vol 19 No 1 n 2011 19

FEATURE

element in question has been removed
from the database.

3.4.2 Formal verification results
summary

The formal verification effort for
the project as a whole resulted in the proof
of some 840 properties for the HSCC
databases, of which 140 were written by
the verification team and the remainder
(mainly well-formedness checks)
automatically generated by the Gryphon
framework. Verification required less
than five percent of total project effort
over the course of seven calendar months.

3.5 Code generation

Code generation is performed after
a transaction is proven to satisfy all of its
invariant properties. Code generation for
this project is accomplished through the
use of a translation tool, developed during
the program, that leverages the existing
Gryphon framework to generate SPARK-
compliant Ada95 source code for use on
the AAMP7G, including the automatic
generation of SPARK annotations.

All of the transactions are compiled
into single Ada95 package for use by
the system programmer. The procedures
in the package declaration are shown in
Figure 6.

4. Conclusion
Our experiences developing the

HSCC system have shown that the
methodology described in this paper is
a viable process for the development
of high-assurance software for use in
cryptographic systems.

NSA-provided specifications
written in the Z formal notation proved
to be superior to those written in English
language in producing a complete
and unambiguous set of software
requirements. Using these specifications
as the main development artifact,
Rockwell Collins was able to quickly and

accurately determine the necessary “pre”
and “post” conditions for each database
transaction.

The use of a model-based approach
to transaction development provides
early simulation capabilities, leading to
earlier discovery of errors in both the
specification and in the implementation.
The use of automated code generation
removes the possibility of human coding
errors. The application of automated
model checkers provides a proof of
correctness at a level unattainable

through traditional software testing
methods. With all these components in
our software development approach, we
have exercised a viable methodology to
deliver high-assurance software with a
much greater level of confidence than
software developed through traditional
approaches.

The use of SPARK information
flow annotations for Ada95 code at
the system level provides assurance
the system code is properly routing
information to each of the devices

Model-based development is used with increasing frequency in the
development of aircraft avionics. By using a model-based development
approach, developers can detect errors early, avoiding more expensive fixes
later on.

Model-based development was used successfully to develop the ADGS-
2100 Adaptive Display and Guidance System (ADGS) Window Manager.
In modern aircraft critical status information is provided to pilots through
computerized display panels like those shown. The ADGS-2100 is a Rockwell
Collins product that provides the heads-up and heads-down displays and
display management software for next-generation commercial aircraft.
The system ensures that data from different applications is routed to the
correct display panel, and in the case of a component failure decides which
information is most important and routes that inaformation to the correct
display panel. The displays are essential to the safe flight of an aircraft since
they provide critical flight information to the flight crew.

Rockwell Collins has developed tools that translate models used to
develop systems like the ADGS-2100 to a suite of analysis tools. Verification
throughout a design process—while a design is still changing—leads to
earlier error detection. During the ADGS-2100 development project, 563
properties were developed and checked and 98 errors were found and
corrected in early versions of the model where they are much easier to fix.

20 A High-Assurance Methodology for the Development of Security Software

in the HSCC architecture. Hardware
enforced (AAMP7G partitioning) red/
black separation serves as the final
sentinel in preventing unintended red/
black communication. In our judgment,
the methodology described in this paper
is sturdy enough to support full EAL-7
certification of a production encryptor
based on this research prototype.

Developing and certifying systems with multiple levels of security (MLS)
has proven to be extremely challenging. Despite the widespread use of so-
phisticated integrated development environments (IDEs) with analysis and
verification tools for conventional software development, IDEs that provide
dedicated support for specification and certification of MLS systems have
yet to emerge.

Researchers at Kansas State University are moving to fill this void
by developing an IDE called Chispa. Chispa is a visualization, analysis, and
verification tool designed to evaluate MLS systems against associated in-
formation assurance requirements. For program development, Chispa uses
SPARK, a safety-critical subset of Ada developed by Praxis High Integrity
Systems and distributed by AdaCore. SPARK is used by various organiza-
tions, including Rockwell Collins and the National Security Agency (NSA), to
engineer information assurance systems such as cryptographic controllers,
network guards, and key management systems.

Chispa uses static analyses to automatically discover information flows
in source code. A variety of visualizations are provided to help developers
determine if these flows conform to desired MLS policies. System and pro-
cedure parameters can be tagged with security policy levels (Top Secret,
Secret, Unclassified). Chispa uses its flow analysis to propagate this infor-
mation to all program statements and to color each statement to indicate
the security level of associated data. Chispa includes a software contract
language that makes it easy for developers to specify formally the condi-
tions under which information from one data component or security domain
is allowed to flow to another. Chispa uses advanced automated deduction
techniques to check that procedure and system implementations correctly
follow their information flow contracts. Quality assurance teams as well as
evaluators for certification authorities can use Chispa’s analysis and visual-
ization capabilities to improve the effectiveness of audits and code reviews
and to pose automated “what if?” queries related to system assurance.

An early version of Chispa is being used to develop components of the
high-speed cryptography engine project at Rockwell Collins.

The Next Wave n Vol 19 No 1 n 2011 21

FEATURE

References
[1] Hardin D. Invited tutorial: Consider-
ations in the design and verification of
microprocessors for safety-critical and
security-critical applications. In: Cimatti
A, Jones R, editors. Proceedings of the
Eighth International Conference on Formal
Methods in Computer-Aided Design
(FMCAD 2008); Nov 2008; Portland
(OR). p. 1–7. Available at: doi: 10.1109/
FMCAD.2008.ECP.5

[2] Greve D, Richards R, Wilding M.
A summary of intrinsic partitioning
verification. In: Fifth International
Workshop on the ACL2 Theorem Prover
and Its Applications (ACL2-2004); Nov
2004; Austin (TX). Available at: http://
www.cs.utexas.edu/users/moore/acl2/
workshop-2004/

[3] Spivey JM. The Z Notation: A Reference
Manual. 2nd ed. Prentice Hall International
Series in Computer Science; 1992. Available
at: http://spivey.oriel.ox.ac.uk/~mike/zrm/

[4] Johnson R. Engineering protection
software for the Tokeneer ID station (TIS).
The Next Wave. 2006;15(2):21–25, 28–31.

[5]. AdaCore. The Tokeneer Project.
Available at: http://www.adacore.com/
home/products/sparkpro/tokeneer/

[6] Barnes J, Chapman R, Johnson
R, Widmaier J, Cooper D, Everett W.
Engineering the Tokeneer enclave
protection software. In: Proceedings
of the 1st International Symposium on
Secure Software Engineering (ISSSE);
Mar 2006; Arlington (VA). Available at:
http://www.altran-praxis.com/downloads
/SPARK/technicalReferences/issse2006
tokeneer.pdf

[7] Saaltink M. The Z/EVES system. In
Bowen JP, Hinchey MG, Till D, editors.
Proceedings of the 10th International

Conference of Z Users (ZUM’97); Apr
1997; Reading, UK. p. 72–86. Available
at: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.50.4825

[8] Whalen M, Cofer D, Miller S, Krogh
B, Storm W. Integration of formal analysis
into a model-based software de-velopment
process. In: Proceedings of the 12th
International Workshop on Industrial
Critical Systems (FMICS 2007), Jul 2007;
Berlin, Germany. p. 68–84. Available at:
http://www.msse.umn.edu/publications/
Integration-Formal-Analysis-Model-
Based-Software-D

[9] The Mathworks, Inc. Simulink product
description. Available at: http://www.
mathworks .com/products /s imul ink/
description1.html

[10] Reactive Systems, Inc. Reactis product
description. Available at: http://www.
reactive-systems.com

[11] Esterel Technologies, Inc. SCADE
Suite product description. Available at:
http://www.esterel-technologies.com/
products/scade-suite

[12] Prover Technologies, Inc. Prover SL/
DE plug-in product description. Available
at: http://www.prover.com/products/prover_
plugin

Further reading
Apt KR, Olderog E-R. Verification of
sequential and concurrent programs. 3rd
ed. Springer; 28 Oct 2010. ISBN-10:
1848827448

Barnes J. High integrity software: The
SPARK approach to safety and security.
Addison-Wesley Professional; 25 Apr 2003.
ISBN-10: 0321136160

Brooks FP Jr. The mythical man-month:
Essays on software engineering. Addison-
Wesley Professional; 12 Aug 1995,
anniversary edition. ISBN-10: 0201835959

Clarke EM Jr, Grumberg O, Peled DA.
Model checking. The MIT Press; 7 Jan
1999. ISBN-10: 0262032708

Gries D. The science of programming.
Springer; 1 Feb 1987. ISBN-10:

0387964805

Hardin DS, editor. Design and verification
of microprocessor systems for high-
assurance applications. 1st ed. Springer; 15
Mar 2010. ISBN-10: 1441915382

Harrison J. Handbook of practical
logic and automated reasoning. 1st ed.
Cambridge University Press; 13 Apr 2009.
ISBN-10: 0521899574

Jackson D. Software abstractions: Logic,
language, and analysis. The MIT Press; 24
Mar 2006. ISBN-10: 0262101141

Kaufmann M, Manolios P, Moore JS.
Computer-aided reasoning: An approach.
1st ed. Springer; 31 Jul 2000. ISBN-10:
0792377443

Kozen DC. Automata and comput-
ability. Springer; Aug 1997. ISBN-10:
0387949070

Manna Z, Waldinger R. The deductive
foundations of computer programming.
Addison-Wesley Professional; 10 Mar
1993. ISBN-10: 0201548860

Marek V. Introduction to math-ematics of
satisfiability. 1st ed. Chapman and Hall/
CRC; 22 Sep 2009. ISBN-10: 1439801673

Pierce BC. Basic category theory for com-
puter scientists. 1st ed. The MIT Press;
7Aug 1991. ISBN-10: 0262660717

Pierce BC. Types and programming lan-
guages. 1st ed. The MIT Press; 1 Feb 2002.
ISBN-10: 0262162098

Thompson S. Haskell, the craft of function-
al programming. 2nd ed. Addison-Wesley
Professional; 8 Apr 1999. ISBN-10:
0201342758

Wiedijk F, editor. The seventeen provers
of the world: Foreword by Dana S. Scott.
1st ed. Springer; 16 Mar 2006. ISBN-10:
3540307044

22 Correct by Construction: Advanced Software Engineering

Correct by Construction:
Advanced Software Engineering
		

Over 60 years have passed since the introduction of computers
and we still cannot get software right. Why does correct
software elude us? First, software systems, maybe the

most complex creation of mankind, exceed an individual’s capacity
to understand. Many different software engineering techniques
have emerged over the years to address this complexity, for
example structured and object-oriented programming, but
failure-prone software persists. Second, subsequent changes to
software obscure the author’s original intent. In fact, no robust
processes or techniques have emerged in practice to document
design decisions so maintainers and developers can readily
understand the implications of subsequent software changes.
However, recent research in correct-by-construction techniques
may help. By using formal specifications and automated synthesis
we can make correctness claims about these systems and their
evolution via an enhanced software engineering process that
utilizes formally-described design knowledge. We will never obtain
perfect assurance of correctness or security, but we can realize
major improvements over current practice.
	 Formal methods are defined in this paper as traditionally
applied in the information assurance domain and in correct-by-
construction processes. A particular correct-by-construction
(CxC) methodology, which uses the Specware tool, is then
described. Specware supports the production of high-assurance1
code. A programmer using Specware does not directly write or
modify code. Instead, the technology creates code systematically
and automatically from the programmer’s input (the formal
specification) and guidance (formally applied design decisions).
In conclusion, new CxC techniques that have impacted real-world
problems are noted as well as a description of how they could help
resolve information assurance problems.

1 “High-Assurance” in this paper means that the system meets its specification as expressed in the formal language.
 This includes functional correctness as well as other types of expressible properties.

The Next Wave n Vol 19 No 1 n 2011 23

FEATURE

1. CxC foundations
Many areas of computer science

research provide the foundation for
this work with CxC methods: artificial
intelligence, programming languages,
formal methods, and software engineering.
The US Air Force Rome Air Development
Center (now Rome Laboratory) provided
the impetus for CxC research in 1983
by sponsoring the Knowledge-Based
Software Assistant report [1], which
became the basis for their Knowledge-
Based Software Engineering (KBSE)
program. KBSE is based on capturing
all design decisions in a reusable and
checkable form. However, the complexity
of the captured information approaches
the complexity of the software itself.

Relatively new areas of computer
science are providing the structure and
power to handle this complexity and
achieve KBSE’s goal by using CxC
methodologies. Industry uses the term
CxC to mean methods that range from
good process with some formal support,
to automated construction of the software
from specifications [2,3]. Some examples
of science supporting CxC include
model-based software engineering and
correctness-preserving transformations.

Specware, the CxC system used
for the example in this paper, lies toward
the automated end of the CxC spectrum,
providing an emerging capability to
generate correct implementations from
software specifications. Although
someone using Specware does not
need to know category theory (CT)—a
unifying concept in mathematics, CT
provides the foundation for Specware’s
ability to structure the knowledge base
in such a way to make compiling small,
understandable software artifacts into
complex ones practical.

A variety of tools have emerged that
have prompted industry and academia
to experiment with CxC methodologies:
knowledge representation techniques
and rewriting logic from the artificial
intelligence community, compiler
enhancements and semantically well-
defined languages from the programming
language community, reasoning techniques
from the formal methods community,
and software process improvements and
support tools from the software engineering
community. This paper describes one
approach to CxC engineering.

2. Advanced software
engineering

The Specware software
development environment provides a
good example of how CxC software
development incorporates formal methods
in ways that can benefit the information
assurance (IA) community. In a variety of
applications, Specware has already proven
to be a powerful tool for specifying,
designing, and developing code. Such
CxC technologies have the potential to
expand the trustworthiness of IA domain
applications. What do
we mean by “Formal
Methods”?

2.1 Definition of
formal methods

Formal methods
(FM) are used to
develop a solution to
a problem through
a prescriptive pro-
cess. By applying
mathematical rigor,
a problem can
be studied with
precision. In industry
the term formal

methods can mean simply a good software
engineering process. Although FM
require good processes, good processes
by themselves do not satisfy the FM
definition, nor do they guarantee good
results. A FM-based software engineering
process can achieve a qualitatively more
robust solution.

The FM process can be depicted
as a triad. The Formal Methods Triad
(Figure 1) represents a process for
moving from requirements to a solution.
At the top of the triangle is a real world
problem defined by requirements. To
arrive at a workable solution to these
requirements, the problem and solution
must be described in detail. Therefore,
the problem description and the solution
description comprise the foundation of
the triangle.

Arrows around the triangle represent
the processes used to get from each point
to the next. The arrows point forward to
trace the main flow, but feedback and
reiteration are central to the process.
Returning to a previous step would
occur, for example, when inconsistent or

Real World Problem

Formal
Methods

Triad

SolutionRequirements

Problem
Description

Solution
Description

Specify Interpret

Analyze

Figure 1: The Formal Methods Triad

24 Correct by Construction: Advanced Software Engineering

incomplete requirements are discovered
during the formal problem specification
phase. Discovering errors early in the
process can yield significant cost savings
in the long run.

The arrow pointing from Real
World Problem to Problem Description
is labeled Specify because this step of the
process uses formal language to describe
the problem. The more expressive the
language used, the more complete the
analysis can be. The Analyze step moves
the process from a problem description
to a solution description. Methods that
support this analysis with mathematical
rigor (e.g., FM) are used. Finally, to
arrive at a solution, we map the result of
the analysis back to its meaning in the
problem domain. This is the Interpret step
in the process.

As a FM process example, consider
the real world problem of determining
how much wind a suspension bridge
can withstand. The problem can be
described by a set of integral equations
representing a property of the bridge
affected by wind. Solving these equations
produces a solution description. The
bridge engineer would select appropriate
integral calculus equations—tools from
his engineering domain knowledge—and
insert the bridge’s specific requirements
into them and derive a solution. If the
calculations from the formal analysis
determined that winds sufficient to cause
the bridge to collapse occur frequently,
the interpretation would probably lead to
condemning the bridge. Of course, no one
would build a bridge before analyzing its
design, but software is routinely built and
then analyzed afterward!

2.2 The use of formal methods
in the DoD

The US Department of Defense
(DoD) has a long history of applying FM.
In the 1980s the DoD Computer Security

Center developed what is commonly
referred to as the Rainbow Series of
standards, beginning with the Trusted
Computer System Evaluation Criteria
(TCSEC) volume, better known as the
Orange Book [4]. In 1996, the National
Security Agency’s National Computer
Security Center (NCSC) replaced the
Orange Book with the Common Criteria
[5]. Despite the computer security
community’s early excitement and
subsequent disappointments regarding
FM, formal methods may still have a
future in building high-assurance systems.

The DoD has initiated significant
efforts to incorporate FM in the design
and evaluation of information security
systems. Most notably, FM would apply
at the Design Phase of the development
and would focus on whether the design
has the desired security properties,
or at the Evaluation Phase where the
implementing code would be analyzed for
security vulnerabilities. These approaches
have been implemented primarily in the
research community and rarely in product
development until recently.

2.2.1  Formal methods at design time
Formal methods are applied during

the design phase by developing formal
specifications of the system and the security
policy, typically at a very high level of
abstraction. The point of the abstract
specification is to define the “what” the
system should do and not the “how” it
should do it, because the “how” normally
biases the system toward particular
implementations, thus potentially
precluding the best implementations.

To begin this process, the system
developer creates a system security
policy (a set of requirements) and a
system specification. These requirements
are expressed most often in natural
language. Early on, developers created
formal specifications manually, with little

Software lifecycle cost reductions
due to a CxC development process

In a recent study, Kestrel researchers
examined the suite of documentation required
for certifying Type 1 devices, and the possibilities
to extend Specware’s correct-by-construction
(CxC) development process to auto-generate
certification documents. Our thesis is that
by using automated tools to generate both
the software and significant portions of its
certification documentation, a CxC approach
will dramatically lower lifecycle costs, including
the cost of recertification. Furthermore, by
speeding up the recertification process, a CxC
approach facilitates the evolution process,
resulting in higher quality products over the
lifecycle.

To quantify these claims, we first
estimated the cost reductions that arise from
a CxC process independently from certification
costs. The dominant factor seems to be the
size reduction in formal specifications relative
to executable code. This size reduction varies
considerably over projects, but a ballpark figure
of 4-5x is consistent with the JavaCard project
and related efforts. A 4-5x reduction in size of
the formal text usually correlates with a similar
reduction in development and evolution costs.
Consequently we estimate that, independent
of certification costs, a CxC process should
reduce lifecycle costs by roughly 75-80 percent.
Second, we estimated the cost reduction due
to extensions of the CxC process that allow
auto-generation of certification documents as
a by-product of the code generation process.
For each of the thirteen documents required
for certifying Type 1 devices, we estimated
that the average cost savings vary from a high
of 75 percent for Formal Security Policy Model
(FSPM) documents to a low of 20 percent for
a Security Verification Plan and Procedures
(SVP) documents. Assuming roughly equal
weight to each of the 13 documents, we
estimated an average overall cost reduction of
about 59 percent per certification application
due to using CxC methods.

These two estimates can be combined in
a variety of ways. For example, if we assume
that certification costs are roughly the same
as development costs, then CxC brings about
a 70 percent reduction in lifecycle costs
(evolution plus certification); that is, a CxC
process will produce a certified product for 30
percent of the cost of a conventional process.
If we assume, as is the case in aerospace
applications, that the cost of certification is
about 7x development costs, then we obtain
an estimate of 63 percent cost reduction for
a CxC process. This leads us to conclude that
a CxC process will produce a certified product
for roughly 30-40 percent of the cost of a
conventional process. This estimate does not
account for the possibility that some forms of
certification become unnecessary because of
the strong form of evidence provided by a CxC
process.

The Next Wave n Vol 19 No 1 n 2011 25

FEATURE

automated support. They would often reuse
components of existing specifications,
adapting them in much the same way as
programmers reuse code. Later, theorem-
proving frameworks evolved to help
standardize and automate processes of
writing system specifications and security
requirements. The different theorem-
proving tools employ unique variants of
formal logic (i.e., a specification language),
each having its own strengths and
weaknesses. Early tools and languages used
for specifying system requirements (some
are still used) included EHDM, Gypsy, Ina-
Jo, Larch, ACL2, Z (zed), NQTHM, GVE,
PVS, SDV, Z-EVES, and the Larch Prover.
Security policy would then be described
using the same formal language.

Given the descriptions for the
system requirements and security policy,
the developer, when able to understand
them, would “prove” that the system
specification enforces the security
policy. Usually these proofs required
building an infrastructure of lemmas
that rarely could be reused. The verified
high-level design may or may not reflect
the actual implementation, although
implementations built from verified
designs have a much greater chance of
meeting their requirements.

An improvement to this method
for achieving confidence that the system
specification guaranteed the security policy
would be to add detail to the specifications
and reiterate the process. This, of course,
required some kind of demonstration that
the more concrete system and security
policy specifications indeed represented
their corresponding abstract specifications.
At some point, usually leaving a significant
gap between the most detailed specification
and code, iteration would stop and the
specification would become the basis for
the code. Of course, we know that no code
would ever be written before completing
the specification!

Rarely, until recently, has anyone
attempted to iterate refining a specification
by adding detail down to the code level,
and in most cases they did this on small
slices of the system. The cost of producing
code from this process was prohibitive.

This process of formally proven
specifications, once too-costly and labor-
intensive, has improved. Even so, the
benefits of formal specification without
complete proofs have provided sufficient
value to be required for Common Criteria
EAL7 rated systems.

2.2.2  Code-based analysis
The National Security Agency (NSA)

has also applied FM through code-based
analysis, mainly in support of evaluations
of information assurance systems. Code-
based analysis differs from the design phase
FM process in that, instead of developing
a formal description of what the software
should do, code-based analysis attempts
to discover and prove properties about the
software code itself. For example, the user
might identify points within the software
where properties of interest must hold,
and then annotate the code with stylized
comments (formal language) about these
properties. The developer then applies
a tool that understands the semantics of
the language and generates verification
conditions based on the code and the
annotations. This process outputs a set of
logical statements that then can be used to
validate these user-desired properties.

In the analysis process we attempt
to find and prove the targeted properties
of the software. A SAT solver (a Boolean
“Satisfiability” or SAT solver uses
specialized procedures to attempt to
satisfy test conditions) or an ATP (an
“automated theorem prover” derives the
truth of the specified conditions from more
basic facts) is applied to these verification
conditions. We get any of three possible
outputs from this analysis: the conditions

JAVA Card Runtime Environment

We used Specware to formally
specify a real-world smart card operating
system, the Java Card Runtime
Environment (JCRE). The JCRE consists of
a JAVA virtual machine (VM) and system
libraries (e.g., for I/O and cryptography),
along with card management capabilities
according to the Global Platform
Standard. The formal specification is
about 30,000 lines long and over 6,000
consistency proofs of it have been
mechanically verified so far. A desktop
simulator (reference implementation)
has been generated by refinement from
the formal specification; the correctness
of the refinements is currently being
mechanically verified. A C implementation
for a commercial chip has been manually
derived from the formal specification;
a new version of this implementation is
currently being generated via automated
refinements, with mechanical proofs. We
anticipate that this will be the highest
level of assurance yet achieved, and that
it will reduce the cost and increase the
confidence of a Type 1 certification.

Specware has also been used to study
the extension of (standard) JCRE with
MILS and MLS separation. The study has
been carried out on a formal specification
of an idealized subset of the JCRE.
Separation policies have been formally
specified, along with run-time monitors
to enforce the policies. The monitors
have been formally proved to guarantee
the policies. The monitors and the formal
proofs are currently being extended from
the idealized to the complete JCRE.

See http://www.kestrel.edu/java
for more information.

26 Correct by Construction: Advanced Software Engineering

can hold; the conditions do not hold; or in
some cases, the analysis cannot determine
either way if the conditions hold or not
with the computational resources given.
The first two conditions tell us something
useful about the code.

The source and/or binary code level,
the detail required to perform the analysis,
can be cost prohibitive. However, as
better provers and solvers become
available and with sheer computing
power increases, these methods are
becoming more practical. We already see
industry using code analyzers based on
FM such as CodeHawk, Java Pathfinder,
and ESC/Java2.

There is, however, at least one CxC
approach that combines the best of both
design verification and code analysis.

2.3 A correct-by-construction
approach

The formal methods described
previously try to ascertain something after
the fact. In the design phase, FM are used
to verify the specifications after writing
them, and in code analysis the analysis is
applied to code already developed. The

alternative would be to simultaneously
conduct the analysis while creating the
specifications/artifacts. By maintaining
or enforcing the properties of concern
through the development process itself,
design errors could be caught early, when
repair is less costly. Let us look at the CxC
approach for a software development.

The developer typically starts with
some notion of what the system should do.
Ideally, creative programming energy is
directed at capturing system requirements
in a specification. This is hard work! CxC
with automation moves the work from
low-level programming to high-level
problem development.

A CxC approach solves the problem
incrementally by developing requirements
and deriving satisfactory implementations
with ever increasing levels of refinement.
This is done by using FM to automatically
compute code from specifications. CxC
industrial practices vary by the degree of
automation of the compute process. An
ideal CxC approach would completely
automate this process. Although full
automation is not the only way to go, it

greatly enhances the benefits of CxC for
reuse and recertification—an advantage
industry is starting to recognize [3].

Figure 2 illustrates the CxC model
used for our software development
project. At the highest level of abstraction,
the requirements, expressed in formal
language, plus any existing domain
knowledge specifications are used to
create a formal specification, or model.
This step is represented in the diagram
by the Specify arrow. Merely formalizing
the requirements in this way can expose
inconsistencies and ambiguities early in
the process, saving money and time. At
lower levels of abstraction, in the Compute
step in the diagram, the implementation
can be derived through a posit-and-prove
approach or a transformative approach.

In the posit-and-prove approach,
programmers create the low-level
specification and then propose a
mathematical argument, with varying
degrees of formality, that will prove
whether or not the solution specification
obeys the problem specification. A code
generator is used to generate the code
from the low-level solution specification.

With a transformative approach,
the user takes the high-level specification
of the system and iteratively applies
transformations that apply computer
science and problem domain knowledge
to get an efficient and correct low-level
executable specification. This process
terminates after transforming the entire
problem specification into an executable
specification. Remember that the initial
specification defined “what” the system
should do. Each transformation adds detail
and makes decisions that bring it closer to a
particular “how” the system should do it. In
addition, each transformation preserves the
properties and functionality of the source
specification in the target specification
(the result of the transformation). Once the
“how” has been determined and expressed

Software System Development

CxC
Triad

Software
Implementation

System & Security
Requirements

Problem Formal
Specification

Solution Formal
Specification

Specify Generate

Compute

Figure 2: The CxC Triad

The Next Wave n Vol 19 No 1 n 2011 27

FEATURE

as a formal specification, the next step
is to generate software in some target
programming language (as in the posit-
and-prove approach).

The initial high-level formal
description created from the requirements
in the Specify step must still be validated
against the original requirements and
specifications in the standard way. Another
way to look at this, CxC simply tries to
automate the FM process for INFOSEC
systems by iterating the process all the
way down to code. This begs the question,
“Does such a tool exist?”

2.4 Specware, a
correct-by-construction tool

Yes, it does: Specware, developed
by Kestrel Institute [6]. With this tool we
can build specifications for requirements,
combine small specifications into larger
ones, implement design decisions by
refining specifications, and generate code
from executable specifications, all the
while providing for the proof that the
derived specifications and code enforce
the requirements.

Specware [7,8,9,10,11] uses a
version of Church’s higher-order logic
for its specification language. This
language borrows features from functional
programming and highly expressive
automated theorem prover (ATP) languages,
and is thus useable by many in the computer
science and theorem proving disciplines.
Researchers have used Specware for
a wide range of specifications, from a
full-blown operating system (Java Card
Runtime Environment or JCRE) and a
mathematically assured separation kernel
(the Mathematically Analyzed Separation
Kernel [MASK], part of the Advanced
INFOSEC Module chip), to low-level
algorithms and data structures.

2.4.1  An NSA security token
At NSA we used Specware to

successfully build a robust security token.

AutoSmart

The AutoSmart (automatic generator
of smart card applets) tool is an example
of a domain-specific CxC generator. It
features a specification language tailored
to the smart card domain, with constructs
to conveniently capture concepts
like personal identification numbers,
cryptography, ISO 7816 I/O exchanges,
and so on. AutoSmart performs several
consistency checks on the applet
specifications, including a security analysis
that flags potential leaks of confidential
information like private and secret
keys. AutoSmart compiles the applet
specifications to Java Card code, which
can be compiled and loaded into a Java
Card. Along with the code, AutoSmart
also generates documentation for FIPS
140-2 certification as well as informal
documentation for the applets (e.g.,
tables of commands and internal data).
AutoSmart is currently being extended
with the capability to generate a machine-
checkable formal proof of the correctness
of the generated Java Card code with
respect to the input specifications. This
“credible compiler” capability enables
trust in the correctness of the code to be
shifted from the AutoSmart tool to a much
smaller and simpler proof checker, in the
spirit of proof-carrying code.

See http://www.kestrel.edu/jcapp
lets for more information.

We contracted for the development of a
robust JCRE and robust applets running
on a specific hardware platform.

To create the JCRE, a formal
specification was developed and a
posit-and-prove approach was used to
refine the code. The complexity of the
initial specification evolved as standards
were added. Incremental changes were
easier to implement using Specware
than in standard software development
processes. Even though the Specware
tools used at the time were primitive
compared with later versions, they were
sufficiently robust to produce a working
JCRE, complete with cryptography and
some assurance of correctness.

Creating applets involved the
development of a domain-specific
language (SmartSlang) and a
corresponding compiler (AutoSmart,
produced with Specware). Using
SmartSlang a developer can specify
an applet more easily than by writing
Java Card code directly. The compiler
generates both the Java Card code for
the applet and a proof that the code

Software System Development

Formal
Methods

Triad

Software
Implementation

System & Security
Requirements

Problem Formal
Specification
In Metaslang

Solution Formal
Specification
In Metaslang

Specify and
Compose

Translate and
Generate

Refine and
Transform

Figure 3: The Specware Triad

28 Correct by Construction: Advanced Software Engineering

implements the specification. In addition, the compiler enforces properties stated in the
applet specification and produces reports to meet certification requirements.

Kestrel Institute succeeded in producing a working JCRE on the chip running
robust applets. Smart card developers are now considering the formal JCRE specification
and the Specware toolset. However, given that Specware is not a commercial tool,
there is some resistance to its use. Commercial support is critical for wider adoption of
this technology.

2.4.2  Using Specware
Building specifications with Specware is no harder than programming. And

because high-level specifications should only stipulate “what” is to be done, not “how” to
do it, we can understand these top-level specifications much more easily than code. Thus
we can make our changes in the high-level specifications and avoid the more complex
low-level specifications by redoing the refinements. Most likely, the original design
choices will apply with minimal changes and the low-level specifications regenerated.
To illustrate this process, we take an example from the Specware tutorial [4].

2.4.2.1  Specification
In the Specware tutorial, the problem for which we want to specify and generate

a solution is determining the first match of a word within a message, where a word is
list of symbols and a message consists of a list of symbols and wilds (a wild matches
all characters). For example, the word “ABCD” would match at the first position of
the message “AB*D***” and “BAD” would match at second position.

Here is a typical specification:

WordMatching = spec
 import Words
 import Messages
 import SymbolMatching

 op word_matches_at?(wrd: Word, msg: Message, pos: Nat): Boolean =
 pos + length wrd <= length msg &&
 (fa(i:Nat) i < length wrd => symb_matches?(wrd@i, msg@(pos+i)))
endspec

In this specification, two conditions are necessary for a word match: (1) there is
enough room left to contain the word in the message, and (2) all the symbols in the
word match their corresponding positions in the message. Notice that this is not saying
how to check these conditions; just what it means to match a word with a segment of
a message. Also notice that the specification for what symbol matching means (two
identical characters or one is a wild) is not in this specification at all, but in an included
specification named “SymbolMatching.” So the game in specification is to build up a
collection of specifications and compose them to say what is desired.

2.4.2.2  Design
Design involves the composition of a series of refinements to get an executable

specification. Each design decision is formally captured and is available for reuse for

Synthesis of propositional
satisfiability solvers

Dramatic improvements to propositional
satisfiability (SAT) solvers were made
during the last two decades [e.g., 1,2].
We used Specware to demonstrate the
automated generation of fast SAT solvers.
The main result was that we were able to
recapitulate many of the key design features
of a modern SAT solver using mechanized
representations of abstract and reusable
design knowledge. Starting with a formal
specification of the SAT problem (find a
satisfying assignment for a given set of
propositional clauses, if any), the overall
algorithmic structure of a Davis-Putnam-
Logemann-Loveland (DPLL) SAT solver
was calculated from the global search and
constraint propagation algorithm paradigms
[3,4]. Performance of the correct, but high-
level algorithm was improved by applying
problem-independent transformations for
expression simplification, finite differencing
[5], and data type refinement. Applying these
algorithm design tactics and transformations
in different ways resulted in a family tree of
SAT algorithm variants, including some novel
non-DPLL variants.

This project, together with previous
work on scheduling applications [6], provided
evidence that it is feasible to generate
customized high-performance solvers for
particular problems. Key features of state-
of-the-art SAT solvers, such as conflict-
resolution and learning, can be applied
mechanically to other problems.

References

[1] Moskewicz MW, Madigan CF, Zhao Y, Zhang
L, Malik S. Chaff: Engineering an efficient sat
solver. In: Proceedings of the 38th Conference
on Design Automation (DAC ‘01); Jun 2001; Las
Vegas (NV). p. 530-535. Available at: http://
www.princeton.edu/~chaff/publication/DAC
2001v56.pdf

[2] Marek V. Introduction to mathematics of
satisfiability. 1st ed. Chapman and Hall/CRC;
22 Sep 2009. ISBN-10: 1439801673

[3] Smith DR. Structure and design of global
search algorithms. Kestrel Institute; Nov 1987.
Technical report number: KES.U.87.12.

[4] Westfold S, Smith D. Synthesis of efficient
constraint satisfaction programs. Knowledge
Engineering Review. 2001;16(1):69-84.

[5] Paige R, Koenig S. Finite differencing of
computable expressions. ACM Transactions
on Programming Languages and Systems.
Jul 1982;4(3):402-454. Available at: doi:
10.1145/357172.357177

[6] Smith DR, Parra EA, Westfold SJ. Synthesis
of planning and scheduling software. In:
A. Tate, editor. Proceedings of Advanced
Planning Technology (ARPI ’06); May 2006;
Edinburgh, Scotland. p. 226-234. Available at:
http://www.aaai.org/Library/ARPI/arpi96
contents.php

The Next Wave n Vol 19 No 1 n 2011 29

FEATURE

both exploring possible implementations of the current specification and for reuse in
other developments of similar systems. Consider how hard (and costly) it would be to
explore the design space using standard practice. With CxC, design space exploration
becomes doable.

The key steps in design are to specify/generate the “how” and define/generate
mappings between the “what” and “how” specifications. The mappings constitute
property-preserving refinement. If we get the “how” right with respect to the “what,”
we will be able to prove all obligations that Specware generates from the mapping
construct. Essentially with the properties proved, we ensure that the definitions in
source specification are theorems in the target specification. In other words our “how”
does correctly “what” we want.

Design is done iteratively until arriving at a specification for “how” to compute the
“what” from the high-level specification. (Specware has as a main goal the capabilities
to derive/generate low-level specifications, which is the intended mode of operation.
But this capability is still in its infancy.) Here is a specification of “how” to see if a
word matches a segment of a message:

op word_matches_at?(wrd: Word, msg: Message, pos: Nat): Boolean =
 if pos + length wrd > length msg
 then false
 else word_matches_aux?(wrd, removePrefix(msg, pos))

The first test checks if there is room for the word at this position. If there is
room, an auxiliary function is called to check from the current position if the word
matches symbol for symbol with the rest of the message. The “what” specification, the
one above, needs to be related to this “how” specification. This is done by mapping
between the two specifications. In this example, a transformation is used to automate
the construction of the refinement relating the word matching specifications:

WordMatching_Ref =
 morphism MatchingSpecs#WordMatching ->
 MatchingRefinements#WordMatching {}

This mapping, called a morphism, maps the symbols in WordMatching to
corresponding elements in the target specification. In this example, all the names in the
high-level (source) specification (MatchingSpecs#WordMatching) are also in the low-
level specification, so the task is done (otherwise the name to name mapping would be
explicit within the {}).

2.4.2.3  Code synthesis
Specware can synthesize code in several different target programming languages.

Currently, there are several collections of low-level executable specifications
mapped directly to a program language. The most robust collection supports the Lisp
programming language—a natural fit to higher-order logic specifications. Much less-
mature collections exist for C and Java. The code synthesis is automatic, allowing

maintenance and enhancements to be
done at the specification level rather than
in code, thus precluding a number of
errors produced by code changes that have
unforeseen side effects. The user’s goal in
the Design phase is to complete his “how”
specification in terms of one of these
collections. Once done, a program can be
synthesized from the specification.

2.4.2.4  Proof processing
All specification, specification

composition, and specification refinement
constructs may require proofs to establish
and maintain properties through the
entire process. Proof obligations are
generated when the user requests them
and packaged for distribution to a proof
tool. The main proof tool available in
the Specware environment is Isabelle/
HOL [12], which has powerful automated
proof methods and integrated expert user
guidance. Isabelle has a large user base,
including industrial use.

Since the Isabelle theorem prover
is sound, proofs completed with the tool
provide assurance that the constructed
code is correct with respect to the
high-level specification. The Isabelle/
HOL language is close to the Specware
language, but with a few quirks. Isabelle is
difficult to use to prove some obligations,
as are all other proof tools now in use.
But, even though it requires effort to use,
the CxC process with Specware allows
for the complete proof of the system
refinement to code, yielding extremely
high-assurance software.

2.4.3  Correct-by-construction
successes

The CxC approach has demonstrated
practical successes. Praxis used CxC to
develop almost error-free code from a
formal specification of an enclave access
system called Tokeneer [13,14]. With
Tokeneer, a user presents a token and
biometric input, and then is either allowed

30 Correct by Construction: Advanced Software Engineering

or denied access based on a database of
metrics, token ids, and user information.
The published results caused a stir in the
formal methods research community,
providing a much needed real world
example. Kestrel developed an alternate
specification of the Tokeneer system
[2] using traces of events, more abstract
than the state machine formalism used
in Praxis’s specifications, thus proving
additional properties.

Another Specware success, this
time from industry, is the Mathematically
Analyzed Separation Kernel (MASK)
[15]. This specification resulted in
more easily evaluated kernel code for
the Advanced INFOSEC Module chip,
developed by GE (then Motorola). Also
Kestrel demonstrated the benefits of
formal specification reuse for IARPA.
They generated an “idealized” JCRE for
single threaded Multiple Independent
Levels of Security (MILS) and Multiple
Levels of Security (MLS), and for multi-
threaded MILS and MLS separation for
smart cards. Not only were they able to
reuse a lot of the original specifications,
but they generated run-time monitors
from these specifications and proved that
they enforce the separation properties.

SAT solvers have also been
successfully generated using CxC
tools. Formal descriptions of the SAT
algorithms and SAT data structures exist
in Specware, so that various versions of
solvers can be generated automatically
using reusable refinement scripts. With
more research, even more successes could
be added to the list.

3. An extreme CxC vision
Where might CxC take software

development? Suppose you had a system
development environment where you
could take your system requirements
and produce formal specifications from
standard constructs like UML and state

machine diagrams. Suppose you had
libraries of reusable specifications for your
problem domain, for standard algorithms
and procedures, and for platform-
aware implementations. Consider that
the mere process of exploring a design
space and choosing an implementation
would result in a mathematically precise
implementation optimized for your
platform. In addition, automate the
refinement process while still allowing
user control to take advantage of human
expertise. We claim that such a system
would revolutionize our software
development practices.

•Using CxC would improve time to
market: Variations of existing systems are
easily obtained through minor changes
to specifications and the replay of the
refinement to code process.

•Using CxC would improve time and
cost to certify: All design decisions are
captured; hence some criteria requirements
can be generated automatically rather
than by manually searching the code.

•Using CxC would improve time
and cost to maintain and recertify:
Automation of testing and certification
evidence generation made possible in
this environment would solve the age-
old problem of maintaining consistency
between specification and code because
changes are made at the specification level
and the code is re-generated, keeping the
two in sync.

•Using CxC would increase the degree
of assurance to a qualitatively higher level.

Specware is a step in the right
direction and provides evidence that
such tools are possible. We need to push
CxC processes that have mathematical
precision if we ever hope to get a handle
on the complex software and hardware
systems of today.

The Next Wave n Vol 19 No 1 n 2011 31

FEATURE

References and Further Reading:

[1] Trusted computer system evaluation criteria. Department of Defense Standard 5200.28-STD; Dec 1985

Available at: http://csrc.nist.gov/publications/history/dod85.pdf

[2] Common criteria for technology security evaluation, version 3.1.

	 Part 1: Introduction and general model, Revision 1, Sep 2006

	 Part 2: Security functional components, Revision 2, Sep 2007

	 Part 3: Security assurance components, Revision 2, Sep 2007

Available at: http://www.niap-ccevs.org/cc-scheme/cc_docs/

[3] Specware 4.2 User Manual. Kestrel Institute; 2009. Available at: http://www.specware.org/doc.html

[4] Specware 4.2 Tutorial. Kestrel Institute; 2009. Available at: http://www.specware.org/doc.html

[5] Specware 4.2 Language Manual. Kestrel Institute; 2009.

Available at: http://www.specware.org/doc.html

[6] Specware to Isabelle Interface Manual. Kestrel Institute; 2009.

Available at: http://www.specware.org/doc.html

[7] Specware 4.2 Quick Reference. Kestrel Institute; 2009.

Available at: http://www.specware.org/doc.html

[8] Kestrel Institute (home page). Palo Alto (CA). Available at: http://www.kestrel.edu

[9] Isabelle generic proof assistant (home page). Cambridge University, UK; 20 Sep 2010

Available at: http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html

[10] Martin W, White P, Taylor FS, Goldberg A. Formal construction of the Mathematically Analyzed

Separation Kernel. In: Proceedings of the 15th IEEE International Conference on Automated Software

Engineering (ASE’00); Sep 2000; Grenoble, France. p. 133–141.

Available at: doi: 10.1109/ASE.2000.873658

[11] Anton J, Coglio A, McDonald J. Tokeneer. Kestrel Institute technical report; released at the 2006 High

Confidence Software and Systems Conference.

[12] Green C, Luckham D, Balzer R, Cheatham T, Rich C. Report on a knowledge-based software assistant.

Kestrel Institute; 15 Jun 1983. Technical report number: KES.U.83.2.

Available at: http://www.kestrel.edu/home/publications/

[13] AdaCore. The Tokeneer Project. Available at: http://www.adacore.com/home/products/sparkpro/

tokeneer/

[14] Barnes J, Chapman R, Johnson R, Widmaier J, Cooper D, Everett W. Engineering the Tokeneer enclave

protection software. In: Proceedings of the 1st International Symposium on Secure Software Engineering

(ISSSE); Mar 2006; Arlington (VA). Available at: http://www.altran-praxis.com/downloads/SPARK/

technicalReferences/issse2006tokeneer.pdf

[15] Escher Technologies Ltd. (home page). Aldershot, UK.

Available at: http://www.eschertech.com/index.php

32 Verified Software in the World

Verified Software in
the World

Software is a critical component of the technological infrastructure. Many physical and
electronic devices are controlled by software, which offers unparalleled sophistication and
flexibility over coding in hardware. However, software is also a source of vulnerability.

Unreliable software can be a significant cost in the development of software-based systems.
Software bugs can be exploited to breach security and propagate malware. Software unreliability
has been estimated to cost nearly one percent of the GDP to the United States economy. The
technical challenges of developing and maintaining software are only growing in complexity with
the advent of cyber-physical systems, service-oriented architectures, and multicore processors.

Software development can be made highly rigorous. The theoretical understanding of software and
hardware models has existed for decades, but recent dramatic advances in the technologies of software
specification, design, and analysis make it feasible to carefully and productively examine large code bases
for errors. Interactions between the software and the physical and biological world, as well as with human
operators can be analyzed in this manner. The technologies for software analysis can also be used to find
security vulnerabilities and to identify strategies for safe parallelization.

The Verified Software Initiative (VSI) is an ambitious fifteen-year, cooperative, international project
directed at the scientific challenges of large-scale software verification. VSI is aimed at bringing formal
scientific methods for software design into wider use so that software is viewed as the most trusted
component in a system. The research agenda is directed at developing a comprehensive theory of program
correctness that is supported by a coherent suite of novel and powerful tools for designing, debugging,
composing, and verifying software. The theory and tools must be validated on a wide range of examples
and used to train a new generation of software engineers in the construction of trustworthy software.

The need for verification technology is most acute in systems that are required to be reliable, resilient,
and secure in an uncertain and hostile environment. Such systems include those from avionics, automotive
control, process control, power distribution, health care, and electronic voting. These systems exhibit
complex interaction between the software components and the physical world. The slightest flaw in the
software can expose security vulnerabilities or lead to catastrophic system failure.

Verification approaches the construction of software through the use of rigorous formal models.
These models have a mathematical meaning that is captured using formal logic. Such models can be
used to capture requirements, emulate the operating environment, formulate specifications, craft designs,
decompose system functionality into modules, interpret and annotate programs, generate test cases, and
verify component and system properties. The use of mathematical models also facilitates the use of highly
automated tools. These tools can be used to identify the presence of flaws through the systematic generation
of test cases, proof obligations, interface assumptions, and security vulnerabilities. They can also establish
the absence of certain kinds of errors through analysis, exploration, and proof. Finally, such tools can be
used as design aids to decompose problems, derive new solutions, and compose existing solutions.

The Next Wave n Vol 19 No 1 n 2011 33

FEATURE

Verification technology has been improving
rapidly in both scale and functionality. A range of
robust and mature techniques for static and dynamic
analysis, state space exploration, constraint solving,
automated and interactive proof generation, and test
case generation are now available and in use. These
techniques can be applied to models and programs.
Verification technologies need to be systematically
woven into the software development process.
The successful mainstreaming of verification
technology requires a seamless integration of the
individual techniques supported by an ambitious
agenda of experimental work. Tool construction
and experiments must be supported by novel
theoretical insights leading to accurate and tractable
models as well as scalable and efficient algorithms.
Verification technology has a rapidly growing range
of applications. Techniques like model checking
and constraint solving are being used to model
physical and biological systems and to generate
plans, schedules, and optimizations. They are also
used to fingerprint security threats such as worms
and viruses and to check hardware and software
equivalence to guard against the insertion of
malicious code.

A comprehensive framework for verified
software development can address a number
of challenges in software engineering. At the
requirements level, it provides a convenient
modeling framework for describing discrete and
continuous behavior, time and resource constraints,
fault models, and security policies. These formal
models can be analyzed for anomalies and putative
properties, and also used for generating test cases.
In the design phase, verification technology can
be used to verify algorithms and architectures;
decompose the system into modules; establish the
absence of unintended information flows between
software components; support semantic service
discovery and composition; and facilitate resilient
system operation in the face of device, platform,
or operator failure. During the implementation
phase, various integrated tools for synthesis and
analysis can be used to generate and optimize
code; establish the absence of run-time errors,
race conditions, and information flows; identify
interface properties; compose software modules;
schedule tasks on multicore processors; and even

repair system state through constraint solving.
Seamless integration between different tools is
needed to generate run-time checks and monitors,
test cases, counterexamples, conjectures, scenarios,
abstractions, and proofs. A formal integrated
development environment for verified software
can be used to construct an assurance case for
certification through a systematic argument for the
safety and security of the system. Verification allows
the assurance argument to be decomposed along the
lines of components and service layers, each with its
own reusable assurance case. Software is expected
to operate in a safe, secure, and predictable manner
in a world of physical uncertainty and virtual
vulnerability. Powerful verification technology
will be needed to economically develop, validate,
and maintain software that is not only reliable, but
manifestly trustworthy.

34 Software for Dependable Systems: Sufficient Evidence?

Software for Dependable Systems:
Sufficient Evidence?
Daniel Jackson, Martyn Thomas, Lynette I. Millett

Software for Dependable Systems:
Sufficient Evidence?

The Next Wave n Vol 19 No 1 n 2011 35

FEATURE

A system is dependable when it can
be depended on to produce the
consequences for which it was designed,
and no adverse effects, in its intended
environment. This means, first and
foremost, that the term dependability has
no useful meaning for a given system
until these consequences and the intended
environment are made explicit by a
clear prioritization of the requirements
of the system and an articulation of
environmental assumptions. The effects of
software are felt in the physical, human,
and organizational environment in which
it operates, so dependability should be
understood in that context and cannot be
reduced easily to local properties, such as
resilience to crashing or conformance to
a protocol. Humans who interact with the
software should be viewed not as external
and beyond the boundary of the software
engineer’s concerns but as an integral part
of the system. Failures involving human
operators should not automatically be

assumed to be the result of errors of usage;
rather, the role of design flaws should be
considered as well as the role of the human
operator. As a consequence, a systems
engineering approach — which views
the software as one engineered artifact
in a larger system of many components,
some engineered and some given, and the
pursuit of dependability as a balancing of
costs and benefits and a prioritization of
risks — is vital.

Unfortunately, it is difficult to assess
the dependability of software. The field
of software engineering suffers from
a pervasive lack of evidence about the
incidence and severity of software failures;
about the dependability of existing software
systems; about the efficacy of existing and
proposed development methods; about the
benefits of certification schemes; and so on.
There are many anecdotal reports, which—
although often useful for indicating areas
of concern or highlighting promising

Note: The following article is the introduction to the National Academy of Science (NAS) report, Software for
Dependable Systems: Sufficient Evidence? Full copies of the report (free PDF download and book purchase)
are available through the National Academy Press at http: //www.nap.edu/catalog.php?record_id=11923

How can software and the systems that rely on it be made
dependable in a cost-effective manner, and how can one obtain
assurance that dependability has been achieved? Rather than

focusing narrowly on the question of software or system certification
per se, this report adopts a broader perspective.

36 Software for Dependable Systems: Sufficient Evidence?

avenues of research—do little to establish
a sound and complete basis for making
policy decisions regarding dependability.
Moreover, there is sometimes an implicit
assumption that adhering to particular
process strictures guarantees certain levels
of dependability. The committee [NAS
Committee on Certifiably Dependable
Software Systems] regards claims of
extraordinary dependability that are
sometimes made on this basis for the most
critical of systems as unsubstantiated,
and perhaps irresponsible. This difficulty
regarding the lack of evidence for system
dependability leads to two conclusions,
reflected in the committee’s findings and
recommendations below: (1) that better
evidence is needed, so that approaches
aimed at improving the dependability
of software can be objectively assessed,
and (2) that, for now, the pursuit of
dependability in software systems should
focus on the construction and evaluation
of evidence.

The committee thus subscribes to
the view that software is “guilty until
proven innocent,” and that the burden of
proof falls on the developer to convince
the certifier or regulator that the software
is dependable. This approach is not novel
and is becoming standard in the world
of systems safety, in which an explicit
safety case (and not merely adherence
to good practice) is usually required.
Similarly, a software system should be
regarded as dependable only if it has a
credible dependability case, the elements
of which are described below. Meeting
the burden of proof for dependability
will be challenging. The demand for
credible evidence will, in practice, make
it infeasible to develop highly dependable
systems in a cost-effective way without
some radical changes in priorities. If
very high dependability is to be achieved
at reasonable cost, the needs of the

dependability case will influence many
aspects of the development, including the
choice of programming language and the
software architecture, and simplicity will
be key. For high levels of dependability,
the evidence provided by testing alone
will rarely suffice and will have to be
augmented by analysis. The ability to
make independence arguments that allow
global properties to be inferred from
an analysis of a relatively small part of
the system will be essential. Rigorous
processes will be needed to ensure that
the chain of evidence for dependability
claims is preserved.

The committee also recognized
the importance of adopting the practices
that are already known and used by the
best developers; this summary gives a
sample of such practices in more detail
below. Some of these (such as systematic
configuration management and automated
regression testing) are relatively easy to
adopt; others (such as constructing hazard
analyses and threat models, exploiting
formal notations when appropriate, and
applying static analysis to code) will
require new training for many developers.
However valuable, though, these practices
are in themselves no silver bullet, and new
techniques and methods will be required
in order to build future software systems
to the level of dependability that will be
required.

Assessment
Society is increasingly dependent on

software. Software failures can cause or
contribute to serious accidents that result
in death, injury, significant environmental
damage, or major financial loss. Such
accidents have already occurred, and,
without intervention, the increasingly
pervasive use of software—especially in
arenas such as transportation, health care,
and the broader infrastructure—may make
them more frequent and more serious. In
the future, more pervasive deployment of
software in the civic infrastructure could
lead to more catastrophic failures unless
improvements are made.

Software, according to a popular
view, fails because of bugs: errors in the
code that cause a program to fail to meet its
specification. In fact, only a tiny proportion
of failures can be attributed to bugs. As is
well known to software engineers, by far
the largest class of problems arises from
errors made in the eliciting, recording,
and analysis of requirements. A second
major class of problems arises from poor
human factors design. The two classes
are related; bad user interfaces usually
reflect an inadequate understanding of
the user’s domain and the absence of a
coherent and well-articulated conceptual
model. Security vulnerabilities are
to some extent an exception to this
observation: The overwhelming majority
of security vulnerabilities reported in

The Next Wave n Vol 19 No 1 n 2011 37

FEATURE

software products—and exploited to
attack the users of such products—are at
the implementation level. The prevalence
of code-related problems, however, is
a direct consequence of higher-level
decisions to use programming languages,
design methods, and libraries that admit
these problems.

In systems where software failure
could have significant human or financial
costs, it is crucial that software be
dependable—that it can be depended
upon to function as expected and to not
cause or contribute to adverse events in
the environment in which it operates.
Improvements in dependability would
allow such systems to be used more
widely and with greater confidence
for the benefit of society. Moreover,
software itself has great potential to bring
improvements in safety in many areas.

Complete and reliable data about
software-related system failures or
the efficacy of particular software
development approaches are hard to come
by, making objective scientific evaluation
difficult. Moreover, the lack of systematic
reporting of software-related system
failures is a serious problem that makes
it more difficult to evaluate the risks and
costs of such failures and to measure
the effectiveness of proposed policies or
interventions.

This lack of evidence has two direct
consequences for this report. First, it has
informed the key recommendations in this
report regarding the need for evidence to be
at the core of dependable software system
development; for data collection efforts
to be established; and for transparency
and openness to be encouraged. Second,
it has tempered the committee’s desire
to provide prescriptive guidance: The
approach recommended is therefore
largely free of endorsements or criticisms

of particular development approaches,
tools, or techniques. Moreover, the report
leaves to the developers and procurers of
individual systems the question of what
level of dependability is appropriate, and
what costs are worth incurring to achieve it.

Nonetheless, the evidence available
to the committee did support several
qualitative conclusions. First, developing
software to meet even existing
dependability criteria is difficult and
costly. Large software projects fail at a
high rate, and the cost of projects that do
succeed in delivering highly dependable
software is often exorbitant. Second,
the quality of software produced by the
industry is extremely variable, and there
is inadequate oversight in some critical
areas. Today’s certification regimes and
consensus standards have a mixed record.
Some are largely ineffective, and some
are counterproductive. They share a
heavy reliance on testing, which cannot
provide sufficient evidence for the high
levels of dependability required in many
critical applications.

A final observation is that the culture
of an organization in which software is
produced can have a dramatic effect on
its quality and dependability. It seems
likely that the excellent record of avionics
software is due in large part to a safety
culture in that industry that encourages
meticulous attention to detail, high
aversion to risk, and realistic assessment
of software, staff, and process. Indeed,
much of the benefit of standards such
as DO-178B, Software Considerations
in Airborne Systems and Equipment
Certification, may be due to the safety
culture that their strictures induce.

Toward certifiably
dependable software

The focus of this report is a set of
fundamental principles that underlie

software system dependability and
that suggest a different approach to
the development and assessment of
dependable software. Due to a lack of
sufficient data to support or contradict
any particular approach, a software
system may not be declared “dependable”
based on the method by which it
was constructed. Rather, it should be
regarded as dependable— certifiably
dependable—only when adequate
evidence has been marshaled in support
of an argument for dependability that can
be independently assessed. The goal of
certifiably dependable software cannot
therefore be achieved by mandating
particular processes and approaches,
regardless of their effectiveness in certain
situations. Instead, software developers
should marshal evidence to justify an
explicit dependability claim that makes
clear which properties in the real world
the system is intended to establish. Such
evidence forms a dependability case,
and creating a dependability case is the
cornerstone of the committee’s approach
to developing certifiably dependable
software systems.

Explicit claims, evidence,
and expertise

The committee’s proposed approach
can be summarized in “the three Es”—
explicit claims, evidence, and expertise:

• Explicit claims. No system can be
“dependable” in all respects and under
all conditions. So to be useful, a claim
of dependability must be explicit. It
must articulate precisely the properties
the system is expected to exhibit and
the assumptions about the system’s
environment upon which the claim is
contingent. The claim should also indicate
explicitly the level of dependability
claimed, preferably in quantitative terms.

38 Software for Dependable Systems: Sufficient Evidence?

Different properties may be assured to
different levels of dependability.

• Evidence. For a system to be regarded
as dependable, concrete evidence
must be present that substantiates the
dependability claim. This evidence will
take the form of a dependability case
arguing that the required properties
follow from the combination of the
properties of the system itself (that is, the
implementation) and the environmental
assumptions. Because testing alone
is usually insufficient to establish
properties, the case will typically combine
evidence from testing with evidence
from analysis. In addition, the case will
inevitably involve appeals to the process
by which the software was developed—
for example, to argue that the software
deployed in the field is the same software
that was subjected to analysis or testing.

• Expertise. Expertise—in software

development, in the domain under
consideration, and in the broader
systems context, among other things—is
necessary to achieve dependable systems.
Flexibility is an important advantage of
the proposed approach; in particular the
developer is not required to follow any
particular process or use any particular
method or technology. This flexibility
allows experts freedom to employ new
techniques and to tailor the approach to
the system’s application and domain. But
the requirement to produce evidence is
highly demanding and likely to stretch
today’s best practices to their limit. It will
therefore be essential that developers are
familiar with best practices and deviate
from them only for good reason.

These prescriptions shape any
particular development approach only in
outline and give considerable freedom
to developers in their choice of methods,
languages, tools, and processes. This
approach is not, of course, a silver bullet.
There are no easy solutions to the problem
of developing dependable software, and
there will always be systems that cannot be
built to the required level of dependability
even using the latest methods. But, the
approach recommended is aimed at
producing certifiably dependable systems
today, and the committee believes it holds
promise for developing the systems that
will be needed in the future.

In the overall context of engineering,
the basic tenets of the proposed approach
are not controversial, so it may be a
surprise to some that the approach is
not already commonplace. Nor are the
elements of the approach novel; they have
been applied successfully for more than
a decade. Nevertheless, this approach
would require radical changes for most
software development organizations
and is likely to demand expertise that is
currently in short supply.

Systems engineering approach

Complementing “the three Es” are
several systems engineering ideas that
provide an essential foundation for the
building of dependable software systems:

• Systems thinking. Engineering fields
with long experience in building complex
systems (for example, aerospace,
chemical, and nuclear engineering)
have developed approaches based on
“systems thinking.” These approaches
focus on properties of the system as a
whole and on the interactions among its
components, especially those interactions
(often neglected) between a component
being constructed and the components of
its environment. As software has come to
be deployed in—indeed has enabled—
increasingly complex systems, the system
aspect has come to dominate in questions
of software dependability.

• Software as a system component.
Dependability is not an intrinsic
property of software. The committee
strongly endorses the perspective of
systems engineering, which views the
software as one engineered artifact in
a larger system of many components,
some engineered and some given, and
views the pursuit of dependability as
a balancing of costs and benefits and
a prioritization of risks. A software
component that may be dependable in
the context of one system might not be
dependable in the context of another.

• Humans as components. People—
the operators and users (and even
the developers and maintainers) of a
system—may also be viewed as system
components. If a system meets its
dependability criteria only if people act
in certain ways, then those people should
be regarded as part of the system, and an
estimate of the probability that they will

The Next Wave n Vol 19 No 1 n 2011 39

FEATURE

behave as required should be part of the
evidence for dependability.

• Real-world properties. The properties
of interest to the user of a system are
typically located in the physical world:
that a radiotherapy machine deliver a
certain dose, that a telephone transmit
a sound wave faithfully, that a printer
make appropriate ink marks on paper,
and so on. The software, on the other
hand, is typically specified in terms of
properties at its interfaces, which usually
involve phenomena that are not of direct
interest to the user: that the radiotherapy
machine, telephone, or printer send or
receive certain signals at certain ports,
with the inputs related to the outputs
according to some rules. It is important,
therefore, to distinguish the requirements
of a software system, which represent
these properties in the physical world,
from the specification of a software
system, which characterizes
the behavior of the software
system at its interface with
the environment. When the
software system is itself only
one component of a larger
system, the other components
in the system (including
perhaps, as explained above,
the people who work with the system)
will be viewed as part of the environment.
The dependability properties of a software
system, therefore, should be expressed
as requirements, and the dependability
case should demonstrate how these
properties follow from the combination
of the specification and the environmental
assumptions.

Coping with complexity

The need for evidence of
dependability and the difficulty of
producing such evidence for complex
systems have a straightforward but

profound implication. Any component
for which compelling evidence of
dependability has been amassed at
reasonable cost will likely be small by
the standards of most modern software
systems. Every critical specification
property, therefore, will have to be
assured by one, or at most a few, small
components. Sometimes it will not be
possible to separate concerns so cleanly,
and in that case, the dependability case
may be less credible or more expensive
to produce.

As a result, one key to achieving
dependability at reasonable cost is a
serious and sustained commitment to
simplicity, including simplicity of critical
functions and simplicity in system
interactions. This commitment is often
the mark of true expertise. An awareness
of the need for simplicity usually comes
only with bitter experience and the

humility gained from years of practice.
There is no alternative to simplicity.
Advances in technology or development
methods will not make simplicity
redundant; on the contrary, they will
give it greater leverage. To achieve high
levels of dependability in the foreseeable
future, striving for simplicity is likely to
be by far the most cost-effective of all
interventions. Simplicity is not easy or
cheap, but its rewards far outweigh its costs.

The most important form
of simplicity is that produced by
independence, in which particular
system-level properties are guaranteed by

individual components much smaller than
the system as a whole, which can preserve
these properties despite failures in the
rest of the system. Independence can be
established in the overall design of the
system, with the support of architectural
mechanisms. Its effect is to dramatically
reduce the cost of constructing a
dependability case for a property, since
only a relatively small part of the system
needs to be considered.

Appropriate simplicity and
independence cannot be accomplished
without addressing the challenges of
“interactive complexity” and “tight
coupling.” Both interactive complexity,
where components may interact in
unanticipated ways, and tight coupling,
wherein a single fault cannot be isolated
but brings about other faults that cascade
through the system, are correlated
with the likelihood of system failure.

Software-intensive systems tend to have
both attributes. Careful attention should
therefore be paid to the risks of interactive
complexity and tight coupling and the
advantages of modularity, isolation,
and redundancy. The interdependences
among components of critical software
systems should be analyzed to ensure that
there is no fault propagation path from
less critical components to more critical
components, that modes of failure are
well understood, and that failures are
localized to the greatest extent possible.
The reduction of interactive complexity
and tight coupling can contribute not

“Testing is indispensable,
and no software system can be regarded as dependable
if it has not been extensively tested...”

40 Software for Dependable Systems: Sufficient Evidence?

only to the improvement of system
dependability but also to the development
of evidence and analysis in the service of
a dependability case.

Rigorous process and preserving
the chain of evidence

Generating a dependability case
after the fact, when a development is
largely complete, might be possible
in theory. But in practice, at least with
today’s technology, the costs of doing so
would be high, and it will be practical to
develop a dependability case only if the
system is built with its construction in
mind. Each step in developing the software
needs to preserve the chain of evidence on
which will be based the argument that the
resulting system is dependable.

At the start, the domain and
environmental assumptions and the
required properties of the system should
be made explicit; they should be expressed
unambiguously and in a form that permits
systematic analysis to ensure that there
are no unresolvable conflicts between
the required properties. Each subsequent
stage of development should preserve
the evidence chain—that these properties
have been carried forward without being
corrupted—so each form in which the
requirements, design, or implementation
is expressed should support analysis
to permit checking that the required
properties have been preserved. What
is sufficient will vary with the required
dependability, but preserving the evidence
chain necessitates that the checks are
carried out in a disciplined way, following
a documented procedure, and leaving
auditable records.

The roles of testing, analysis,
and formal methods

Testing is indispensable, and no
software system can be regarded as
dependable if it has not been extensively

tested, even if its correctness has been
proven mathematically. Testing may
find flaws that elude analysis because
it exercises the system in its entirety,
whereas analysis must typically make
assumptions about the execution
platform, the external environment, and
operator responses, any of which may
turn out to be unwarranted. At the same
time, it is important to realize that testing
alone is rarely sufficient to establish high
levels of dependability. It is erroneous
to believe that a rigorous development
process, in which testing and code review
are the only verification techniques used,
justifies claims of extraordinarily high
levels of dependability. Some certification
schemes, for example, associate higher
safety integrity levels with more
burdensome process prescriptions and
imply that following the processes
recommended for the highest integrity
levels will ensure that the failure rate is
minuscule. In the absence of a carefully
constructed dependability case, such
confidence is misplaced.

Because testing alone will not be
sufficient for the foreseeable future,
the dependability claim will also
require evidence produced by analysis.
Moreover, because analysis links the
software artifacts directly to the claimed
properties, the analysis component of the
dependability case will usually contribute
confidence at a lower cost than testing
for the highest levels of dependability. A
dependability case will generally require
many forms of analysis, including (1) the
validation of environmental assumptions,
use models, and fault models; (2) the
analysis of fault tolerance measures
against fault models; (3) schedulability
analysis for temporal behaviors; (4)
security analysis against attack models;
(5) verification of code against module
specifications; and (6) checking that

modules in aggregate achieve appropriate
system-level effects. These analyses will
sometimes involve informal argument
that is carefully reviewed; sometimes
mechanical inference (as performed, for
example, by “type checkers” that confirm
that memory is used in a consistent way
and that boundaries between modules are
respected); and, sometimes, formal proof.
Indeed, the dependability case for even
a relatively simple system will usually
require all of these kinds of analysis, and
they will need to be fitted together into a
coherent whole.

Traditional software development
methods rely on human inspection and
testing for validation and verification.
Formal methods also use testing, but
they employ notations and languages
that are amenable to rigorous analysis,
and they exploit mechanical tools
for reasoning about the properties of
requirements, specifications, designs, and
code. Practitioners have been skeptical
about the practicality of formal methods.
Increasingly, however, there is evidence
that formal methods can yield systems
of very high dependability in a cost-
effective manner, at least for small- to
medium-sized critical systems. Although
formal methods are typically more
expensive to apply when only low levels
of dependability are required, the cost of
traditional methods rises rapidly with the
level of dependability and often becomes
prohibitive. When a highly dependable
system is required, therefore, a formal
approach may be the most cost effective.

Certification,
transparency,
and accountability

A variety of certification regimes
exist for software in particular application
domains. For example, the Federal
Aviation Authority (FAA) itself certifies

The Next Wave n Vol 19 No 1 n 2011 41

FEATURE

new aircraft (and air-traffic management)
systems that include software, and this
certification is then relied on by the
customers who buy and use the aircraft;
the National Information Assurance
Partnership (NIAP) licenses third-party
laboratories to assess security software
products for conformance to the Common
Criteria. Some large organizations have
their own regimes for certifying that
the software products they buy meet the
organization’s quality criteria, and many
software product manufacturers have
their own criteria that each version of
their product must pass before release.

Few, if any, existing certification
regimes encompass the combination
of characteristics recommended in this
report—namely, explicit dependability
claims, evidence for those claims, and
a rigorous argument that demonstrates
that the evidence is sufficient to
establish the validity of the claims. To
establish that a system is dependable
will involve inspection and analysis of
the dependability claim and the evidence
offered in its support. Where the customer
for the system is not able to carry out that
work itself (for lack of time or lack of
expertise) it may need to involve a third
party whose judgment it can rely on to
be independent of commercial pressures
from the vendor. Certification can take
many forms, from self-certification by the
supplier at one extreme, to independent
third-party certification by a licensed
certification authority at the other. No
single certification regime is suitable for
all circumstances, so a suitable scheme
should be chosen for each circumstance.
Industry groups and professional societies
should consider developing model
certification schemes appropriate to their
domains, taking account of the detailed
recommendations in this report.

When choosing suppliers and
products, customers and users can make
informed judgments only if the claims
are credible. Such claims are unlikely to
be credible if the evidence underlying
them is not transparent. Economists have
established that if consumers cannot
reliably observe quality before they buy,
sellers may get little economic benefit
from providing higher quality than their
competitors, and overall quality can
decline. Sellers are concerned about
future sales, and “reputation effects”
compel them to strive to maintain a
minimum level of quality. If consumers
rely heavily on branding, though, it
becomes more difficult for new firms to
enter the market, and quality innovations
spread more slowly.

Those claiming dependability for
their software should therefore make
available the details of their claims,
criteria, and evidence. To assess the
credibility of such details effectively, an
evaluator should be able to calibrate not
only the technical claims and evidence
but also the organization that produced
them, because the integrity of the
evidence chain is vital and cannot easily
be assessed without supporting data. This
suggests that in some cases data of a more
general nature should be made available,
including the qualifications of the
personnel involved in the development;
the track record of the organization in
providing dependable software; and
the process by which the software was
developed. The willingness of a supplier
to provide such data, and the clarity and
integrity of the data that the supplier
provides, will be a strong indication of its
attitude to dependability.

Where there is a need to deploy
software that satisfies a particular
dependability claim, it should always be

explicit who is accountable for any failure
to achieve it. Such accountability can be
made explicit in the purchase contract,
or as part of certification of the software,
or as part of a professional licensing
scheme, or in other ways. Since no single
solution will suit all the circumstances
in which certifiably dependable software
systems are deployed, accountability
regimes should be tailored to particular
circumstances. At present, it is common
for software developers to disclaim,
so far as possible, all liability for
defects in their products, to a greater
extent than customers and society
expect from manufacturers in other
industries. Clearly, no software should
be considered dependable if it is supplied
with a disclaimer that withholds the
manufacturer’s commitment to provide a
warranty or other remedies for software
that fails to meet its dependability claims.
Determining the appropriate scale of
remedies, however, was beyond the scope
of this study and would require a careful
analysis of benefits and costs, taking
into account not only the legal issues but
also the state of software engineering,
the various submarkets for software,
the economic impact, and the effect on
innovation.

Key findings and
recommendations

Presented below are the committee’s
findings and recommendations, each
of which is discussed in more detail in
Chapter 4. (The full report is available at:
http://www.nap.edu/catalog.php?record_
id=11923)

Findings

Improvements in software
development are needed to keep pace
with societal demands for software.
Avoidable software failures have already

42 Software for Dependable Systems: Sufficient Evidence?

been responsible for loss of life and for
major economic losses. The quality
of software produced by the industry
is extremely variable, and there is
inadequate oversight in several critical
areas. More pervasive deployment of
software in the civic infrastructure may
lead to catastrophic failures unless
improvements are made. Software has
the potential to bring dramatic benefits
to society, but it will not be possible to
realize these benefits—especially in
critical applications—unless software
becomes more dependable.

More data is needed about
software failures and the efficacy of
development approaches. Assessment
of the state of the software industry, the
risks posed by software, and progress
made is currently hampered by the lack
of a coherent source of information about
software failures.

Recommendations to builders
and users of software

Make the most of effective
software development technologies
and formal methods. A variety of
modern technologies—in particular, safe
programming languages, static analysis
(analysis of software and source code
done without actually executing the
program), and formal methods— are
likely to reduce the cost and difficulty of
producing dependable software.

Follow proven principles for
software development. The committee’s
proposed approach also includes
adherence to the following principles:

• Take a systems perspective. Here the
dependability of software is viewed not
in terms of intrinsic properties (such as
the incidence of bugs in the code) but
rather in terms of the system as a whole,
including interactions among people,
process, and technology.

• Exploit simplicity. If dependability
is to be achieved at reasonable cost,
simplicity should become a key goal, and
developers and customers must be willing
to accept the compromises it entails.

Make a dependability case for a
given system and context: evidence,
explicitness, and expertise. A software
system should be regarded as dependable
only if sufficient evidence of its explicitly
articulated properties is presented to
substantiate the dependability claim.
This approach gives considerable leeway
to developers to use whatever practices
are best suited to the problem at hand.
In practice the challenges of developing
dependable software are sufficiently great
that developers will need considerable
expertise, and they will have to justify
any deviations from best practices.

Demand more transparency, so
that customers and users can make more
informed judgments about dependability.
Customers and users can make informed
judgments when choosing suppliers
and products only if the claims, criteria,
and evidence for dependability are
transparent.

Make use of but do not rely solely
on process and testing. Testing will be an
essential component of a dependability
case, but will not in general suffice,
because even the largest test suites
typically used will not exercise enough
paths to provide evidence that the software
is correct nor will it have sufficient
statistical significance for the levels of
confidence usually desired. Rigorous
process is essential for preserving the
chain of dependability evidence but is not
per se evidence of dependability.

Base certification on inspection
and analysis of the dependability claim
and the evidence offered in its support.
Because testing and process alone are

insufficient, the dependability claim will
require, in addition, evidence produced
by other modes of analysis. Security
certification in particular should go
beyond functional testing of the security
components of a system and assess the
effectiveness of measures the developer
took to prevent the introduction of
security vulnerabilities.

Include security considerations
in the dependability case. Security
vulnerabilities can undermine the case
made for dependability properties
by violating assumptions about how
components behave, about their
interactions, or about the expected
behavior of users. The dependability
case must therefore account explicitly
for security risks that might compromise
its other aspects. It is also important to
ensure that security certifications give
meaningful assurance of resistance to
attack. New security certification regimes
are needed that can provide confidence
that most attacks against certified products
or systems will fail. Such regimes can be
built by applying the other findings and
recommendations of this report, with an
emphasis on the role of the environment—
in particular, the assumptions made about
the potential actions of a hostile attacker
and the likelihood that new classes of
vulnerabilities will be discovered and
new attacks developed to exploit them.

Demand accountability and make it
explicit. Where there is a need to deploy
certifiably dependable software, it should
always be made explicit who or what is
accountable, professionally and legally,
for any failure to achieve the declared
dependability.

Recommendations to agencies
and organizations that support
software education and research

The committee was not constituted
or charged to recommend budget levels

The Next Wave n Vol 19 No 1 n 2011 43

FEATURE

or to assess trade-offs between software
dependability and other priorities.
However, it believes that the increasing
importance of software to society and
the extraordinary challenge currently
faced in producing software of adequate
dependability provide a strong rationale
for investment in education and research
initiatives.

Place greater emphasis on
dependability—and its fundamental
underpinnings—in the high school,
undergraduate, and graduate education of
software developers. Many practitioners
do not have an adequate appreciation of the
software dependability issues discussed
in this report, are not aware of the most
effective development practices available
today, or are not capable of applying them
appropriately. Wider implementation of
the committee’s recommended approach,
which goes beyond today’s state of
the practice, implies a need for further
education and training activities.

Federal agencies that support
information technology research and
development should give priority to basic
research to further software-enabled
system dependability, emphasizing a
systems perspective and evidence. In
keeping with this report’s approach, such
research should emphasize a systems
perspective and “the three Es” (explicit
claims, evidence, and expertise) and
should be informed by a systems view
that attaches more importance to those
advances that are likely to have an impact
in a world of large systems interacting
with other systems and operators in
a complex physical environment and
organizational context.

About the report
This report was authored by the

National Research Council’s (NRC)
Committee on Certifiably Dependable

Software Systems, convened under the
auspices of the NRC’s Computer Science
and Telecommunications Board. The
committee consisted of 13 experts from
industry and academia specializing in
diverse aspects of systems dependability
including software engineering, software
testing and evaluation, software
dependability, embedded systems,
human-computer interaction, systems
engineering, systems architecture,
accident theory, standards setting,
avionics, medicine, economics, security,
and regulatory policy. Committee chair
Daniel Jackson, a professor of Computer
Science at MIT; committee member
Martyn Thomas, visiting professor
of software engineering at Oxford
University; and Lynette Millett, senior
staff officer at the NRC, edited the report.

Discussions initiated by the
High Confidence Software and
Systems Coordinating Group (HCSS
CG) of the National Science and
Technology Council’s Networking and
Information Technology Research and
Development (NITRD) Subcommittee
with the NRC’s Computer Science and
Telecommunications Board resulted
in this study on the current state of
certification in dependable systems.
Funding for the study was obtained from
HCSS CG member agencies.

44 Critical Code: Software Producibility for Defense

Critical Code:
Software Producibility for Defense

A Short Summary

The rapid growth in the role of software in defense systems is significant and
parallels the growing role of software in a broad range of application domains,
ranging from financial services and health care to telecommunications, logistics,

and transportation. This growth is reflected in recent macroeconomic studies, which
suggest that in the US and Europe 20 percent to 25 percent of overall economic growth
and nearly 40 percent of the increase in overall economic productivity since 1995
are attributed to information and communications technology. It is also reflected in
individual systems. For example, in modern automobiles, the portion of system functions
performed in software is now 40 percent and approaching 50 percent. In the DoD, the
growth has been even more profound—in military aircraft, for example, the percentage
of system functions performed by software has risen to more than 80 percent.

This growth of software in role and significance is a natural outcome of its special
engineering characteristics: software is uniquely unbounded and flexible, having relative-
ly few intrinsic limits on the degree to which it can be scaled in complexity and capability.
This is because software is an abstract and purely synthetic medium that, for the most
part, lacks fundamental physical limits and natural constraints. For example, unlike
physical hardware, software can be delivered and upgraded electronically and remotely,
greatly facilitating rapid adaptation to changes in adversary threats, mission priorities,
technology, and other aspects of the operating environment. The principal constraint on
what can be accomplished is the human intellectual capacity to understand problems
and systems, to build tools to manage them, and to provide assurance—all at ever-
greater levels of scale and complexity.

The extent of the DoD code in service has been increasing by more than an order
of magnitude every decade, and a similar growth pattern has been exhibited within
individual, long-lived military systems. In addition to this growth in size, there is a cor-
responding growth in overall systems capability, complexity, interconnectedness, and
agility. This growth is enabled by the increasing power of software languages, tools,
and practices, as well as by a significant growth in the dependence of DoD systems on
increasingly complex, diverse, and geographically distributed supply chains. These supply
chains include not only custom components developed for specific mission purposes, but
also commercial and open-source ecosystems and components, such as the widely used
infrastructures for web services, mobile devices, and graphical user interaction.

Because of the rapid growth in significance of software capability to the DoD
overall, the Director of Defense Research and Engineering (now Assistant Secretary of
Defense for Research and Engineering) requested the National Research Council (NRC)
Committee for Advancing Software-Intensive Systems Producibility to undertake a study
to address the challenges of defense software producibility, identifying the principal
challenges and developing recommendations regarding both improvements to practice
and priorities for research. The NRC committee just released its final report, titled
Critical Code: Software Producibility for Defense. Full copies of the report (free PDF
download and book purchase), along with related prior reports, are available through
the National Academy Press at http://www.nap.edu/catalog.php?record_id=12979.
This article summarizes the principal findings and recommendations of that report.

The Next Wave n Vol 19 No 1 n 2011 45

FEATURE

The necessity of sustaining
software innovation

An initial question is whether
software is indeed a strategic building
material, worthy of special attention. This
question has been addressed periodically
by the Defense Science Board (DSB)
since 1985—a 2007 DSB report, for
example, stated that “in the Department
of Defense, the transformational effects
of information technology (IT—defined
here broadly to include all forms of
computing and communications), joined
with a culture of information sharing,
called Net-Centricity, constitute a
powerful force multiplier. The DoD
has become increasingly dependent for
mission-critical functionality upon highly
interconnected, globally sourced IT of
dramatically varying quality, reliability,
and trustworthiness.”

Despite the strength of this statement,
every few years speculation surfaces
that perhaps software and information
technology may be approaching a plateau
of capability and performance and that
strategic attention to these technologies is
consequently not merited. The committee
emphasizes that this continues to be a
false and dangerous speculation—the
capability and the complexity of hardware
and software systems are both rising at an
accelerating rate, with no end in sight.

It is instructive, in this regard, to
consider the publication in 1958—more
than a half century ago—of the landmark

paper by John Backus describing the
first Fortran compiler. The title included
the words “automatic programming.”
The point of this phrase, with respect
to Backus’s great accomplishment,
is that there was a much more direct
correspondence between his high-level
programming notation—the earliest
Fortran code—and pure mathematical
thinking than had been the case with
the early machine-level code. One can
construe that it was imagined that Fortran
enabled mathematicians to express
their thoughts directly to computers,
seemingly without the intervention of
programmers. The early Fortran was
indeed an extraordinary and historical
breakthrough. But we know that, in the
end, those mathematicians of 50 years
ago soon evolved into programmers—as
a direct consequence of their growing
ambitions for computing applications.

Just a few years after the Backus
paper, Fortran was used to support list-
processing applications, typesetting
applications, compilers for other
languages, and other applications whose
abstractions required some considerable
programming sophistication (and
representational gerrymandering) to be
represented effectively as early Fortran
data structures—arrays and numeric
values. Any program that manipulated
textual data, for example, needed to
encode the text characters, textual strings,
and any overarching paragraph and

document structure very explicitly into
numbers and arrays. A person reading
program text would see only numerical
and array operations because that was
the limit of what could be explicitly
expressed in the notation. This meant
that programmers needed to keep track,
in their heads or in documentation, of the
nature of this representational encoding.
It also meant that testers and evaluators
needed to assess programs through this
(hopefully) same layer of interpretation.

As languages have evolved
(including more modern Fortran
versions), these additional structures
can be much more directly expressed—
characters and strings, most obviously,
are intrinsic in nearly all modern
languages. It is interesting, however, that
the claim of “automatic programming”
continues to reappear from time to time
as major steps are made in improved
abstractions, for example related to
data manipulation (the so-called 4GLs).
These developments move us forward,
but ironically they do not actually get
us closer to “eliminating programmers”
or otherwise emerging at some plateau
of capability and near-commodity
status. Instead, new software-manifest
capabilities are constantly emerging—
for example, techniques for machine-
learning algorithms and highly parallel
data-intensive analytics—that continue
to demand considerable intellectual effort
on the part of programmers.

46 Critical Code: Software Producibility for Defense

The profound fact is that software
capability is bounded primarily by
our intellectual abilities—our human
capability both to create new abstractions
appropriate for application domains
and to manifest those abstractions in
languages, models, tools, and practices.
As our understanding advances, so can
our software capability advance with us.

As a consequence of this seeming
unboundedness, the committee finds that
technological leadership in software is a
key driver of overall capability leadership
in systems—and that at the core of the
ability to achieve integration and maintain
mission agility is the ability of the DoD
to produce and evolve software. The
committee recommends that, to avoid
loss of leadership, the DoD take active

steps to become more fully engaged
in the innovative processes related to
software producibility. In particular,
the committee finds that industry, despite
the extraordinary pace of innovation we
are now witnessing, will not produce
software innovations in areas of defense
significance at a rate fast enough to
allow the DoD to fully meet its software-
related requirements and remain ahead of
potential adversaries.

A loss of leadership could threaten
the ability of the DoD to manifest
world-leading capability, and also to
achieve adequate levels of assurance
for the diversely sourced software it
intends to deploy. This is an important
part of the rationale for the committee
recommendation that the DoD reengage
directly in the innovation processes.

The committee also finds that
although the DoD relies fundamentally

on mainstream commercial and open
source components, supply chains, and
software ecosystems, it nonetheless has
special needs in its mission systems that
are driven by the growing role of software
in systems overall. The committee
recommends that the DoD regularly
undertake an identification of areas
of technological need where the DoD
has “leading demand” and where
accelerated progress is needed.

Three goals for software-
intensive development

The committee identified three areas
where improvements in practice would
materially benefit the ability of the DoD
to develop, sustain, and assure software-
intensive systems of all kinds. Each of
these areas is the subject of a chapter in

the Critical Code report. (These three
areas of practice correspond to Chapters
2, 3, and 4. Chapter 1 of the report focuses
on the necessary role of DoD in software
innovation. Chapter 5 summarizes the
research agenda related to software
producibility.) The three areas of practice
are summarized below:

Practice improvement 1:
Process and measurement

Advances related to process and
measurement would facilitate broader
and more effective use of incremental
iterative development, particularly in
the arms-length contracting situations
common in DoD.

Incremental development practices
enable continuous identification and
mitigation of engineering risks during
a systems development process.
Engineering risks pertain to the
consequences of particular choices to be

made within an engineering process—
the risks are high when the outcomes of
immediate project commitments are both
consequential and difficult to predict.
Engineering risks can relate to many
different kinds of engineering decisions—
most significantly architecture, quality
attributes, functional characteristics, and
infrastructure choices.

When well managed, incremental
practices can enable innovative
engineering to be accomplished without a
necessarily consequent increase of overall
programmatic risk. (Programmatic risk
relates to the successful completion
of engineering projects with respect
to expectations and priorities for cost,
schedule, capability, quality, and other
attributes.) This is because incremental

practices enable engineering
risks to be identified early
and mitigated promptly.
Incremental practices are
enabled through the use
of diverse techniques such
as modeling, simulation,

prototyping, and other means for early
validation—coupled with extensions to
earned-value models that measure and
give credit for the accumulating body
of evidence in support of feasibility.
Incremental approaches include iterative
approaches, staged acquisition, evidence-
based systems engineering, and other
methods that explicitly acknowledge
engineering risk and its mitigation.

The committee finds that
incremental and iterative methods are
of fundamental significance to DoD
for innovative, software-intensive
engineering in the DoD, and they can
be managed more effectively through
improvements in practices and supporting
tools. The committee recommends a
diverse set of improvements related
to advanced incremental development
practice, supporting tools, and earned-
value models.

“...to avoid loss of leadership,
the DoD [should] take active steps to become more fully engaged
in the innovative processes related to software producibility.”

The Next Wave n Vol 19 No 1 n 2011 47

FEATUREFEATURE

Practice improvement 2:
Architecture

Advances related to architecture
practice would facilitate the early focus
on systems architecture that is essential
particularly for systems with demanding
requirements related to quality attributes,
interlinking, and planned flexibility.

Software architecture models the
structures of a system that comprises
software components, the externally
visible properties of those components,
and the relationships among the
components. Good architecture entails
a minimum of engineering commitment
that yields a maximum value. In particular,
architecture design is an engineering
activity that is separate, for example,
from ecosystems certification and other
standards-related policy setting.

For complex innovative systems,
architecture definition embodies
planning for flexibility—defining and
encapsulating areas where innovation
and change are anticipated. Architecture
definition also most strongly influences
diverse quality attributes, ranging from
availability and performance to security
and isolation. Additionally, architecture
embodies planning for the interlinking of
systems and for product line development,
enabling encapsulation of individual
innovative elements of a system.

For many innovative systems,
therefore, it may be more effective to
consider architecture and quality attributes
before making specific commitments
to functionality. Because architecture
includes the earliest and, often, the
most important design decisions—those
engineering costs that are most difficult
to change later—early architectural
commitment (and validation) can
yield better project outcomes with less
programmatic risk.

The committee finds that in highly
complex systems with emphasis on

quality attributes, architecture decisions
may dominate functional capability
choices in overall significance. The
committee also notes that architecture
practice in many areas of industry is
sufficiently mature for DoD to adopt.
The committee recommends that DoD
more aggressively assert architectural
leadership, with an early focus on
architecture being essential for systems
with innovative functionality or
demanding quality requirements.

Practice improvement 3:
Assurance and security

Advances related to assurance and
security would facilitate achievement of
mission assurance for systems at greater
degrees of scale and complexity, and
in the presence of rich supply chains
and architectural ecosystems that are
increasingly commonplace in modern
software engineering.

Assurance is a human judgment
regarding not just functionality, but
also diverse quality attributes related
to reliability, security, safety, and other

system characteristics. The weights
given the various attributes are typically
determined on the basis of models of
hazards associated with the operational
context, including potential threats. The
process of achieving software assurance,
regardless of sector, is generally recognized
to account for approximately half the total
development cost for major projects.

In addition to overall cost, DoD
faces several particular challenges for
assurance. First, there is often an arms-
length relationship between a contractor
development team and government
stakeholders, making it difficult to develop
and share the information necessary to
making assurance judgments. This can
lead to approaches that overly focus on
post hoc acceptance evaluation, rather
than on the emerging practice of “building
in” evidence in support of an overall
assurance case. Second, modern systems
draw on components from diverse
sources. This implies that supply-chain
and configuration-related attacks must
be contemplated, with “attack surfaces”
existing within an overall application,

48 Critical Code: Software Producibility for Defense

and not just at its perimeter. This has
the consequence that evaluative and
preventive approaches ideally must be
integrated throughout a complex supply
chain. A particular challenge is managing
opaque, or “black box,” components in a
system—this issue is addressed in the full
report. Third, the growing role of DoD
software in warfighting, in protection of
national assets, and in the safeguarding
of human lives creates a diminishing
tolerance for faulty assurance judgments.
Indeed, the Defense Science Board
notes that there are profound risks
associated with the increasing reliance
on modern software-intensive systems:
“this growing dependency is a source of
weakness exacerbated by the mounting
size, complexity, and interconnectedness
of its software programs.” Fourth,
losing the lead in the ability to evaluate
software and to prevent attacks can confer
advantage to adversaries with respect
to both offense and defense. It can also
force us to overly “dumb down” systems,
restricting functionality or performance to
a level such that assurance judgments can
be more readily achieved.

The Defense Science Board found
in 2007 that “it is an essential requirement
that the United States maintain advanced
capability for ‘test and evaluation’ of IT
products. Reputation-based or trust-based
credentialing of software (‘provenance’)
needs to be augmented by direct, artifact-
focused means to support acceptance
evaluation.” This is a significant
challenge, due to the rapid advance of
software technology generally and also
the increasing pace by which potential
adversaries are advancing their capability.
This, coupled with the observations
above regarding software innovation, is
an important part of the rationale for the
committee recommendation that the DoD
actively and directly address its software
producibility needs.

In the full report, the committee
addressed a broad range of issues related
to software assurance, including evidence-
based approaches, evaluation practices,
and security-motivated challenges related
to configuration integrity (particularly in
the presence of dynamism) and separation
(including isolation and sandboxing).

The committee notes that traditional
approaches based purely on testing and
inspection, no matter how extensive, are
often insufficiently effective for modern
software systems. It emphasizes that
evaluation practices that focus primarily
on post hoc acceptance evaluation are not
only very costly but are often insufficient
to justify useful assurance judgments.
That is, quality and security must be
built in, and not “tested in”—with the
consequence that evidence production in
support of assurance must be integrated
into software development.

The committee finds that assurance
is facilitated by advances in diverse aspects
of software engineering practice and
technology, including modeling, analysis,
tools and environments, traceability
and configuration management,
programming languages, and process
support. The committee also finds that,
after many years of slow progress,
recent advances have enabled more
rapid improvement in assurance-related
techniques and tools. This is already
evident in the most advanced commercial
development practice. The committee
also finds that simultaneous creation of
assurance-related evidence with ongoing
development has high potential to
improve the overall assurance of systems.
The committee recommends enhancing
incentives for preventive software
assurance practices and production of
assurance-related evidence throughout
the software lifecycle and through
the software supply chain. This
includes both contractor and in-house
development efforts.

The challenge of DoD
software expertise

The committee also took up
the issue of software expertise that is
specifically aligned with DoD interests.
The committee found that DoD has a
growing need for software expertise,

The Next Wave n Vol 19 No 1 n 2011 49

FEATUREFEATURE

but that it is not able to meet this need
through intrinsic resources. This need
is essential for the DoD to be a smart
software customer and program manager,
particularly for larger-scale innovative
software-intensive projects. In particular,
access to DoD-aligned expertise is
important for the DoD to be able to take
effective action in the three areas of
practice that are identified above. Access
to DoD-aligned expertise has been an
area of ongoing challenge to the DoD,
with recommendations made by various
panels and committees since the 1980s.

The need to reinvigorate
DoD software engineering
research

In addition to recommending
improvements to the three areas of
practice, as outlined above, the committee
identified seven areas of supporting
research for consideration by science
and technology program managers
(managing 6.1, 6.2, and 6.3a funds and
equivalent). These areas are identified on
the basis of four criteria: (1) Advances
would yield significant potential value for
DoD software producibility. (2) A well-
managed research program would result
in feasible progress. (3) The goals are not
addressed sufficiently by other federal
agencies. (4) The pace of development
in industry or research labs would be
otherwise insufficient.

In each of the seven areas, the
committee identified specific goals for
research and technology development
that, in its judgment, could feasibly meet
the four criteria. The areas and, for each,
the identified goals are summarized
below. (Details are in the full report.)
1. Architecture modeling and
architectural analysis. Goals include:
(1) Early validation for architecture
decisions; (2) Architecture-aware systems
management, including: Rich supply
chains, ecosystems, and infrastructure;

(3) Component-based development,
including architectural designs for
particular domains
2. Validation, verification, and analysis
of design and code. Goals include:
(1) Effective evaluation for critical quality
attributes; (2) Components in large
heterogeneous systems; (3) Preventive
methods to achieve assurance, including
process improvement, architectural
building blocks, programming languages,
coding practice, etc.
3. Process support and economic
models for assurance. Goals include:
(1) Enhanced process support for assured
software development, (2) Models for
evidence production in software supply
chains, (3) Application of economic
principles to process decision-making
4. Requirements. Goals include:
(1) Expressive models, supporting tools
for functional and quality attributes;
(2) Improved support for traceability and
early validation
5. Language, modeling, coding, and
tools. Goals include: (1) Expressive
programming languages for emerging
challenges, (2) Exploit modern
concurrency: shared-memory and scalable
distributed, (3) Developer productivity
for new development and evolution
6. Cyber-physical systems. Goals
include: (1) New conventional
architectures for control systems,
(2) Improved architectures for embedded
applications
7. Human-system interaction. Goals
include: (1) Engineering practices for
systems in which humans play critical
roles. (This area is elaborated in a
separate NRC report.)

Under the auspices of the Office of
Science and Technology Policy (OSTP)
and the National Science and Technology
Council (NSTC), there is a National
Coordination Office for the Networking
and Information Technology Research

and Development (NITRD) program. The
NITRD program provides a framework
for diverse federal agencies to coordinate
R&D in areas related to networking and
information technology. The framework
includes two areas that primarily relate to
software producibility, which are Software
Design and Productivity (SDP) and
High Confidence Software and Systems
(HCSS). There is also a third area, Cyber
Security and Information Assurance
(CSIA) that encompasses some activities
related to software producibility.

The committee undertook a
longitudinal study of sponsored R&D
budgets as identified in NITRD reports,
with specific focus on SDP and HCSS.
It found that while NITRD overall has
grown over the past decade, there has
been a significant reduction in both
overall and DoD-sponsored R&D in SDP
and HCSS. The committee recommends
that DoD take immediate action to
reinvigorate its investment in software
producibility research, with focus in
the seven identified areas.

50 Cyber-Physical Systems (CPS)

Our vision is one of fundamentally
cyber-physical systems that exhibit
deeply integrated computational and
physical capability, interacting with
humans through many new modalities. In
this future, the ability to interact with, and
expand capabilities of, the physical world
through computational means will be the
key technological multiplier. Individual
precursors are seen in the control of
inherently unstable systems such as flying
wings and other extreme-performance
aircraft, automobiles with hybrid gas-
electric or hydrogen-electric car engines
and enhanced vehicle stability systems,
fully autonomous urban driving, medical
devices for deep brain stimulation, and
prostheses that allow brain activity to
control physical objects. A rich field of
innovative research is envisioned that
can advance human progress through
the tensor product of cyber (computing,
communication, and control) technology
and the dynamics of natural and

engineered physical systems—as well as
their interactions with human participants.

What will such future systems
be like? Every system action will be
engineered to exploit both cyber and
physical capability, deeply integrated
throughout the system. Systems will
interact with humans in entirely new
ways, sharing authority. They may be
highly tailored to the requirements and
needs of individual users and uses, hence
highly heterogeneous. These systems
will be extensively, even ubiquitously,
networked. The majority of the systems
will be configured from cooperating
components that interoperate through
a complex mechanical, electrical,
biological, and/or chemical system,
coupled with a physical environment such
as a human. Many (perhaps most) systems
will be safety-, life-, or mission-critical
and must be highly dependable, available,
and secure. They will exhibit complex
dynamics at many spatial and temporal

scales. They will need to be predictive,
reactive to conditions and external events
with predictable and accurate timing, and
receptive to coordination and (private)
negotiation. Control loops may need to
be closed at various levels and scales.
Topologies may adapt and reconfigure.
Cyber-physical systems (CPS) will have
to be fault tolerant and recoverable,
satisfying potentially very high
availability and timeliness requirements.

CPS is a vision then for developing
a scientific and engineering foundation
for routinely building cyber-enabled
engineered systems in which cyber
capability is deeply embedded at all
scales, yet which remain safe, secure,
and dependable—“systems you can bet
your life on.” The CPS challenge spans
essentially every engineering domain. It
will require the integration of knowledge
and engineering principles across
many computational and engineering
research disciplines (computing,

Cyber-Physical
Systems (CPS)

Over its brief history, most of the computer science and engineering field has focused on systems
 (e.g., the Internet and Web) that enable humans through information, communication,
and knowledge. Just as the first wave of desktop and high-performance computing technology

revolutionized the way people interact with information and with each other, the second wave will
revolutionize the way humans interact with their physical environment.

The Next Wave n Vol 19 No 1 n 2011 51

FEATURE

networking, control, human interaction,
learning theory, as well as electrical,
mechanical, chemical, biomedical, nano-
bioengineering, and other engineering
disciplines) to develop a “new CPS
science.”

Impact/need for the CPS
initiative

A new foundation is required for
future CPS. The existing science and
engineering base does not support the
routine, efficient, and robust design
and development of these inherently
complex systems. Such complex systems
must possess trustworthy qualities that
are lacking in much of today’s cyber
infrastructures. Today we can produce
(at great cost and effort) exceptionally
complicated systems. We lack, however,
the scientific and engineering foundations
to securely, safely, and systematically
understand, build, manage, and adapt CPS
that remain reliable as they interact across
internal subsystems, with each other, with
human users, and with highly complex
and uncertain physical environments.

The design complexity of x-by-
wire for complex systems already is
outstripping safe engineering design and
implementation. Also, the opportunities
for mischief in this generation of
technology will make today’s Internet
security problems pale by comparison. The
consequence is inefficient, unsound, and
potentially dangerous design outcomes, as
well as tedious, costly, and failure-prone
design cycles. Certification is estimated
to consume 50 percent of the resources
required to develop new, safety-critical
systems in the aviation industry. Similar
estimates are predicted for the medical
and automotive domains. Over-design
currently is the only path to safety and
successful system certification, leading to
a mindset of optimizing for a narrow task
instead of encouraging adaptability and

evolvability. Yet, wide design margins
both limit performance and may vanish in
the face of changing usage patterns. This
lack of design discipline induces extreme
risk in technology-impoverished sectors
such as the electric power industry.

The objective of an initiative would
be to establish unified foundations and
technologies, and exemplars for rigorous
joint engineering of the cyber, physical,
and human aspects of systems. This
objective includes science and technology
for the engineering of cyber and physical
components that must be integrated to
constitute such systems. Additionally,
this objective includes the cyber-
physical characterization of complex
environments and human action, within
which such systems must operate and to
which they contribute. In contrast with
today’s artisanal approach, our objective
is to build foundations, tools, and highly
capable infrastructure for rigorous design
and engineering of 21st century systems
that are truly cyber-physical.

Today, CPS grand challenges are
being articulated in many sectors (for
example, net-zero energy buildings, a
smart grid, energy management systems
for petroleum-free energy, zero-fatality
and zero-crash highway and vehicle
systems, zero-prototype manufacturing,
and the wireless and highly automated
operating room of the future). These
heavily computation-, control-, and
communication-centric systems call for
a new, unified systems science and new
engineering technologies imagined by
the CPS initiative. In a keynote address
on the challenges of design automation
for emerging vehicle technologies,
Scott Staley, Chief Engineer, Hybrid &
Fuel Cell Technology Development for
Ford Motor Company argued the need
to abandon ad hoc experimental design
approaches and find more rigorous
methods, saying, “…incremental

modifications on the status quo will not

work!” Don Winter, Vice President for

Engineering and Information Technology,

Boeing Phantom Works, in a hearing

before the House Science Committee,

called for “a national strategy in which

long-term CPS technology needs are

addressed by combined government and

corporate investment.”

A focused initiative in CPS is

needed that would seek to maximize

human capability and well-being through

computationally enabled engineered and

physical systems. The goal would be to

usher in a new era of CPS for which we

have end-to-end science and engineering

principles. The extent to which such

advances are achieved will determine

(and can transform) the course of US

innovation; advancement of consumer

health, safety, and security; and gov-

ernment agency mission effectiveness.

W A T C H T H E V I D E O

KNOWINGMATTERS

You already know that intelligence is vital to
national security. But here’s something you
may not know.

The National Security Agency is the only
Intelligence Community agency that generates
intelligence from foreign signals and protects
U.S. systems from prying eyes.

If you have the professional skills or technical
expertise to support this important mission,
then explore NSA. At NSA you can experience
a variety of opportunities throughout your
career as you work on real-world challenges
with the latest technology. You’ll also be able
to maintain a good balance between work and
family life, as well as enjoy a collaborative
work environment with flexible hours.

You won’t find this kind of experience
anywhere else.

Make a critical difference
with what you know.

U.S. citizenship is required. NSA is an Equal Opportunity Employer. All applicants for employment are considered without regard to race, color, religion, sex, national origin, age, marital status, disability, sexual orientation, or status as a parent.

Excellent Career Opportunities in the Following Fields:

�� Computer/Electrical Engineering
�� Computer Science
�� Information Assurance
�� Mathematics
�� Foreign Language
�� Intelligence Analysis

�� Cryptanalysis
�� Signals Analysis
�� Business Management
�� Finance & Accounting
�� �Paid Internships,

Scholarships, and Co-op
 >> Plus other opportunities

W H E R E I N T E L L I G E N C E G O E S T O W O R K®

Get the free App for your
camera phone at gettag.mobi
and then launch the App and
aim it at this tag.

Search: NSACareers

CAREERS AT THE N ATIONAL S ECURITY A GENCY

iN52281

	TNW_19_1_4web1
	TNW_19_1_4web2.pdf
	52281_TOC_1_2_High_Assurance_Method
	52281_3_High_Assurance_Method
	52281_4_Correct_by_Construction
	52281_5_Verified_Software
	52281_6_Sufficient_Evidence
	52281_7_Critical_Code
	52281_8_CyberPhysical
	52281_9_GaG
	52281_10_AtoE
	52281_11_Pointers

