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Letter from the Guest Editor

For years the National Security Agency (NSA) has pursued research in high confidence 
software and systems (HCSS) technologies to improve the assurance of security critical 
algorithms, protocols, software, and hardware. Along the way, NSA has been a leader in the 
development of a national, collaborative community of HCSS researchers and sponsors, some of 
whom are represented in this issue of The Next Wave (TNW).  

HCSS research has primarily focused upon developing foundational technology and 
techniques, yielding components and systems that are “correct by construction.” HCSS research 
has also been aimed at creating analytic techniques to assess and improve the quality of existing 
code and specifications. Over the years, HCSS research projects have delivered significant 
advances within both developmental and analytic areas, and yet substantial questions remain 
unanswered:

can one obtain high assurance that security has been achieved? 

or worse, are of unknown provenance? 

 This issue of TNW provides a glimpse into the multi-faceted research strategy gaining 
traction within and beyond the HCSS community—a strategy that attempts to tackle tough 
questions such as those identified above. Each facet of the strategy, whether preventive or 
analytic, will require better evidence—evidence capable of supporting an objective assessment 
that the system in question meets specified requirements. In short, the need for evidence-based 
assurance is the core tenet of each approach discussed here. Additionally, each article in this issue 
highlights the strong overlap between preventive and analytic methods, with an emphasis on the 
early application of analytic methods in the development process. When used at the earliest stages 
in the process, analytic methods guide development choices, thereby lessening engineering risks. 

 In closing, it would be irresponsible to publish this issue of TNW without explicitly 
acknowledging the one person I consider to be the heart of the HCSS community within the United 
States—Dr. Helen Gill from the National Science Foundation. Dr. Gill has worked tirelessly 
within this community, giving of her time, her talent, and her wisdom. Dr. Gill exemplifies the 

William B. Martin,
Chief, High Confidence Software and Systems Division

The Next Wave is published to disseminate technical advancements and research activities in telecomm-
unications and information technologies. Mentions of company names or commercial products do not 
imply endorsement by the US Government.
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I heartily welcome this special issue of 
The Next Wave. It gives a realistic picture of the 
advancing state of the art in the specification, 
design, implementation, and certification of high 
confidence computer systems. 

This topic has interested me since the 1960s, 
when I first encountered an article by Bob Floyd 
on Assigning Meanings to Programs. At that time, 
I judged this was a topic highly suited to pure 
academic research, a career on which I was just 
embarking. Like other scientific investigators, we 
hoped to enlarge scientific understanding of what 
computer programs do, and how and why they 
work. We hoped to test the range of applicability 
of scientific theory by experimental verification of 
real programs. We were driven by ideals of total 
program correctness, and total certainty achieved 
by mathematical proof.

As in other mature branches of science (e.g., 
physics, chemistry, and most recently biology), 
the fundamental research has now reached a point 
where it can be applied in engineering practice. As 
in other branches of engineering, the key to this 
technology transfer has been the availability of 
powerful programme analysis and theorem-roving 
tools. They are based soundly on scientific theory, 
but conceal this fact to an appropriate degree from 
their users. The tools are now subject to continuous 
improvement in the light of realistic academic 
and industrial experiments, and by exploiting 
the increasing performance of algorithms for 
logical and mathematical reasoning by computer. 

Theoretical research now can use the experimental 
method as a means of differentiating, selecting, 
and improving the relevant theories for solution of 
existing and future problems. 

The articles in this issue concentrate on 
advances in tools and experiments. They explicitly 
outline the remaining deficiencies and difficulties, 
but I hope that they give sufficient evidence to 
encourage a wider range of pioneering applications, 
leading at a sensible rate towards general adoption 
of computer-assisted programming methods, both 
by software engineers and by their customers.  

About the author
In 1980, Sir Tony Hoare received the ACM 

Turing Award for his “fundamental contributions 
to the definition and design of programming 
languages,” and in 2000 he was awarded the 
Kyoto Prize for his “pioneering and fundamental 
contributions to software science.” These two 
awards represent the top international accolades 
available to a computer scientist. Also in 2000 he 
was knighted by Her Majesty the Queen for services 
to education and computer science. Sir Tony is now 
Emeritus Professor at Oxford University, and works 
as a Senior Researcher at Microsoft Research in 
Cambridge.
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Cryptographer as designer 
You are a highly skilled crypto-

grapher charged with designing a custom, 
state-of-the-art encryption solution for 
protecting mission-critical information. 
There are explicit and competing 
requirements for the implementation—
throughput, size, power utilization, 
operation temperature, etc.—that may 
affect the implementation. 

You produce a design and want 
to see how it matches up with the 
implementation requirements. How 
would you proceed? 

Typically, you find an expert 
hardware designer who translates your 
algorithm into VHDL (a hardware 
description language), and then runs 
proprietary tools to characterize the 
implementation. If it uses too much power, 

or has insufficient throughput, or..., the 
hardware designer iteratively tweaks the 
design until it is “good enough.” 

But how do you know if it still 
works the way you intended? 

Typically, the design is fabricated 
(if it is an ASIC—application-specific 
integrated circuit) or loaded into an FPGA 
(field-programmable gate array), placed 

into a test harness, and blasted with test 

vectors. If it works, great. Otherwise, the 

search begins to find the error. 

And what if a security hole; for 

example, a malicious counter or a back 

door; was introduced? Would you even 

know? 

There must be a better way. 

Empowering the Experts:
High-Assurance, High-Performance,
High-Level Design with Cryptol

A domain-specific language (DSL) is a programming language targeted 
at producing solutions in a given problem domain by enabling subject-
matter experts to design solutions in terms they are familiar with 

and at a level of abstraction that makes most sense to them. In addition, a 
good DSL opens the way for powerful tool support: simulations for design 
exploration; automatic testing and generation of test harnesses; generation 
of highly specialized code for multiple targets; and generation of formal 
evidence for correctness, safety, and security properties.

Figure 1: Traditionally, the 
crypto developer must be highly 
trained and expert at balancing 
a myriad of often conflicting 
requirements.

Image Source: Galois, Inc.
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Cryptol: A better way 
The Cryptol specification language 

was designed for the National Security 
Agency (NSA) as a public standard for 
specifying cryptographic algorithms [1]. 
The Cryptol tools provide a development 
path for cryptographic modules across the 
entire software process, from specification 
and implementation to verification and 
certification. Cryptol tools significantly 
reduce overall life-cycle costs by 
addressing the key cost drivers in the 
deployment of cryptography. 

Rapid design cycle

Cryptol specifications are 
fully executable, allowing designers 
to experiment with their programs 
incrementally as their designs evolve. 
The Cryptol tools support a refinement 
methodology that bridges the conceptual 
gap between specification and low-level 
implementation, thereby reducing time 
to market. For example, Cryptol allows 
engineers and mathematicians to program 
cryptographic algorithms on FPGAs as if 
they were writing software. 

Reusable specification

The Cryptol tools provide a 
platform-neutral specification language 
that generates implementations on multi
ple platforms. Cryptol tools can generate 
software implementations, hardware 
implementations, and formal models for 
verification, all from a single Cryptol 
program. 

Accelerated certification 

A Cryptol reference specification 
becomes the formal documentation for 
the cryptographic module, eliminating 
the need for separate and voluminous 
English descriptions. In addition, Cryptol 
verification tools show functional 
equivalence between the specification 
and the implementation at various stages 
of the toolchain. 

Design: The Cryptol 
language

Cryptol [1] is a pure functional 
language built on top of a polymorphic 
type system that has been extended with 
size polymorphism and arithmetic type 
predicates designed to capture constraints 
that arise naturally in cryptographic 
specifications. 

Figure 2 shows an excerpt from 
the AES specification [2] that describes 
the generator inputs and outputs, and the 
corresponding Cryptol definition. The 
text to the left of => ([128],[64*k]) in the 
Cryptol definition describes quantified 
type variables and predicates on them. In 
this case, the type is size polymorphic, 
relying on the size variable k. The 

predicates constrain the range of values 
the quantified size variables can accept; 
here, k must be between 2 and 4. To the 
right of the =>, we see the actual type. 
The function has two inputs: a 128-
bit word containing the plaintext and a 
64*k-bit wide key. The function outputs 
another 128-bit word, the ciphertext. Note 
the precise correspondence of the type to 
the English description in the standard. 

Figure 3 shows a Cryptol code 
snippet—a specification for the core of 
the DES algorithm. Note the compact 
mathematical function notation and the 
definition of sequence structures and bit 
sizes. The Cryptol Reference Manual [4] 
has many more examples as well as a 
detailed description of the language. 

Figure 2: The constraints and requirements from the Advanced Encryption Standard 
(AES) [2] can be translated directly into Cryptol types, as shown above. The colored 
text shows the linkage between English constraint and Cryptol type.

From Section 3.1 of the AES definition [2]:

The input and output for the AES algorithm each consist of sequences 
of 128 bits... The Cipher Key for the AES algorithm is a sequence of 
128, 192 or 256 bits. Other input, output and Cipher Key lengths are 
not permitted by this standard.

In Cryptol:
{k}{k>= 2, 4 >= k)
	 => ([128],[64*k]) -> [128]

Image Source: Galois, Inc.

des : ([64],[56]) -> [64];
initial 

permutation

plaintext

([ ] [ ]) [ ]
des (pt, key) = permute (FP, last)

where {
pt’ = permute (IP, pt);
iv = [| round (lr key rnd) f^

L0 R0

K1

iv  = [| round (lr, key, rnd)
|| rnd <- [0 .. 15]
|| lr <- [(split pt’)] # iv
|];

L1=R0 R1=L0^f(R0,K1)

K
2last = join (swap (iv @ 15));

swap [a b] = [b a];
}; L2=R1 R2=L1^f(R1,K2)

f^ 2

round : ([2][32], [56], [4]) -> [2][32];
round([l r], key, rnd) = [r (l^f(r, kx))]

where {
k d(k d)

L15=R14 R15=L14^f(R14,K15)

K16

kx = expand(key, rnd);
f(r,k) = permute(PP, SBox(k^permute(EP, r)));

}; R16=L15^f(R15,K16) L16=R15

f^

inverse initial
permutation

ciphertext

Image Source: Galois, Inc.

Figure 3: The Data Encryption Standard (DES) algorithm is a block cipher that 
uses a 56-bit symmetric key. The diagram above is taken from the Standard [3]. 
Cryptol uses parallel stream comprehensions to interleave data and lazy evaluation 
to encapsulate multiple computational stages in a single statement. Colors and 
shapes are used to help relate the program text to the diagram. Details of the 
language can be found in [4] and at www.cryptol.net.
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Implement: 
The Cryptol FPGA 

Type 1 cryptographic devices 
protect information of national 
importance. The information assurance 
standards for such products are 
correspondingly high. In addition, crypto 
modernization requirements mandate field 
programmability, and various operational 
requirements call for a reduced space, 
weight, and power footprint. 

FPGAs offer a compelling platform 
to address these needs. They are field 
updatable by design, offer tremendous 
performance potential, and have fewer 
nonrecurring engineering costs than 
traditional ASIC designs. 

However, FPGA development 
still requires the considerable time and 
talents of skilled hardware designers, 
which increases development time 
and costs. Mainstream design tools 
supplied by FPGA vendors have more 
in common with VLSI (very-large-
scale integration) design tools than with 
modern programming environments. 
These design tools automatically limit 
the user population to designers trained in 
VLSI design. 

The Cryptol FPGA generator 
introduces a new design flow that allows 
engineers and mathematicians to program 
cryptographic algorithms on FPGAs 
in a high-level language incorporating 
concepts and constructs familiar to 
cryptologists. The vision is that instead 
of demanding low-level hardware design 
knowledge, users are able to express their 
designs and programs at a much higher 
level of abstraction and take advantage 
of powerful automated mechanisms 
for generating, placing, and routing the 
circuits. 

In some ways, the mathematics 
behind a cryptographic specification is 
like a hardware description. Both give 
unambiguous specification of how bits 
are to be handled and how bit-level 

operations are to be applied. But there 
the resemblance ends. Sequences, which 
appear repeatedly in the mathematical 
descriptions of crypto algorithms, 
have many different instantiations as 
hardware. At one extreme, the sequence 
can be spread out in space as side-by-
side parallelism. At the other extreme, 
the sequence can be laid out in time as 
consecutive values held in a register, or 
over many registers in a pipeline. Many 
combinations of these are also possible. 

The Cryptol FPGA generator uses a 
wide variety of engineering heuristics to 
pick an appropriate translation of a Cryptol 
function to an FPGA configuration that 
will make effective and efficient use of 
the silicon. The user can also provide 
pragmas (compiler commands) about 
space/time mappings, thereby guiding the 
translation process without compromising 
the integrity of the original specification. 

The declarative quality of Cryptol, 
which makes Cryptol a good specification 
language, also plays a key role in the 
effectiveness of automatic generation 
of FPGA cores. In contrast, the inherent 
sequentiality of mainstream program
ming languages makes them a poor match 
for the highly parallel nature of FPGAs. 

Creating high-performance 
designs 

The Cryptol FPGA generator 
produces cores whose throughput and 
area usage have been comparable to 
(and in some cases better than) hand-
coded VHDL/Verilog. For example, an 
implementation of 128-bit AES for the 
Xilinx Virtex 4 FPGA has been generated 
with clock rates in excess of 200 MHz 
(which translates to throughput of better 
than 25 Gbps) using only 6912 slices (25 
percent of the slices on the chip) and 100 
Block RAMs (62 percent of the available 
Block RAMs). Theoretical results based 
on Xilinx tools indicate that 500 MHz (65 
Gbps) is achievable by these cores. 

High-level exploration of 
the design space 

Good design is always at the root of 
great performance. One of the key factors 
in Cryptol’s performance results is its 
ability to explore the implementation 
design space at a very high level. A 
Cryptol developer can experiment with 
many different microarchitectures in the 
course of a few days, covering ground 
that would otherwise take weeks or 
months using traditional methods. A 
variety of implementation approaches can 
be modeled and characterized quickly. 

For example, at the Cryptol level, 
a straightforward idiom identifies pipe-
lined functional units in hardware. Recall 
the specification for DES shown in Figure 
3. The designer has created a pipelined 
version of the round function by hand 
by factoring the high-level Cryptol 
specification, as shown in Figure 4. The 
Cryptol FPGA generator produces an 
efficient pipelined circuit, also shown in 
Figure 4 on page 8.

High-level design exploration pro-
vides a profound advantage in the devel-
opment of high-performance algorithms 
(or in algorithms meeting other design 
constraints). The key is the speed with 
which the developer is able to iterate the 
design, the bottleneck of hardware design. 
A crypto developer can produce rapid de-
sign iterations using the Cryptol Toolkit, 
effectively increasing productivity by up 
to an order of magnitude over traditional 
VHDL development. 

Trust: The Cryptol 
verification framework 

The FPGA generator uses semantic 
models to establish the correctness of 
the process. To gain final assurance, 
Cryptol developer Galois provides an 
automatic equivalence checker to prove 
that the actual code that will run on the 
FPGA is equivalent to the reference 
implementation. 
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The Cryptol equivalence checker 
utilizes state-of-the-art SAT (Boolean 
satisfiability) and SMT (satisfiability 
modulo theories) solvers as proof engines, 
together with custom heuristics and 
techniques. For example, the equivalence 
checker can show the equivalence of an 
AES specification written in Cryptol 
with an unrolled, pipelined VHDL 
implementation of AES generated from 
Cryptol and passed through the Xilinx 
toolchain all the way to place and route. 

Two classes of problems 

Cryptol’s verification framework 
has been designed to address equivalence- 
and safety-checking problems. 

The equivalence-checking problem 
asks whether two functions, f and g, agree 
on all inputs. Typically, f is a reference 
implementation of some algorithm, 
following a standard textbook-style 
description, and g is a version optimized 
for time and/or space for a particular 
target platform. The equivalence- 
checking framework allows a developer 
to formally prove that f and g are 
semantically equivalent, ensuring that 
the often very complicated and extensive 
optimizations performed during synthesis 
have not introduced bugs. Note that the 
final implementation g does not need to 
be in Cryptol—an important use case of 
the verification framework is to verify that 
third-party algorithm implementations 
(typically in VHDL) are functionally 
equivalent to their high-level Cryptol 
versions. In this case, Cryptol acts as a 
hardware/software verification tool [5]. 

The safety-checking problem is 
about run-time exceptions. Given a 
function f, we would like to know if f’s 
execution can perform operations such as 
division by zero or index out of bounds. 
These checks are essential for increasing 
the reliability of Cryptol-generated 
implementations, since they eliminate the 

round : [inf]([2][32],[56]) -> [inf]([2][32],[56]);
round data0 = data3

where {
data1 = [zero] # [| (expand key ^ permute(EP, r), [l r], key)

|| ([l r] key) <- data0|| ([l r], key) <- data0
|];

data2 = [zero] # [| (SBox(kx), [l r], key)  
|| (kx, [l r], key) <- data1
|];

data3 = [zero] # [| ([r (l ^ permute(PP, sb))], key)   
|| (sb, [l r], key) <- data2
|];|];

};

key key key key
data0 data1 data2 data3

y

r

l

y

kx

l

r

y

sb

l

r

expand SBox PP

XOR

XOR

y

lpx

r

EP

Figure 4: The code snippet above shows a new implementation of the DES 
round function, shown in Figure 3 on page 6. A flow diagram is included, with 
colors showing the correspondence between code and diagram element. This 
version uses sequence comprehensions that can be performed in parallel 
and introduces extra variables that translate into registers and pipelined 
operations in the VHDL implementation.

Figure 5: Verification can be performed at various points during the translation, 
which allows for high-assurance refinement during development. Note that 
the major compiler phases (the flow through the top line) remain outside the 
trusted-code base for verification. Trust in the down-arrows, representing 
translators from various intermediate forms to formal models, along with the 
off-the-shelf equivalence checkers themselves, is all that is needed.

Image Source: Galois, Inc.

Image Source: Galois, Inc.



The Next Wave n Vol 19 No 1 n 2011   9

FEATURE

need for sophisticated run-time exception 
handling mechanisms. 

The Cryptol toolset comes with a 
push-button equivalence/safety checking 
framework to answer these questions 
automatically for a large subset of the 
Cryptol language [6]. Cryptol uses off-
the-shelf SAT/SMT solvers such as 
ABC [7] or Yices [8] as the underlying 
equivalence-checking engine, translating 
Cryptol specifications to appropri
ate inputs for these tools automatically. 
However, the use of these external tools 
remains transparent to the users, who 
only interact with Cryptol as the main 
verification tool. 

Of course, equivalence checking 
applies not only to handwritten programs 
but also to generated code. Cryptol’s 
synthesis tools perform extensive and 
often very complicated transformations 
to turn Cryptol programs into hardware 
primitives available on target FPGA 
platforms. The formal verification 
framework of Cryptol allows equivalence 
checking between Cryptol and netlist 
representations that are generated by 
various parts of the compiler, as we will 
explain shortly. Therefore, any potential 
bugs in the compiler itself are also caught 
by the same verification framework. This 
is a crucial aspect of the system: proving 
the Cryptol compiler correct would be an 
extremely challenging if not impossible 
task. Instead, Cryptol provides a verifying 
compiler that generates code along with a 
formal proof that the output is functionally 
equivalent to the input. 

Design and verification flow 
Figure 5 provides a high-level 

overview of a typical Cryptol development 
and verification flow. Starting with a 
Cryptol reference specification, the 
designer iteratively refines the program 
and “runs” it at the Cryptol command 
line. These refinements typically 
include various pipelining and structural 

transformations to increase speed and/or 
reduce space usage. Behind the scenes, 
the Cryptol toolchain translates Cryptol to 
a custom signal-processing intermediate 
representation (SPIR), which acts as a 
bridge between Cryptol and FPGA-based 
target platforms. The SPIR representation 
allows for easy experimentation with 
high-level design changes, because it 
remains fully executable while also 
providing essential timing/space usage 
statistics without going through the 
computationally expensive synthesis 
tasks.

Once the programmer is happy with 
the design, Cryptol translates the code to 
VHDL, which is further fed to third-party 
synthesis tools. Figure 5 shows the flow 
for the Xilinx toolchain, taking the VHDL 
through synthesis, place and route, and 
bit-file generation steps. In practice, 
these steps might need to be repeated, 
using feedback from the synthesis tools, 
until the implementation satisfies the 
requirements. The overall approach aims 
at greatly reducing the number of such 
repetitions by providing early feedback 
to the user, at the SPIR level. The final 
outcome is a binary file that can be 
downloaded onto a Xilinx FPGA board, 
completing the design process. 

Cryptol’s verification flow is 
interleaved with the design process. As 
depicted in Figure 5, Cryptol provides 
custom translators at various points in 
the translation process to generate formal 
models in terms of AIG (and‐inverter-
graph) representations [9]. In particular, 
the user can generate AIG representations 
from the reference (unoptimized) Cryptol 
specification, from the target (optimized) 
Cryptol specification, from the SPIR 
representation, from the post synthesis 
circuit description, and from the final 
(post-place-and-route) circuit description. 
By successive equivalence checking of 
the formal models generated at these 

check points, Cryptol provides the user 
with a high-assurance development 
environment, ensuring that the applied 
transformations preserve semantic 
equivalence. The final piece of the puzzle 
for end-to-end verification is generating 
an AIG for the bit file generated by the 
Xilinx tools, as represented by the dashed 
line in Figure 5. At this time, the format of 
this file remains proprietary. 

Verification for the cryptography 
domain: Why this works 

Cryptol’s formal verification 
framework clearly benefits from recent 
advances in SAT/SMT solving. However, 
it is also important to recognize that the 
properties of cryptographic algorithms 
make applications of automated formal 
methods particularly successful. This 
is especially true for symmetric key 
encryption algorithms that rely heavily 
on low-level bit manipulations instead 
of the high-level mathematical functions 
employed by public-key cryptography. 

In particular, symmetric-key 
cryptographic algorithms almost never 
perform control flow based on input data, 
in order to avoid attacks based on timing. 
The series of operations performed are 
typically “fixed,” without any dependence 
on the actual input values. Similarly, the 
loops used in these algorithms almost 
always have fixed bounds; typically these 
bounds arise from the number of rounds 
specified by the underlying algorithm. 
Techniques like SAT-sweeping [10] are 
especially effective on crypto‐algorithm 
verification, since simulation-based 
node-equivalence guesses are likely to 
be quite accurate for algorithms that 
rely heavily on shuffling input bits. 
Obviously, these properties do not make 
formal verification trivial for this class of 
crypto algorithms; rather, they make the 
use of such techniques highly feasible in 
practice [11].
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Verify: Evaluating 
third-party VHDL 
implementations 

The process of verification in 
Cryptol typically begins with 
understanding the high-level interface of 
the VHDL implementation under study. 
Through Cryptol’s foreign-function 
interface, the base interface to the VHDL is 
simply imported using Cryptol’s “extern” 
declaration capability. Then the required 
interface-matching code is written in 
Cryptol, mainly implementing the proper 
use of control signals. This process makes 
the external implementation available at 
the Cryptol command prompt, enabling 
the user to call it on specific values, pass it 
through previously generated test vectors, 
essentially making the external definition 
behave just like any other Cryptol 
function. This facility greatly increases 
productivity, since it unifies software and 
hardware under one common interface. 
Once the reference specification and 
the Cryptol/VHDL hybrid expose the 
same interface, the user generates formal 
models for both of them, and checks for 
equivalence. 

Challenges ahead
Increasing the coverage of formal 

methods. Cryptol’s formal verification 
framework works on a relatively large 
subset of Cryptol [6]. The main limitation 
is in verifying algorithms for all time, i.e., 
programs that receive and produce infinite 
streams of data. Currently, Cryptol 
can verify such algorithms only up to a 
fixed number of clock cycles, effectively 
introducing a time bound. While this 
restriction is irrelevant for most block-
based crypto algorithms, it does not 
generalize to stream ciphers in general. 
The introduction of induction capabilities 
in the equivalence checker or the use of 
hybrid methods combining manual top-
level proofs with fully automated SAT/
SMT-based sub proofs might provide 
a feasible alternative for handling such 
problems.

 Proving security properties. Not 

all properties of interest can be cast as 

functional equivalence problems. This 

is especially true for cryptography. For 

instance, if we are handed an alleged 

VHDL implementation of AES, in 

addition to knowing that it implements 

AES correctly, we would like to be 

sure that it does not contain any “extra 

circuitry” to leak the key. In general, 

we would like to show that an end user 

cannot gain any information from an 

implementation that cannot be obtained 

from a reference specification. 

Reducing the size of the trusted 
code base. Cryptol’s formal verification 

system relies on the correctness of the 

Cryptol compiler’s front-end components 

(i.e., the parser, the type system, etc.), the 

symbolic simulator, and the translators 

to SAT/SMT solvers. Note that Cryptol’s 

internal compiler passes, optimizations, 

and code generators (i.e., the typical 

compiler back-end components) are not 

in the trusted code base. While Cryptol’s 

trusted code base is only a fraction of the 

entire Cryptol tool suite, it is nevertheless 

a large chunk of code from the open-

source functional programming language, 

Haskell. Reducing the footprint of this 

trusted code base, and/or increasing 

assurance in these components of the 

system, is an ongoing challenge. 
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Q: What can YOU do with Cryptol?
A: Gain assurance about your design.

Van der Waerden’s theorem states that for any 
positive integers r and k there exists a positive 
integer N such that if the integers {1 2 ...N } 
are colored, each with one of r different colors, 
then there are at least k integers in arithmetic 
progression all of the same color. For any r and 
k, the smallest such N is the van der Waerden 
number W(r,k). 

Van de Waerden numbers are difficult to 
compute. In 2007, Dr. Michal Kouril of the 
University of Cincinnati established that 
W(2,6)=1132 (i.e., 1132 is the smallest 
integer N such that every 2-coloring of {1 2 
...N} contains a monochromatic arithmetic 
progression of length 6) [19]. The most recent 
previous result, W(2,5)=178, was discovered 
some 30 years earlier. Kouril computed W(2,6) 
using a special SAT-solver and clever techniques 
to bound the search and employed FPGAs to 
speed up the search. 

Kouril wrote VHDL to program the FPGAs. 
In order to convince himself that the FPGA 
ensemble was doing what he expected, he also 
expressed his algorithm in Cryptol, generated 
formal models for both the Cryptol specification 
and the VHDL implementation, and verified that 
the two were equivalent! 

Why not let Cryptol generate the solution? 
So far no one has found a way to prove 
unsatisfiability of W(r,k) directly without an 
extensive search. The reliance on search makes 
the problem hard; and although people have 
found ways to generate long partitions without 
a monochromatic arithmetic progression [20], 
the true test that there are no longer partitions 
is currently only possible using a search.

Q: What can YOU do with Cryptol?

A: Create a crypto algorithm and 
	 generate test vectors.

“...an experienced Cryptol programmer given 
a new crypto program specification and a soft 
copy of test vectors can be expected to learn 
the algorithm and have a fully functional and 
verified Cryptol model in a few days to a week.”

“The AIM crypto engine software engineers 
at General Dynamics C4 Systems use the 
Cryptol modeling language as part of their 
Software Engineering Institute CMM® Level 
5 development process. Cryptol provides four 
basic benefits leading to the certification of 
crypto equipment. First, Cryptol allows the 
design engineer to rapidly express an algorithm 
in a common mathematical notation, which 
is fully executable on the Cryptol interpreter, 
providing verification that the algorithm is 
completely understood. Second, the Cryptol 
notation for the various components of the 
algorithm are used to annotate the AIM micro 
sequencer code which provides much greater 
readability of that extremely dense assembly 
language. Third, component testing of AIM 
code, from small snippets through major 
subroutines is greatly facilitated with Cryptol 
generated test vectors derived from end-to-
end test vectors provided in algorithm source 
specifications. Finally, Cryptol models are 
evolving to directly support the certification 
effort...”
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Cryptol
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QuickCheck

Test
vectors

Q: What can YOU do with Cryptol?

A: Produce and refine a family 
of designs.

A team of developers from Rockwell Collins, 
Inc. and Galois, Inc. has successfully produced 
high-speed embedded Cryptographic Equipment 
Applications (CEAs), automatically generated 
from high-level specifications. An algorithm 
core generated from a Cryptol specification for 
AES-256 running in Electronic Codebook mode 
demonstrated throughput in excess of 16 
Gbps. These high-speed CEA implementations 
comprise a mixture of software and VHDL, 
and target a compact new embedded platform 
designed by Rockwell Collins. Notably, almost no 
traditional low-level interface code was required 
in order to implement these high-performance 
CEAs. In addition, automated formal methods 
prove that algorithm implementations faithfully 
implement their high-level specifications. 
Significantly, the Rockwell Collins/Galois team 
was able to design, implement, simulate, 
integrate, analyze, and test a complex CEA on 
the new hardware in less than 3 months.

AES-256, ECB mode, 
Virtex-4 technology

Implementation 
characteristics

Clockrate

(MHz)

Resources

(slices)

Throughput

(Gbps/
second)

Optimized for 
high throughput 127.5 2690 16.3

Optimized to minimize 
resource usage 135.1 849 1.2

Handwritten, 
minimal size 102.0 2535 0.9
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Q: What can YOU do with Cryptol?
A: Gain assurance about someone 
	 else’s design.

Skein [12] is a suite of cryptographic hash 
algorithms targeted at the NIST SHA-3 
competition [13]. At its core, Skein uses a 
tweakable block cipher named Threefish. The 
unique block iteration (UBI) chaining mode 
defines the mode of operation by the repeated 
application of the block cipher function. 

Galois developed and published a Cryptol 
specification for Skein [14]. We have verified two 
independently developed VHDL implementations 
of Skein against our specification for one 256-
bit input block, generating a 256-bit hash value.

The first verification was performed against 
Men Long’s implementation [15]. Long 
implemented only the underlying Threefish 
encryption and the XOR of input data; we 
modified our reference specification to 
match. The AIG generated from the Cryptol 
specification had 118,156 AND-gates; the 
VHDL version was more than five times as 
large, with 653,963 AND-gates. Equivalence 
checking took about an hour to complete on 
commodity hardware using ABC [7]. 

In this work, we encountered a problem 
with Long’s VHDL code that rotated a 64-bit 
signal a variable distance. The code was given 
different meanings by GHDL [16], simili [17], 
and the Xilinx synthesis tools. We removed 
the ambiguity by replacing it with the standard 
library function rotate_left. Thus, the Cryptol 
verification path identified an otherwise 
undetected ambiguity bug. 

The second verification was performed against 
Stefan Tillich’s full Skein implementation [18]. 
The AIG sizes in this case were 301,085 AND-
gates for the reference Cryptol versus 900,239 
AND-gates for the VHDL implementation: about 
three times larger. Equivalence checking was 
completed in about 18 hours, again using ABC.

Q: What can YOU do with Cryptol?
A: Teach and learn about cryptography, satisfiability theory,....

“Cryptol was quite an experience. We began with simple sequences such as [1 2 3 4] and by 
applying ‘@’ and ‘!’ to our list of numbers, we learned the priority/position of each number: when 
using @, the order is zero based, [0th 1st 2nd 3rd], and when using !, the order is reversed, [3rd 
2nd 1st 0th]. Each number or element contains a certain numbers of bits: 1 (0b1) contains one 
bit, 2 (0b10) is two bits, 3 (0b11) is also two bits and 4 (0b100) is three bits. 

Once the group grasped the concept of bits, we moved on to shifting and permuting sequences 
using split, join, splitBy, groupBy, take, drop, reverse, and transpose. We then applied these fun-
damentals we had learned about Cryptol to interact with its interpreter and to explore some of the 
concepts we had learned earlier in the year, such as Pascal’s Triangle, the Fibonacci sequence, the 
sum of a series of odds, even, etc. Once that was complete, and given that Cryptol’s intended use 
is cryptography, we used Cryptol to encrypt plaintext and decrypt ciphertext for a range of classes 
of cryptographic algorithms, to include classic (substitution and transposition) and modern (sym-
metric and asymmetric) cryptographic systems. 

We concluded our study of Cryptol by looking into 
propositional logic and satisfiability, and ultimately 
at a satisfiability solver that could be called from 
within the Cryptol interpreter. In our examination 
of propositional logic, we were initially forced 
to prove our satisfying assumptions by hand 
through the construction of small truth tables 
with assignments of values with the goal of having 
the formula evaluate to ‘true’, that is, they were 
satisfied. To extend these concepts we utilized 
the automated satisfiability solver that we could 
call from the Cryptol interpreter. One application 
where we were able to represent a problem 
within Cryptol and to utilize the satisfiability solver 
was in solving Sudoku puzzles. It was an amazing 
experience and I will continue to play around with 
Cryptol and the satisfiability solver because it was 
so very intriguing.”

Q: What can YOU do with Cryptol?
A: Make a MILS FPGA.

The Cryptol Development Toolkit from 
Galois provides a tool flow that puts FPGA 
implementation into the hands of mainline 
developers, improving both productivity and 
assurance, without sacrificing performance. 

The Xilinx Single Chip Cryptographic (SCC) 
technology enables Multiple Independent 
Levels of Security (MILS) in a single chip. 
These two technologies fit seamlessly into a 
single development flow. 

The combined solution can address 
high-grade cryptographic application 
requirements (redundancy, performance, 
red/black data, and multiple levels of 
security on a single chip) as well as high 
assurance development needs (high-
level designs, automatic generation of 
implementation from design, automatically-
generated equivalence evidence), and has 
the potential to significantly reduce the time 
of costs of developing Type-1 cryptographic 
applications.
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1. Introduction
Security systems require especially 

high levels of assurance of correctness, 
reliability, and security. Researchers 
in the National Information Assurance 
Research Laboratory (now Trusted 
Systems Research) at the National 
Security Agency (NSA) with the 
assistance of engineers at Rockwell 
Collins conducted a project to exercise, 
evaluate, and enhance a methodology 
for developing high-assurance software 
for an embedded system controller. 
In this approach, researchers captured 
system requirements precisely and 
unambiguously through functional 
specifications using the Z (pronounced 
“zed”) formal specification notation. 
Rockwell Collins then implemented these 
requirements using an integrated, model-
based software development approach. 
The development effort was supported by 
a suite of tools that provides automated 
code generation and support for formal 
verification. The specific system is a 
prototype high-speed encryption system, 
although the controller could be adapted 
for use in a variety of critical systems in 

which very high assurance of correctness, 
reliability, and security or safety is 
essential. In this article, we use the  High 
Speed Crypto Controller (HSCC) project 
to illustrate a development methodology 
which we believe is useful in producing 
both high quality software and the 
assurance evidence to support evaluation.

In order to study advanced high-
speed electronics technology, hardware 
research engineers in the NIARL started 
a project to build a prototype high-
speed encryption system. The system 
architecture they arrived at is shown in 
Figure 1.

In this design, the data accelerators 
handle input/output functions, data 
formatting, and enforcement of some 
security policy rules. The encrypt core and 
decrypt core perform the actual encryption 
and decryption. These six subsystem 
blocks are in the high-speed data paths. 
The control block manages the subsystem 
blocks but lies outside the high-speed 
data path. An important consequence of 
this architecture is that the HSCC does 
not need to be implemented using any 
exotic high-speed electronics technology. 

The critical HSCC design goals are 
high reliability and achieving very high 
assurance of functional correctness and 
essential security properties. As a result, 
project responsibility for implementing 
the data accelerators and the crypto cores 
remained with the hardware engineering 
organization while responsibility for the 
HSCC was passed to the High Confidence 
Software and Systems (HCSS) Division. 

Because of the research mission 
of the HCSS division, the project had 
two main goals. The first goal was to de-
liver a working controller. The second 
goal was to exercise, evaluate, and try to 
enhance a strong software development 
methodology. Since HSCC is a security 
system, the methodology has to support 
a full range of development aspects from 
requirements through very rigorous 
evaluation by independent evaluators. In 
addition to being rigorous, it should also 
be cost-effective in time and money.

Given the project goals and 
the limited resources of our research 
organization, we in the HCSS division 
needed an industrial partner. We found 
the ideal partner in Rockwell Collins. 
One reason for teaming with Rockwell 
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Collins was their capability with the 
AAMP7G microprocessor and high-
assurance FPGA development. The 
AAMP7G supports strict time and space 
partitioning in hardware, and has received 
an NSA MILS certification based in part 
on a formal proof of correctness of its 
separation kernel microcode, as specified 
by the EAL-7 level of the Common 
Criteria [1]. The formal verification of 
the AAMP7G partitioning system was 
conducted using the ACL2 theorem 
prover and culminated in the proof of a 
theorem that the AAMP7G partitioning 
microcode implements a high-level 
security policy [2].

Perhaps more important than 
their hardware capabilities, Rockwell 
Collins has a solid approach to 
software development. It features an 
integrated, model-based development 
suite of tools—a toolchain—with a 
focus on providing a domain-specific 
modeling environment that abstracts 
the implementation details, promotes 
architectural level design, and provides 
automated transformations between 
the problem domain formalisms and 
the target platform. The tools simplify 
code development and facilitate the 
application of automated formal analysis 
tools. In addition, the toolchain is capable 
of interfacing directly to a simulation 
environment, providing another level of 
assurance of design correctness. 

For their part, HCSS researchers 
have experience in the Z specification 
language [3]. They have written Z 
functional specifications and design 
descriptions for several internal 
development projects [4]. In these 
projects, [5,6] HCSS researchers 
played the role of customers and read 
and commented on draft specifications 
and designs in Z written by Praxis 
High Integrity Systems. In addition to 
experience in the requirements stage of 
development, HCSS people are familiar 

with the security evaluation work done by 
other NSA personnel.

The approach we chose for the 
HSCC project was for HCSS researchers 
to take the lead in writing control 
software requirements in the form of 
functional specifications in Z. Rockwell 
Collins would take these specifications as 
input into their established development 
process. They would look for 
opportunities to strengthen the process, 
including the support for evaluation, or 
save time and money by taking advantage 
of the formal specifications.

2. Z specification work
Over the last ten years, HCSS 

researchers have worked with other 
organizations using Z in support of a 
variety of development projects. We use 
the Z/EVES [7] support tool and have 
found it quite suitable for our needs. 
Based on our experience, we chose to use 
Z to write functional specifications on this 
high-assurance controller project.

On this project we tried to follow 
good habits acquired over the years. We 
think carefully about names and try to 

use clear helpful names and well-chosen 
abbreviations. We have a house style for 
notational details such as capitalization. 
The important point is that both writers 
and readers of Z benefit greatly from 
a consistent style. The specific details 
of the style are not nearly as important 
as the fact that there is a set of standard 
conventions. In our finished documents, 
we adhered strictly to the principle that 
every Z paragraph was immediately 
preceded by an accurate natural language 
translation. 

Since the HSCC project was to 
produce the controller for a crypto 
system, we had to describe, at a suitable 
level of abstraction, the main work of 
the system. On the outbound data path 
this includes accepting, filtering, and 
formatting unsecured data in the Red 
Ingress data accelerator; encrypting in the 
encrypt core; and formatting and sending 
secure data out in the Black Egress data 
accelerator. The inbound data path is a 
mirror image with a decrypt core.

From this basic system analysis we 
could see what control data structures 
had to be provided by the controller to 
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Figure 1: High-Speed Crypto System functional block diagram
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properly manage the system. Basically, 
the system had to match each incoming 
piece of user data with the right crypto-
graphic algorithm and key material. 
Secondary functions such as managing 
and updating key material were handled 
next. We had to define a system control 
protocol to convey system management 
messages back and forth between the 
controller and the other subsystems. After 
specifying this basic functionality of the 
system and the controller, we worked 
on the functional description of the 
subsystems.

By way of example, the Z schema 
that specifies the controller’s routing table 
is shown in Figure 2. The specification 
describes the contents of the database, 
the maximum size of the database, and 
further constraints on the data (e.g., no 
duplicate addresses).

The work described in this paper is 
part of an ongoing research program. An 
early version of a system specification was 
written over a period of about 18 months. 
It consisted of 185 pages of Z and English. 
Using that document, specifications for 
the six subordinate subsystems and a 
lower level communication protocol, 
totaling 290 pages, were written in about 
eight months. Finally, the revised High 
Speed Crypto (HSC) System Control 
Specification, Version 2.0, 27 January 
2010, containing 263 pages, was written 
in approximately seven months. 

3. Model-based 
development 

Model-based development (MBD) 
refers to the use of domain-specific, 

graphical modeling languages that can be 
executed and analyzed before the actual 
system is built. The use of such modeling 
languages allows the developers to create 
a model of the system, execute it on their 
desktops, analyze it with automated tools, 
and use it to automatically generate code 
and test cases.

3.1 HSCC software 
development using MBD

Software for the HSCC system was 
developed in two parts. Some code was 
hand coded by a human guided by the Z 
spec and general engineering knowledge.  
Other code was generated using portions 
of the tool chain in Figure 3.

System software (drivers and 
interrupt/trap handling) and portions of 
the high-level application code (message 

formatting and control processing) were 
implemented in hand-coded SPARK. 
This code includes information flow 
annotations to enable use of the Praxis 
toolchain and to provide assurance of 
correctness.

Database transactions were de-
signed and developed using the Rockwell 
Collins MBD toolchain, Gryphon [8]. 
Simulink/Stateflow models were created 
for each database transaction. Each model 
was then tested via simulation in the Re-
actis tool to discover and correct obvi-
ous errors. When complete, the Gryphon 
framework is used to translate the model 
into the Prover tool. Gryphon supports 
several back-end formal analysis tools, 
including Prover, NuSMV and ACL2; for 
this project, Prover was deemed to have 
the best combination of performance and 
automation. Prover is used to exhaus-
tively verify each transaction preserves 
properties (derived from Z specifications) 
about the database it is acting upon. The 
Simulink model proven to be correct was 
then used to generate SPARK-compliant 
Ada95 for use on the target. Figure 3 il-
lustrates the process flow.

 

 

 
Figure 2: Z specification of the routing table database Figure 2: Z specification of the routing table database

 

 
Figure 3: Model-based development process flow 
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The HSCC software development 
process relies on a several tools:

Simulink®, Stateflow®, and 
MATLAB® are products of The 
MathWorks, Inc. [9] Simulink was chosen 
for development because it is the standard 
model-based development environment 
at Rockwell Collins and has extensive 
existing tool support, including support 
for formal analysis.

Reactis® [10], a product of 
Reactive Systems, Inc., is an automated 
test generation tool that uses a Sim-
ulink/Stateflow model as input and auto- 
generates test code for the verification 
of the model. The test suites may be 
used in testing of the implementation for 
behavioral conformance to the model, as 
well as for model testing and debugging.

Gryphon [8] refers to the Rockwell 
Collins tool suite that automatically 
translates from two popular commercial 
modeling languages, Simulink/
Stateflow® and SCADE™ [11], into 
several back-end analysis tools, including 
model-checkers and theorem provers. 
Gryphon also supports code generation 
into SPARK/Ada and C. Gryphon uses 
the Lustre formal specification language 
as its internal representation and has 
been used at Rockwell Collins on several 
significant formal verification efforts 
involving Simulink models.

Prover [12] is a best-of-breed 
commercial model-checking tool for 
analysis of the behavior of software and 
hard-ware models. Prover can analyze 
both finite-state models and infinite-state 
models, that is, models with unbounded 

integers and real numbers, through the 
use of integrated decision procedures for 
real and integer arithmetic. 

By leveraging its existing Gryphon 
translator framework, Rockwell Collins 
designed and implemented a toolchain 
capable of automatically generating 
SPARK-compliant Ada95 source code 
from Simulink/Stateflow models. 

3.2 Transaction development

Simulink/Stateflow models are used 
as the common starting point for both the 
implementation and analysis. Each model 
corresponds to a single database transac-
tion. Model inputs correspond to SPARK 
procedure “in” parameters and outputs 
correspond to “out” parameters. Note the 
database object used by each transaction 
model may appear as both an input and an 
output if the database is modified by the 
transaction. In this case, the database ob-
ject access appears as an “in-out” param-
eter in the generated code. For each data-
base, one model must be created to initial-
ize the data object, in addition to models 
to perform necessary transactions (add, 
delete, lookup) on the database. Addi-
tional models are required for the formal 
analysis to model invariants on the data-
base object. This topic will be covered in 
more detail in subsequent sections. 

The screenshot in Figure 4 shows a 
sample Simulink model that contains the 
Dest_Encr_Addr_Found lookup func-
tion performed on the routing table. This 
function performs a lookup in the routing 
table to determine if the specified desti-
nation encryptor address is found in the 

table. The inputs (at left) are the routing 
table (Rt_Tbl) and the destination en-
cryptor address (Dest_Encr_Addr) for 
which to search. The output (at right) is 
the Boolean value (Found) resulting from 
the search. The rectangular block in the 
center is a Simulink subsystem block that 
implements the database lookup.

Typically, a transaction model 
will contain a Stateflow chart inside the 
Simulink model. Stateflow is well-suited 
to the implementation of the database 
operations. The screenshot in Figure 5 
shows the contents of the Simulink sub-
system block depicted in Figure 4. The 
heavy vertical bar at the left is a Simulink 
bus selector. Simulink bus objects are 
roughly analogous to a record in Ada or 
SPARK. (The Reactis tool does not allow 
bus objects as inputs to Stateflow charts, 
so a bus selector is used to separate the 
component parts of the bus object into 
separate inputs to the Stateflow chart.) 
The large rounded rectangle block is a 
Stateflow chart.

As stated earlier, a model must be 
built for each transaction in each database. 
In the case of the routing table, these are:

Init – procedure to initialize the routing 
table data structure (called upon reset)

Add – database transaction to add a 
routing record to the routing table

Delete – database transaction to remove 
a routing record from the routing table

Dest_Encr_Addr_Found – database 
query to determine existence of 
destination encryptor address

Get_Dest_Addr_List – database lookup 
to return list of addresses mapped to an 
encryptor address

Figure 4: Destination Encryptor Address Found model Figure 5: Stateflow chart inside the model
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Get_Dest_Encr_Addr – database lookup 
to return encryptor address mapped to a 
destination address

Figure 6 shows the interfaces 
provided by each model, alongside the 
generated SPARK procedure signature.

3.3 Invariant modeling

To perform formal analysis on the 
transaction models, it is first necessary 
to model any invariants on the data 
structures. These invariants are taken 
directly from the Z specification. As an 
example, the invariants shown in Figure 
7 appear in the Z specification for the 
routing table.

This specification indicates that no 
duplicate destination addresses or dupli-
cate encryptor addresses may appear in 
the routing table. These invariants are 
checked by the no_dups model (shown 
in Figure 8). Given a routing table input 
(Rt_Tbl), the model checks that no dupli-

cate destination encryptor addresses exist 
in the data structure and sets the output 
Boolean values accordingly. Note that the 
number of Boolean outputs in the model 
is determined by the internal representa-
tion of the routing table data structure, 
and that the condition in which all four 
Boolean outputs are “false” indicates that 
both invariants hold.

3.4 Formal verification

In order to perform the formal 
verification of a database transaction, we 
need to establish two kinds of properties: 
1) data invariants over the databases (as 
defined by the Z schemas defining each 
database) and 2) transaction requirements 
that ensure that the operation performed 
by a model matches the Z schema for 
that transaction. The necessary models 
include both the transaction model and 
any invariant models associated with the 
relevant database(s).

3.4.1 Proof strategy

The proof strategy employed for 
the data invariants is induction over the 
sequence of transactions that are per-
formed. We first verify that the Simulink 
models responsible for initializing each 
database establish the data invariant for 
that database. This step provides the 
basis for our induction. We then prove 
every transaction that modifies a data-
base maintains the invariant for that 
database. More concretely, on the “init” 
models we use the model checker to de-
termine whether or not the data invariants 
hold on the model outputs. For the other 
transactions the proof strategy is to assume 
the invariants in the input “pre” database 
(prior to performing the transaction), and 
then use the model checker to determine 
whether the invariants hold in the 
output “post” database (resulting from 
performing the transaction). 

We prove all the invariants required 
by the Z specification and also additional 
invariants involving implementation 
details related to realizing the Z databases 
in Simulink/Stateflow. For example, 
a linked-list representation is used for 
many of the finite sets described in the 
Z document. In this case, additional 
invariants establish that the linked list is 
a faithful representation of the finite set. 

The transaction requirements for 
each operation are specified as additional 
properties that must hold on the “post” 
database. For example, when deleting an 
element, these properties ensure that the 
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element in question has been removed 
from the database.

3.4.2 Formal verification results 
summary

The formal verification effort for 
the project as a whole resulted in the proof 
of some 840 properties for the HSCC 
databases, of which 140 were written by 
the verification team and the remainder 
(mainly well-formedness checks) 
automatically generated by the Gryphon 
framework. Verification required less 
than five percent of total project effort 
over the course of seven calendar months.

3.5 Code generation

Code generation is performed after 
a transaction is proven to satisfy all of its 
invariant properties. Code generation for 
this project is accomplished through the 
use of a translation tool, developed during 
the program, that leverages the existing 
Gryphon framework to generate SPARK-
compliant Ada95 source code for use on 
the AAMP7G, including the automatic 
generation of SPARK annotations.

All of the transactions are compiled 
into single Ada95 package for use by 
the system programmer. The procedures 
in the package declaration are shown in 
Figure 6.

4. Conclusion
Our experiences developing the 

HSCC system have shown that the 
methodology described in this paper is 
a viable process for the development 
of high-assurance software for use in 
cryptographic systems. 

NSA-provided specifications 
written in the Z formal notation proved 
to be superior to those written in English 
language in producing a complete 
and unambiguous set of software 
requirements. Using these specifications 
as the main development artifact, 
Rockwell Collins was able to quickly and 

accurately determine the necessary “pre” 
and “post” conditions for each database 
transaction.

The use of a model-based approach 
to transaction development provides 
early simulation capabilities, leading to 
earlier discovery of errors in both the 
specification and in the implementation. 
The use of automated code generation 
removes the possibility of human coding 
errors. The application of automated 
model checkers provides a proof of 
correctness at a level unattainable 

through traditional software testing 
methods. With all these components in 
our software development approach, we 
have exercised a viable methodology to 
deliver high-assurance software with a 
much greater level of confidence than 
software developed through traditional 
approaches.

The use of SPARK information 
flow annotations for Ada95 code at 
the system level provides assurance 
the system code is properly routing 
information to each of the devices 

Model-based development is used with increasing frequency in the 
development of aircraft avionics. By using a model-based development 
approach, developers can detect errors early, avoiding more expensive fixes 
later on.

Model-based development was used successfully to develop the ADGS-
2100 Adaptive Display and Guidance System (ADGS) Window Manager. 
In modern aircraft critical status information is provided to pilots through 
computerized display panels like those shown. The ADGS-2100 is a Rockwell 
Collins product that provides the heads-up and heads-down displays and 
display management software for next-generation commercial aircraft. 
The system ensures that data from different applications is routed to the 
correct display panel, and in the case of a component failure decides which 
information is most important and routes that inaformation to the correct 
display panel. The displays are essential to the safe flight of an aircraft since 
they provide critical flight information to the flight crew.

Rockwell Collins has developed tools that translate models used to 
develop systems like the ADGS-2100 to a suite of analysis tools. Verification 
throughout a design process—while a design is still changing—leads to 
earlier error detection. During the ADGS-2100 development project, 563 
properties were developed and checked and 98 errors were found and 
corrected in early versions of the model where they are much easier to fix.
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in the HSCC architecture. Hardware 
enforced (AAMP7G partitioning) red/
black separation serves as the final 
sentinel in preventing unintended red/
black communication. In our judgment, 
the methodology described in this paper 
is sturdy enough to support full EAL-7 
certification of a production encryptor 
based on this research prototype.  

Developing and certifying systems with multiple levels of security (MLS) 
has proven to be extremely challenging. Despite the widespread use of so-
phisticated integrated development environments (IDEs) with analysis and 
verification tools for conventional software development, IDEs that provide 
dedicated support for specification and certification of MLS systems have 
yet to emerge. 

Researchers at Kansas State University are moving to fill this void 
by developing an IDE called Chispa. Chispa is a visualization, analysis, and 
verification tool designed to evaluate MLS systems against associated in-
formation assurance requirements. For program development, Chispa uses 
SPARK, a safety-critical subset of Ada developed by Praxis High Integrity 
Systems and distributed by AdaCore. SPARK is used by various organiza-
tions, including Rockwell Collins and the National Security Agency (NSA), to 
engineer information assurance systems such as cryptographic controllers, 
network guards, and key management systems. 

Chispa uses static analyses to automatically discover information flows 
in source code. A variety of visualizations are provided to help developers 
determine if these flows conform to desired MLS policies. System and pro-
cedure parameters can be tagged with security policy levels (Top Secret, 
Secret, Unclassified). Chispa uses its flow analysis to propagate this infor-
mation to all program statements and to color each statement to indicate 
the security level of associated data. Chispa includes a software contract 
language that makes it easy for developers to specify formally the condi-
tions under which information from one data component or security domain 
is allowed to flow to another. Chispa uses advanced automated deduction 
techniques to check that procedure and system implementations correctly 
follow their information flow contracts. Quality assurance teams as well as 
evaluators for certification authorities can use Chispa’s analysis and visual-
ization capabilities to improve the effectiveness of audits and code reviews 
and to pose automated “what if?” queries related to system assurance.

An early version of Chispa is being used to develop components of the 
high-speed cryptography engine project at Rockwell Collins.
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Correct by Construction:
Advanced Software Engineering
		

Over 60 years have passed since the introduction of computers 
and we still cannot get software right. Why does correct 
software elude us? First, software systems, maybe the 

most complex creation of mankind, exceed an individual’s capacity 
to understand. Many different software engineering techniques 
have emerged over the years to address this complexity, for 
example structured and object-oriented programming, but 
failure-prone software persists. Second, subsequent changes to 
software obscure the author’s original intent. In fact, no robust 
processes or techniques have emerged in practice to document 
design decisions so maintainers and developers can readily 
understand the implications of subsequent software changes.  
However, recent research in correct-by-construction techniques 
may help. By using formal specifications and automated synthesis 
we can make correctness claims about these systems and their 
evolution via an enhanced software engineering process that 
utilizes formally-described design knowledge. We will never obtain 
perfect assurance of correctness or security, but we can realize 
major improvements over current practice. 
	 Formal methods are defined in this paper as traditionally 
applied in the information assurance domain and in correct-by-
construction processes. A particular correct-by-construction 
(CxC) methodology, which uses the Specware tool, is then 
described. Specware supports the production of high-assurance1 
code. A programmer using Specware does not directly write or 
modify code. Instead, the technology creates code systematically 
and automatically from the programmer’s input (the formal 
specification) and guidance (formally applied design decisions). 
In conclusion, new CxC techniques that have impacted real-world 
problems are noted as well as a description of how they could help 
resolve information assurance problems. 

1 “High-Assurance” in this paper means that the system meets its specification as expressed in the formal language. 
 This includes functional correctness as well as other types of expressible properties.
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1. CxC foundations
Many areas of computer science 

research provide the foundation for 
this work with CxC methods: artificial 
intelligence, programming languages, 
formal methods, and software engineering. 
The US Air Force Rome Air Development 
Center (now Rome Laboratory) provided 
the impetus for CxC research in 1983 
by sponsoring the Knowledge-Based 
Software Assistant report [1], which 
became the basis for their Knowledge-
Based Software Engineering (KBSE) 
program. KBSE is based on capturing 
all design decisions in a reusable and 
checkable form. However, the complexity 
of the captured information approaches 
the complexity of the software itself. 

Relatively new areas of computer 
science are providing the structure and 
power to handle this complexity and 
achieve KBSE’s goal by using CxC 
methodologies. Industry uses the term 
CxC to mean methods that range from 
good process with some formal support, 
to automated construction of the software 
from specifications [2,3]. Some examples 
of science supporting CxC include 
model-based software engineering and 
correctness-preserving transformations. 

Specware, the CxC system used 
for the example in this paper, lies toward 
the automated end of the CxC spectrum, 
providing an emerging capability to 
generate correct implementations from 
software specifications. Although 
someone using Specware does not 
need to know category theory (CT)—a 
unifying concept in mathematics, CT 
provides the foundation for Specware’s 
ability to structure the knowledge base 
in such a way to make compiling small, 
understandable software artifacts into 
complex ones practical.

A variety of tools have emerged that 
have prompted industry and academia 
to experiment with CxC methodologies: 
knowledge representation techniques 
and rewriting logic from the artificial 
intelligence community, compiler 
enhancements and semantically well-
defined languages from the programming 
language community, reasoning techniques 
from the formal methods community, 
and software process improvements and 
support tools from the software engineering 
community. This paper describes one 
approach to CxC engineering. 

2. Advanced software 
engineering

The Specware software 
development environment provides a 
good example of how CxC software 
development incorporates formal methods 
in ways that can benefit the information 
assurance (IA) community. In a variety of 
applications, Specware has already proven 
to be a powerful tool for specifying, 
designing, and developing code. Such 
CxC technologies have the potential to 
expand the trustworthiness of IA domain 
applications. What do 
we mean by “Formal 
Methods”?

2.1 Definition of 
formal methods

Formal methods 
(FM) are used to 
develop a solution to 
a problem through 
a prescriptive pro-
cess. By applying 
mathematical rigor, 
a problem can 
be studied with 
precision. In industry 
the term formal 

methods can mean simply a good software 
engineering process. Although FM 
require good processes, good processes 
by themselves do not satisfy the FM 
definition, nor do they guarantee good 
results. A FM-based software engineering 
process can achieve a qualitatively more 
robust solution. 

The FM process can be depicted 
as a triad. The Formal Methods Triad 
(Figure 1) represents a process for 
moving from requirements to a solution. 
At the top of the triangle is a real world 
problem defined by requirements. To 
arrive at a workable solution to these 
requirements, the problem and solution 
must be described in detail. Therefore, 
the problem description and the solution 
description comprise the foundation of 
the triangle.

Arrows around the triangle represent 
the processes used to get from each point 
to the next. The arrows point forward to 
trace the main flow, but feedback and 
reiteration are central to the process. 
Returning to a previous step would 
occur, for example, when inconsistent or 

Real World Problem

Formal
Methods

Triad

SolutionRequirements

Problem 
Description

Solution 
Description

Specify Interpret

Analyze

Figure 1:  The Formal Methods Triad
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incomplete requirements are discovered 
during the formal problem specification 
phase. Discovering errors early in the 
process can yield significant cost savings 
in the long run.

The arrow pointing from Real 
World Problem to Problem Description 
is labeled Specify because this step of the 
process uses formal language to describe 
the problem. The more expressive the 
language used, the more complete the 
analysis can be.  The Analyze step moves 
the process from a problem description 
to a solution description. Methods that 
support this analysis with mathematical 
rigor (e.g., FM) are used. Finally, to 
arrive at a solution, we map the result of 
the analysis back to its meaning in the 
problem domain. This is the Interpret step 
in the process. 

As a FM process example, consider 
the real world problem of determining 
how much wind a suspension bridge 
can withstand. The problem can be 
described by a set of integral equations 
representing a property of the bridge 
affected by wind. Solving these equations 
produces a solution description. The 
bridge engineer would select appropriate 
integral calculus equations—tools from 
his engineering domain knowledge—and 
insert the bridge’s specific requirements 
into them and derive a solution. If the 
calculations from the formal analysis 
determined that winds sufficient to cause 
the bridge to collapse occur frequently, 
the interpretation would probably lead to 
condemning the bridge. Of course, no one 
would build a bridge before analyzing its 
design, but software is routinely built and 
then analyzed afterward! 

2.2 The use of formal methods
in the DoD

The US Department of Defense  
(DoD) has a long history of applying FM. 
In the 1980s the DoD Computer Security 

Center developed what is commonly 
referred to as the Rainbow Series of 
standards, beginning with the Trusted 
Computer System Evaluation Criteria 
(TCSEC) volume, better known as the 
Orange Book [4]. In 1996, the National 
Security Agency’s National Computer 
Security Center (NCSC) replaced the 
Orange Book with the Common Criteria 
[5]. Despite the computer security 
community’s early excitement and 
subsequent disappointments regarding 
FM, formal methods may still have a 
future in building high-assurance systems.

The DoD has initiated significant 
efforts to incorporate FM in the design 
and evaluation of information security 
systems. Most notably, FM would apply 
at the Design Phase of the development 
and would focus on whether the design 
has the desired security properties, 
or at the Evaluation Phase where the 
implementing code would be analyzed for 
security vulnerabilities. These approaches 
have been implemented primarily in the 
research community and rarely in product 
development until recently.

2.2.1  Formal methods at design time
Formal methods are applied during 

the design phase by developing formal 
specifications of the system and the security 
policy, typically at a very high level of 
abstraction. The point of the abstract 
specification is to define the “what” the 
system should do and not the “how” it 
should do it, because the “how” normally 
biases the system toward particular 
implementations, thus potentially 
precluding the best implementations.

To begin this process, the system 
developer creates a system security 
policy (a set of requirements) and a 
system specification. These requirements 
are expressed most often in natural 
language. Early on, developers created 
formal specifications manually, with little 

Software lifecycle cost reductions 
due to a CxC development process

In a recent study, Kestrel researchers 
examined the suite of documentation required 
for certifying Type 1 devices, and the possibilities 
to extend Specware’s correct-by-construction 
(CxC) development process to auto-generate 
certification documents. Our thesis is that 
by using automated tools to generate both 
the software and significant portions of its 
certification documentation, a CxC approach 
will dramatically lower lifecycle costs, including 
the cost of recertification. Furthermore, by 
speeding up the recertification process, a CxC 
approach facilitates the evolution process, 
resulting in higher quality products over the 
lifecycle. 

To quantify these claims, we first 
estimated the cost reductions that arise from 
a CxC process independently from certification 
costs. The dominant factor seems to be the 
size reduction in formal specifications relative 
to executable code. This size reduction varies 
considerably over projects, but a ballpark figure 
of 4-5x is consistent with the JavaCard project 
and related efforts. A 4-5x reduction in size of 
the formal text usually correlates with a similar 
reduction in development and evolution costs. 
Consequently we estimate that, independent 
of certification costs, a CxC process should 
reduce lifecycle costs by roughly 75-80 percent. 
Second, we estimated the cost reduction due 
to extensions of the CxC process that allow 
auto-generation of certification documents as 
a by-product of the code generation process. 
For each of the thirteen documents required 
for certifying Type 1 devices, we estimated 
that the average cost savings vary from a high 
of 75 percent for Formal Security Policy Model 
(FSPM) documents to a low of 20 percent for 
a Security Verification Plan and Procedures 
(SVP) documents. Assuming roughly equal 
weight to each of the 13 documents, we 
estimated an average overall cost reduction of 
about 59 percent per certification application 
due to using CxC methods.

These two estimates can be combined in 
a variety of ways. For example, if we assume 
that certification costs are roughly the same 
as development costs, then CxC brings about 
a 70 percent reduction in lifecycle costs 
(evolution plus certification); that is, a CxC 
process will produce a certified product for 30 
percent of the cost of a conventional process. 
If we assume, as is the case in aerospace 
applications, that the cost of certification is 
about 7x development costs, then we obtain 
an estimate of 63 percent cost reduction for 
a CxC process. This leads us to conclude that 
a CxC process will produce a certified product 
for roughly 30-40 percent of the cost of a 
conventional process. This estimate does not 
account for the possibility that some forms of 
certification become unnecessary because of 
the strong form of evidence provided by a CxC 
process.
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automated support. They would often reuse 
components of existing specifications, 
adapting them in much the same way as 
programmers reuse code. Later, theorem-
proving frameworks evolved to help 
standardize and automate processes of 
writing system specifications and security 
requirements. The different theorem-
proving tools employ unique variants of 
formal logic (i.e., a specification language), 
each having its own strengths and 
weaknesses. Early tools and languages used 
for specifying system requirements (some 
are still used) included EHDM, Gypsy, Ina-
Jo, Larch, ACL2, Z (zed), NQTHM, GVE, 
PVS, SDV, Z-EVES, and the Larch Prover. 
Security policy would then be described 
using the same formal language. 

Given the descriptions for the 
system requirements and security policy, 
the developer, when able to understand 
them, would “prove” that the system 
specification enforces the security 
policy. Usually these proofs required 
building an infrastructure of lemmas 
that rarely could be reused. The verified 
high-level design may or may not reflect 
the actual implementation, although 
implementations built from verified 
designs have a much greater chance of 
meeting their requirements.

An improvement to this method 
for achieving confidence that the system 
specification guaranteed the security policy 
would be to add detail to the specifications 
and reiterate the process. This, of course, 
required some kind of demonstration that 
the more concrete system and security 
policy specifications indeed represented 
their corresponding abstract specifications. 
At some point, usually leaving a significant 
gap between the most detailed specification 
and code, iteration would stop and the 
specification would become the basis for 
the code. Of course, we know that no code 
would ever be written before completing 
the specification!

Rarely, until recently, has anyone 
attempted to iterate refining a specification 
by adding detail down to the code level, 
and in most cases they did this on small 
slices of the system. The cost of producing 
code from this process was prohibitive.

This process of formally proven 
specifications, once too-costly and labor-
intensive, has improved. Even so, the 
benefits of formal specification without 
complete proofs have provided sufficient 
value to be required for Common Criteria 
EAL7 rated systems. 

2.2.2  Code-based analysis
The National Security Agency (NSA) 

has also applied FM through code-based 
analysis, mainly in support of evaluations 
of information assurance systems. Code-
based analysis differs from the design phase 
FM process in that, instead of developing 
a formal description of what the software 
should do, code-based analysis attempts 
to discover and prove properties about the 
software code itself. For example, the user 
might identify points within the software 
where properties of interest must hold, 
and then annotate the code with stylized 
comments (formal language) about these 
properties. The developer then applies 
a tool that understands the semantics of 
the language and generates verification 
conditions based on the code and the 
annotations. This process outputs a set of 
logical statements that then can be used to 
validate these user-desired properties. 

In the analysis process we attempt 
to find and prove the targeted properties 
of the software. A SAT solver (a Boolean 
“Satisfiability” or SAT solver uses 
specialized procedures to attempt to 
satisfy test conditions) or an ATP (an 
“automated theorem prover” derives the 
truth of the specified conditions from more 
basic facts) is applied to these verification 
conditions. We get any of three possible 
outputs from this analysis: the conditions 

JAVA Card Runtime Environment

We used Specware to formally 
specify a real-world smart card operating 
system, the Java Card Runtime 
Environment (JCRE). The JCRE consists of 
a JAVA virtual machine (VM) and system 
libraries (e.g., for I/O and cryptography), 
along with card management capabilities 
according to the Global Platform 
Standard. The formal specification is 
about 30,000 lines long and over 6,000 
consistency proofs of it have been 
mechanically verified so far. A desktop 
simulator (reference implementation) 
has been generated by refinement from 
the formal specification; the correctness 
of the refinements is currently being 
mechanically verified. A C implementation 
for a commercial chip has been manually 
derived from the formal specification; 
a new version of this implementation is 
currently being generated via automated 
refinements, with mechanical proofs. We 
anticipate that this will be the highest 
level of assurance yet achieved, and that 
it will reduce the cost and increase the 
confidence of a Type 1 certification.

Specware has also been used to study 
the extension of (standard) JCRE with 
MILS and MLS separation. The study has 
been carried out on a formal specification 
of an idealized subset of the JCRE. 
Separation policies have been formally 
specified, along with run-time monitors 
to enforce the policies. The monitors 
have been formally proved to guarantee 
the policies. The monitors and the formal 
proofs are currently being extended from 
the idealized to the complete JCRE.

See http://www.kestrel.edu/java 
for more information.
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can hold; the conditions do not hold; or in 
some cases, the analysis cannot determine 
either way if the conditions hold or not 
with the computational resources given. 
The first two conditions tell us something 
useful about the code.

The source and/or binary code level, 
the detail required to perform the analysis, 
can be cost prohibitive. However, as 
better provers and solvers become 
available and with sheer computing 
power increases, these methods are 
becoming more practical. We already see 
industry using code analyzers based on 
FM such as CodeHawk, Java Pathfinder, 
and ESC/Java2. 

There is, however, at least one CxC 
approach that combines the best of both 
design verification and code analysis.

2.3 A correct-by-construction 
approach

The formal methods described 
previously try to ascertain something after 
the fact. In the design phase, FM are used 
to verify the specifications after writing 
them, and in code analysis the analysis is 
applied to code already developed. The 

alternative would be to simultaneously 
conduct the analysis while creating the 
specifications/artifacts. By maintaining 
or enforcing the properties of concern 
through the development process itself, 
design errors could be caught early, when 
repair is less costly. Let us look at the CxC 
approach for a software development.

The developer typically starts with 
some notion of what the system should do. 
Ideally, creative programming energy is 
directed at capturing system requirements 
in a specification. This is hard work! CxC 
with automation moves the work from 
low-level programming to high-level 
problem development. 

A CxC approach solves the problem 
incrementally by developing requirements 
and deriving satisfactory implementations 
with ever increasing levels of refinement. 
This is done by using FM to automatically 
compute code from specifications. CxC 
industrial practices vary by the degree of 
automation of the compute process. An 
ideal CxC approach would completely 
automate this process. Although full 
automation is not the only way to go, it 

greatly enhances the benefits of CxC for 
reuse and recertification—an advantage 
industry is starting to recognize [3]. 

Figure 2 illustrates the CxC model 
used for our software development 
project. At the highest level of abstraction, 
the requirements, expressed in formal 
language, plus any existing domain 
knowledge specifications are used to 
create a formal specification, or model. 
This step is represented in the diagram 
by the Specify arrow. Merely formalizing 
the requirements in this way can expose 
inconsistencies and ambiguities early in 
the process, saving money and time. At 
lower levels of abstraction, in the Compute 
step in the diagram, the implementation 
can be derived through a posit-and-prove 
approach or a transformative approach.

In the posit-and-prove approach, 
programmers create the low-level 
specification and then propose a 
mathematical argument, with varying 
degrees of formality, that will prove 
whether or not the solution specification 
obeys the problem specification. A code 
generator is used to generate the code 
from the low-level solution specification. 

With a transformative approach, 
the user takes the high-level specification 
of the system and iteratively applies 
transformations that apply computer 
science and problem domain knowledge 
to get an efficient and correct low-level 
executable specification. This process 
terminates after transforming the entire 
problem specification into an executable 
specification. Remember that the initial 
specification defined “what” the system 
should do. Each transformation adds detail 
and makes decisions that bring it closer to a 
particular “how” the system should do it. In 
addition, each transformation preserves the 
properties and functionality of the source 
specification in the target specification 
(the result of the transformation). Once the 
“how” has been determined and expressed 

Software System Development
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Triad

Software 
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System & Security 
Requirements

Problem Formal 
Specification

Solution Formal 
Specification

Specify Generate

Compute

Figure 2:  The CxC Triad
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as a formal specification, the next step 
is to generate software in some target 
programming language (as in the posit-
and-prove approach). 

The initial high-level formal 
description created from the requirements 
in the Specify step must still be validated 
against the original requirements and 
specifications in the standard way. Another 
way to look at this, CxC simply tries to 
automate the FM process for INFOSEC 
systems by iterating the process all the 
way down to code. This begs the question, 
“Does such a tool exist?”

2.4 Specware, a 
correct-by-construction tool

Yes, it does: Specware, developed 
by Kestrel Institute [6]. With this tool we 
can build specifications for requirements, 
combine small specifications into larger 
ones, implement design decisions by 
refining specifications, and generate code 
from executable specifications, all the 
while providing for the proof that the 
derived specifications and code enforce 
the requirements.

Specware [7,8,9,10,11] uses a 
version of Church’s higher-order logic 
for its specification language. This 
language borrows features from functional 
programming and highly expressive 
automated theorem prover (ATP) languages, 
and is thus useable by many in the computer 
science and theorem proving disciplines. 
Researchers have used Specware for 
a wide range of specifications, from a 
full-blown operating system (Java Card 
Runtime Environment or JCRE) and a 
mathematically assured separation kernel 
(the Mathematically Analyzed Separation 
Kernel [MASK], part of the Advanced 
INFOSEC Module chip), to low-level 
algorithms and data structures.

2.4.1  An NSA security token
At NSA we used Specware to 

successfully build a robust security token. 

AutoSmart

The AutoSmart (automatic generator 
of smart card applets) tool is an example 
of a domain-specific CxC generator. It 
features a specification language tailored 
to the smart card domain, with constructs 
to conveniently capture concepts 
like personal identification numbers, 
cryptography, ISO 7816 I/O exchanges, 
and so on. AutoSmart performs several 
consistency checks on the applet 
specifications, including a security analysis 
that flags potential leaks of confidential 
information like private and secret 
keys. AutoSmart compiles the applet 
specifications to Java Card code, which 
can be compiled and loaded into a Java 
Card. Along with the code, AutoSmart 
also generates documentation for FIPS 
140-2 certification as well as informal 
documentation for the applets (e.g., 
tables of commands and internal data). 
AutoSmart is currently being extended 
with the capability to generate a machine-
checkable formal proof of the correctness 
of the generated Java Card code with 
respect to the input specifications. This 
“credible compiler” capability enables 
trust in the correctness of the code to be 
shifted from the AutoSmart tool to a much 
smaller and simpler proof checker, in the 
spirit of proof-carrying code.

See http://www.kestrel.edu/jcapp 
lets for more information.

We contracted for the development of a 
robust JCRE and robust applets running 
on a specific hardware platform. 

To create the JCRE, a formal 
specification was developed and a 
posit-and-prove approach was used to 
refine the code. The complexity of the 
initial specification evolved as standards 
were added. Incremental changes were 
easier to implement using Specware 
than in standard software development 
processes. Even though the Specware 
tools used at the time were primitive 
compared with later versions, they were 
sufficiently robust to produce a working 
JCRE, complete with cryptography and 
some assurance of correctness. 

Creating applets involved the 
development of a domain-specific 
language (SmartSlang) and a 
corresponding compiler (AutoSmart, 
produced with Specware). Using 
SmartSlang a developer can specify 
an applet more easily than by writing 
Java Card code directly. The compiler 
generates both the Java Card code for 
the applet and a proof that the code 
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implements the specification. In addition, the compiler enforces properties stated in the 
applet specification and produces reports to meet certification requirements. 

Kestrel Institute succeeded in producing a working JCRE on the chip running 
robust applets. Smart card developers are now considering the formal JCRE specification 
and the Specware toolset. However, given that Specware is not a commercial tool, 
there is some resistance to its use. Commercial support is critical for wider adoption of 
this technology. 

2.4.2  Using Specware
Building specifications with Specware is no harder than programming. And 

because high-level specifications should only stipulate “what” is to be done, not “how” to 
do it, we can understand these top-level specifications much more easily than code. Thus 
we can make our changes in the high-level specifications and avoid the more complex 
low-level specifications by redoing the refinements. Most likely, the original design 
choices will apply with minimal changes and the low-level specifications regenerated. 
To illustrate this process, we take an example from the Specware tutorial [4].

2.4.2.1  Specification
In the Specware tutorial, the problem for which we want to specify and generate 

a solution is determining the first match of a word within a message, where a word is 
list of symbols and a message consists of a list of symbols and wilds (a wild matches 
all characters). For example, the word “ABCD” would match at the first position of 
the message “AB*D***” and “BAD” would match at second position.

Here is a typical specification:

WordMatching = spec
 import Words
 import Messages
 import SymbolMatching

 op word_matches_at?(wrd: Word, msg: Message, pos: Nat): Boolean =
  pos + length wrd <= length msg &&
  (fa(i:Nat) i < length wrd => symb_matches?(wrd@i, msg@(pos+i)))
endspec

In this specification, two conditions are necessary for a word match: (1) there is 
enough room left to contain the word in the message, and (2) all the symbols in the 
word match their corresponding positions in the message. Notice that this is not saying 
how to check these conditions; just what it means to match a word with a segment of 
a message. Also notice that the specification for what symbol matching means (two 
identical characters or one is a wild) is not in this specification at all, but in an included 
specification named “SymbolMatching.” So the game in specification is to build up a 
collection of specifications and compose them to say what is desired.

2.4.2.2  Design
Design involves the composition of a series of refinements to get an executable 

specification. Each design decision is formally captured and is available for reuse for 

Synthesis of propositional
satisfiability solvers

 

Dramatic improvements to propositional 
satisfiability (SAT) solvers were made 
during the last two decades [e.g., 1,2]. 
We used Specware to demonstrate the 
automated generation of fast SAT solvers. 
The main result was that we were able to 
recapitulate many of the key design features 
of a modern SAT solver using mechanized 
representations of abstract and reusable 
design knowledge. Starting with a formal 
specification of the SAT problem (find a 
satisfying assignment for a given set of 
propositional clauses, if any), the overall 
algorithmic structure of a Davis-Putnam-
Logemann-Loveland (DPLL) SAT solver 
was calculated from the global search and 
constraint propagation algorithm paradigms 
[3,4]. Performance of the correct, but high-
level algorithm was improved by applying 
problem-independent transformations for 
expression simplification, finite differencing 
[5], and data type refinement. Applying these 
algorithm design tactics and transformations 
in different ways resulted in a family tree of 
SAT algorithm variants, including some novel 
non-DPLL variants. 

This project, together with previous 
work on scheduling applications [6], provided 
evidence that it is feasible to generate 
customized high-performance solvers for 
particular problems. Key features of state-
of-the-art SAT solvers, such as conflict-
resolution and learning, can be applied 
mechanically to other problems.
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both exploring possible implementations of the current specification and for reuse in 
other developments of similar systems. Consider how hard (and costly) it would be to 
explore the design space using standard practice. With CxC, design space exploration 
becomes doable. 

The key steps in design are to specify/generate the “how” and define/generate 
mappings between the “what” and “how” specifications. The mappings constitute 
property-preserving refinement. If we get the “how” right with respect to the “what,” 
we will be able to prove all obligations that Specware generates from the mapping 
construct. Essentially with the properties proved, we ensure that the definitions in 
source specification are theorems in the target specification. In other words our “how” 
does correctly “what” we want. 

Design is done iteratively until arriving at a specification for “how” to compute the 
“what” from the high-level specification. (Specware has as a main goal the capabilities 
to derive/generate low-level specifications, which is the intended mode of operation.
But this capability is still in its infancy.) Here is a specification of “how” to see if a 
word matches a segment of a message:

op word_matches_at?(wrd: Word, msg: Message, pos: Nat): Boolean =
 if pos + length wrd > length msg
  then false
  else word_matches_aux?(wrd, removePrefix(msg, pos))

The first test checks if there is room for the word at this position. If there is 
room, an auxiliary function is called to check from the current position if the word 
matches symbol for symbol with the rest of the message. The “what” specification, the 
one above, needs to be related to this “how” specification. This is done by mapping 
between the two specifications. In this example, a transformation is used to automate 
the construction of the refinement relating the word matching specifications:

WordMatching_Ref =
 morphism MatchingSpecs#WordMatching ->
     MatchingRefinements#WordMatching {}

This mapping, called a morphism, maps the symbols in WordMatching to 
corresponding elements in the target specification. In this example, all the names in the 
high-level (source) specification (MatchingSpecs#WordMatching) are also in the low-
level specification, so the task is done (otherwise the name to name mapping would be 
explicit within the {}).

2.4.2.3  Code synthesis
Specware can synthesize code in several different target programming languages. 

Currently, there are several collections of low-level executable specifications 
mapped directly to a program language. The most robust collection supports the Lisp 
programming language—a natural fit to higher-order logic specifications. Much less-
mature collections exist for C and Java. The code synthesis is automatic, allowing 

maintenance and enhancements to be 
done at the specification level rather than 
in code, thus precluding a number of 
errors produced by code changes that have 
unforeseen side effects. The user’s goal in 
the Design phase is to complete his “how” 
specification in terms of one of these 
collections. Once done, a program can be 
synthesized from the specification.

2.4.2.4  Proof processing
All specification, specification 

composition, and specification refinement 
constructs may require proofs to establish 
and maintain properties through the 
entire process. Proof obligations are 
generated when the user requests them 
and packaged for distribution to a proof 
tool. The main proof tool available in 
the Specware environment is Isabelle/
HOL [12], which has powerful automated 
proof methods and integrated expert user 
guidance. Isabelle has a large user base, 
including industrial use. 

Since the Isabelle theorem prover 
is sound, proofs completed with the tool 
provide assurance that the constructed 
code is correct with respect to the 
high-level specification. The Isabelle/
HOL language is close to the Specware 
language, but with a few quirks. Isabelle is 
difficult to use to prove some obligations, 
as are all other proof tools now in use. 
But, even though it requires effort to use, 
the CxC process with Specware allows 
for the complete proof of the system 
refinement to code, yielding extremely 
high-assurance software.

2.4.3  Correct-by-construction 
successes

The CxC approach has demonstrated 
practical successes. Praxis used CxC to 
develop almost error-free code from a 
formal specification of an enclave access 
system called Tokeneer [13,14]. With 
Tokeneer, a user presents a token and 
biometric input, and then is either allowed 
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or denied access based on a database of 
metrics, token ids, and user information. 
The published results caused a stir in the 
formal methods research community, 
providing a much needed real world 
example. Kestrel developed an alternate 
specification of the Tokeneer system 
[2] using traces of events, more abstract 
than the state machine formalism used 
in Praxis’s specifications, thus proving 
additional properties.

Another Specware success, this 
time from industry, is the Mathematically 
Analyzed Separation Kernel (MASK) 
[15]. This specification resulted in 
more easily evaluated kernel code for 
the Advanced INFOSEC Module chip, 
developed by GE (then Motorola). Also 
Kestrel demonstrated the benefits of 
formal specification reuse for IARPA. 
They generated an “idealized” JCRE for 
single threaded Multiple Independent 
Levels of Security (MILS) and Multiple 
Levels of Security (MLS), and for multi-
threaded MILS and MLS separation for 
smart cards. Not only were they able to 
reuse a lot of the original specifications, 
but they generated run-time monitors 
from these specifications and proved that 
they enforce the separation properties.

SAT solvers have also been 
successfully generated using CxC 
tools. Formal descriptions of the SAT 
algorithms and SAT data structures exist 
in Specware, so that various versions of 
solvers can be generated automatically 
using reusable refinement scripts. With 
more research, even more successes could 
be added to the list.

3. An extreme CxC vision
Where might CxC take software 

development? Suppose you had a system 
development environment where you 
could take your system requirements 
and produce formal specifications from 
standard constructs like UML and state 

machine diagrams. Suppose you had 
libraries of reusable specifications for your 
problem domain, for standard algorithms 
and procedures, and for platform-
aware implementations. Consider that 
the mere process of exploring a design 
space and choosing an implementation 
would result in a mathematically precise 
implementation optimized for your 
platform. In addition, automate the 
refinement process while still allowing 
user control to take advantage of human 
expertise. We claim that such a system 
would revolutionize our software 
development practices. 

•Using CxC would improve time to 
market: Variations of existing systems are 
easily obtained through minor changes 
to specifications and the replay of the 
refinement to code process.

•Using CxC would improve time and 
cost to certify: All design decisions are 
captured; hence some criteria requirements 
can be generated automatically rather 
than by manually searching the code.

•Using CxC would improve time 
and cost to maintain and recertify: 
Automation of testing and certification 
evidence generation made possible in 
this environment would solve the age-
old problem of maintaining consistency 
between specification and code because 
changes are made at the specification level 
and the code is re-generated, keeping the 
two in sync.

•Using CxC would increase the degree 
of assurance to a qualitatively higher level.

Specware is a step in the right 
direction and provides evidence that 
such tools are possible. We need to push 
CxC processes that have mathematical 
precision if we ever hope to get a handle 
on the complex software and hardware 
systems of today.  
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Verified Software in 
the World

Software is a critical component of the technological infrastructure. Many physical and 
electronic devices are controlled by software, which offers unparalleled sophistication and 
flexibility over coding in hardware. However, software is also a source of vulnerability. 

Unreliable software can be a significant cost in the development of software-based systems. 
Software bugs can be exploited to breach security and propagate malware. Software unreliability 
has been estimated to cost nearly one percent of the GDP to the United States economy. The 
technical challenges of developing and maintaining software are only growing in complexity with 
the advent of cyber-physical systems, service-oriented architectures, and multicore processors.

Software development can be made highly rigorous. The theoretical understanding of software and 
hardware models has existed for decades, but recent dramatic advances in the technologies of software 
specification, design, and analysis make it feasible to carefully and productively examine large code bases 
for errors. Interactions between the software and the physical and biological world, as well as with human 
operators can be analyzed in this manner. The technologies for software analysis can also be used to find 
security vulnerabilities and to identify strategies for safe parallelization.

The Verified Software Initiative (VSI) is an ambitious fifteen-year, cooperative, international project 
directed at the scientific challenges of large-scale software verification. VSI is aimed at bringing formal 
scientific methods for software design into wider use so that software is viewed as the most trusted 
component in a system. The research agenda is directed at developing a comprehensive theory of program 
correctness that is supported by a coherent suite of novel and powerful tools for designing, debugging, 
composing, and verifying software. The theory and tools must be validated on a wide range of examples 
and used to train a new generation of software engineers in the construction of trustworthy software.

The need for verification technology is most acute in systems that are required to be reliable, resilient, 
and secure in an uncertain and hostile environment. Such systems include those from avionics, automotive 
control, process control, power distribution, health care, and electronic voting. These systems exhibit 
complex interaction between the software components and the physical world. The slightest flaw in the 
software can expose security vulnerabilities or lead to catastrophic system failure. 

Verification approaches the construction of software through the use of rigorous formal models. 
These models have a mathematical meaning that is captured using formal logic. Such models can be 
used to capture requirements, emulate the operating environment, formulate specifications, craft designs, 
decompose system functionality into modules, interpret and annotate programs, generate test cases, and 
verify component and system properties. The use of mathematical models also facilitates the use of highly 
automated tools. These tools can be used to identify the presence of flaws through the systematic generation 
of test cases, proof obligations, interface assumptions, and security vulnerabilities. They can also establish 
the absence of certain kinds of errors through analysis, exploration, and proof. Finally, such tools can be 
used as design aids to decompose problems, derive new solutions, and compose existing solutions.
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Verification technology has been improving 
rapidly in both scale and functionality. A range of 
robust and mature techniques for static and dynamic 
analysis, state space exploration, constraint solving, 
automated and interactive proof generation, and test 
case generation are now available and in use. These 
techniques can be applied to models and programs. 
Verification technologies need to be systematically 
woven into the software development process. 
The successful mainstreaming of verification 
technology requires a seamless integration of the 
individual techniques supported by an ambitious 
agenda of experimental work. Tool construction 
and experiments must be supported by novel 
theoretical insights leading to accurate and tractable 
models as well as scalable and efficient algorithms. 
Verification technology has a rapidly growing range 
of applications. Techniques like model checking 
and constraint solving are being used to model 
physical and biological systems and to generate 
plans, schedules, and optimizations. They are also 
used to fingerprint security threats such as worms 
and viruses and to check hardware and software 
equivalence to guard against the insertion of 
malicious code.

A comprehensive framework for verified 
software development can address a number 
of challenges in software engineering. At the 
requirements level, it provides a convenient 
modeling framework for describing discrete and 
continuous behavior, time and resource constraints, 
fault models, and security policies. These formal 
models can be analyzed for anomalies and putative 
properties, and also used for generating test cases. 
In the design phase, verification technology can 
be used to verify algorithms and architectures; 
decompose the system into modules; establish the 
absence of unintended information flows between 
software components; support semantic service 
discovery and composition; and facilitate resilient 
system operation in the face of device, platform, 
or operator failure. During the implementation 
phase, various integrated tools for synthesis and 
analysis can be used to generate and optimize 
code; establish the absence of run-time errors, 
race conditions, and information flows; identify 
interface properties; compose software modules; 
schedule tasks on multicore processors; and even 

repair system state through constraint solving. 
Seamless integration between different tools is 
needed to generate run-time checks and monitors, 
test cases, counterexamples, conjectures, scenarios, 
abstractions, and proofs. A formal integrated 
development environment for verified software 
can be used to construct an assurance case for 
certification through a systematic argument for the 
safety and security of the system. Verification allows 
the assurance argument to be decomposed along the 
lines of components and service layers, each with its 
own reusable assurance case. Software is expected 
to operate in a safe, secure, and predictable manner 
in a world of physical uncertainty and virtual 
vulnerability. Powerful verification technology 
will be needed to economically develop, validate, 
and maintain software that is not only reliable, but 
manifestly trustworthy.  
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A system is dependable when it can 
be depended on to produce the 
consequences for which it was designed, 
and no adverse effects, in its intended 
environment. This means, first and 
foremost, that the term dependability has 
no useful meaning for a given system 
until these consequences and the intended 
environment are made explicit by a 
clear prioritization of the requirements 
of the system and an articulation of 
environmental assumptions. The effects of 
software are felt in the physical, human, 
and organizational environment in which 
it operates, so dependability should be 
understood in that context and cannot be 
reduced easily to local properties, such as 
resilience to crashing or conformance to 
a protocol. Humans who interact with the 
software should be viewed not as external 
and beyond the boundary of the software 
engineer’s concerns but as an integral part 
of the system. Failures involving human 
operators should not automatically be 

assumed to be the result of errors of usage; 
rather, the role of design flaws should be 
considered as well as the role of the human 
operator. As a consequence, a systems 
engineering approach — which views 
the software as one engineered artifact 
in a larger system of many components, 
some engineered and some given, and the 
pursuit of dependability as a balancing of 
costs and benefits and a prioritization of 
risks — is vital. 

Unfortunately, it is difficult to assess 
the dependability of software. The field 
of software engineering suffers from 
a pervasive lack of evidence about the 
incidence and severity of software failures; 
about the dependability of existing software 
systems; about the efficacy of existing and 
proposed development methods; about the 
benefits of certification schemes; and so on. 
There are many anecdotal reports, which—
although often useful for indicating areas 
of concern or highlighting promising 

Note: The following article is the introduction to the National Academy of Science (NAS) report, Software for 
Dependable Systems: Sufficient Evidence? Full copies of the report (free PDF download and book purchase) 
are available through the National Academy Press at http: //www.nap.edu/catalog.php?record_id=11923

How can software and the systems that rely on it be made 
dependable in a cost-effective manner, and how can one obtain 
assurance that dependability has been achieved? Rather than 

focusing narrowly on the question of software or system certification 
per se, this report adopts a broader perspective. 
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avenues of research—do little to establish 
a sound and complete basis for making 
policy decisions regarding dependability. 
Moreover, there is sometimes an implicit 
assumption that adhering to particular 
process strictures guarantees certain levels 
of dependability. The committee [NAS 
Committee on Certifiably Dependable 
Software Systems] regards claims of 
extraordinary dependability that are 
sometimes made on this basis for the most 
critical of systems as unsubstantiated, 
and perhaps irresponsible. This difficulty 
regarding the lack of evidence for system 
dependability leads to two conclusions, 
reflected in the committee’s findings and 
recommendations below: (1) that better 
evidence is needed, so that approaches 
aimed at improving the dependability 
of software can be objectively assessed, 
and (2) that, for now, the pursuit of 
dependability in software systems should 
focus on the construction and evaluation 
of evidence. 

The committee thus subscribes to 
the view that software is “guilty until 
proven innocent,” and that the burden of 
proof falls on the developer to convince 
the certifier or regulator that the software 
is dependable. This approach is not novel 
and is becoming standard in the world 
of systems safety, in which an explicit 
safety case (and not merely adherence 
to good practice) is usually required. 
Similarly, a software system should be 
regarded as dependable only if it has a 
credible dependability case, the elements 
of which are described below. Meeting 
the burden of proof for dependability 
will be challenging. The demand for 
credible evidence will, in practice, make 
it infeasible to develop highly dependable 
systems in a cost-effective way without 
some radical changes in priorities. If 
very high dependability is to be achieved 
at reasonable cost, the needs of the 

dependability case will influence many 
aspects of the development, including the 
choice of programming language and the 
software architecture, and simplicity will 
be key. For high levels of dependability, 
the evidence provided by testing alone 
will rarely suffice and will have to be 
augmented by analysis. The ability to 
make independence arguments that allow 
global properties to be inferred from 
an analysis of a relatively small part of 
the system will be essential. Rigorous 
processes will be needed to ensure that 
the chain of evidence for dependability 
claims is preserved. 

The committee also recognized 
the importance of adopting the practices 
that are already known and used by the 
best developers; this summary gives a 
sample of such practices in more detail 
below. Some of these (such as systematic 
configuration management and automated 
regression testing) are relatively easy to 
adopt; others (such as constructing hazard 
analyses and threat models, exploiting 
formal notations when appropriate, and 
applying static analysis to code) will 
require new training for many developers. 
However valuable, though, these practices 
are in themselves no silver bullet, and new 
techniques and methods will be required 
in order to build future software systems 
to the level of dependability that will be 
required.

Assessment 
Society is increasingly dependent on 

software. Software failures can cause or 
contribute to serious accidents that result 
in death, injury, significant environmental 
damage, or major financial loss. Such 
accidents have already occurred, and, 
without intervention, the increasingly 
pervasive use of software—especially in 
arenas such as transportation, health care, 
and the broader infrastructure—may make 
them more frequent and more serious. In 
the future, more pervasive deployment of 
software in the civic infrastructure could 
lead to more catastrophic failures unless 
improvements are made. 

Software, according to a popular 
view, fails because of bugs: errors in the 
code that cause a program to fail to meet its 
specification. In fact, only a tiny proportion 
of failures can be attributed to bugs. As is 
well known to software engineers, by far 
the largest class of problems arises from 
errors made in the eliciting, recording, 
and analysis of requirements. A second 
major class of problems arises from poor 
human factors design. The two classes 
are related; bad user interfaces usually 
reflect an inadequate understanding of 
the user’s domain and the absence of a 
coherent and well-articulated conceptual 
model. Security vulnerabilities are 
to some extent an exception to this 
observation: The overwhelming majority 
of security vulnerabilities reported in 
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software products—and exploited to 
attack the users of such products—are at 
the implementation level. The prevalence 
of code-related problems, however, is 
a direct consequence of higher-level 
decisions to use programming languages, 
design methods, and libraries that admit 
these problems.

In systems where software failure 
could have significant human or financial 
costs, it is crucial that software be 
dependable—that it can be depended 
upon to function as expected and to not 
cause or contribute to adverse events in 
the environment in which it operates. 
Improvements in dependability would 
allow such systems to be used more 
widely and with greater confidence 
for the benefit of society. Moreover, 
software itself has great potential to bring 
improvements in safety in many areas. 

Complete and reliable data about 
software-related system failures or 
the efficacy of particular software 
development approaches are hard to come 
by, making objective scientific evaluation 
difficult. Moreover, the lack of systematic 
reporting of software-related system 
failures is a serious problem that makes 
it more difficult to evaluate the risks and 
costs of such failures and to measure 
the effectiveness of proposed policies or 
interventions. 

This lack of evidence has two direct 
consequences for this report. First, it has 
informed the key recommendations in this 
report regarding the need for evidence to be 
at the core of dependable software system 
development; for data collection efforts 
to be established; and for transparency 
and openness to be encouraged. Second, 
it has tempered the committee’s desire 
to provide prescriptive guidance: The 
approach recommended is therefore 
largely free of endorsements or criticisms 

of particular development approaches, 
tools, or techniques. Moreover, the report 
leaves to the developers and procurers of 
individual systems the question of what 
level of dependability is appropriate, and 
what costs are worth incurring to achieve it. 

Nonetheless, the evidence available 
to the committee did support several 
qualitative conclusions. First, developing 
software to meet even existing 
dependability criteria is difficult and 
costly. Large software projects fail at a 
high rate, and the cost of projects that do 
succeed in delivering highly dependable 
software is often exorbitant. Second, 
the quality of software produced by the 
industry is extremely variable, and there 
is inadequate oversight in some critical 
areas. Today’s certification regimes and 
consensus standards have a mixed record. 
Some are largely ineffective, and some 
are counterproductive. They share a 
heavy reliance on testing, which cannot 
provide sufficient evidence for the high 
levels of dependability required in many 
critical applications. 

A final observation is that the culture 
of an organization in which software is 
produced can have a dramatic effect on 
its quality and dependability. It seems 
likely that the excellent record of avionics 
software is due in large part to a safety 
culture in that industry that encourages 
meticulous attention to detail, high 
aversion to risk, and realistic assessment 
of software, staff, and process. Indeed, 
much of the benefit of standards such 
as DO-178B, Software Considerations 
in Airborne Systems and Equipment 
Certification, may be due to the safety 
culture that their strictures induce. 

Toward certifiably 
dependable software

The focus of this report is a set of 
fundamental principles that underlie 

software system dependability and 
that suggest a different approach to 
the development and assessment of 
dependable software. Due to a lack of 
sufficient data to support or contradict 
any particular approach, a software 
system may not be declared “dependable” 
based on the method by which it 
was constructed. Rather, it should be 
regarded as dependable— certifiably 
dependable—only when adequate 
evidence has been marshaled in support 
of an argument for dependability that can 
be independently assessed. The goal of 
certifiably dependable software cannot 
therefore be achieved by mandating 
particular processes and approaches, 
regardless of their effectiveness in certain 
situations. Instead, software developers 
should marshal evidence to justify an 
explicit dependability claim that makes 
clear which properties in the real world 
the system is intended to establish. Such 
evidence forms a dependability case, 
and creating a dependability case is the 
cornerstone of the committee’s approach 
to developing certifiably dependable 
software systems. 

Explicit claims, evidence, 
and expertise

The committee’s proposed approach 
can be summarized in “the three Es”—
explicit claims, evidence, and expertise:

• Explicit claims. No system can be 
“dependable” in all respects and under 
all conditions. So to be useful, a claim 
of dependability must be explicit. It 
must articulate precisely the properties 
the system is expected to exhibit and 
the assumptions about the system’s 
environment upon which the claim is 
contingent. The claim should also indicate 
explicitly the level of dependability 
claimed, preferably in quantitative terms. 
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Different properties may be assured to 
different levels of dependability.  

• Evidence. For a system to be regarded 
as dependable, concrete evidence 
must be present that substantiates the 
dependability claim. This evidence will 
take the form of a dependability case 
arguing that the required properties 
follow from the combination of the 
properties of the system itself (that is, the 
implementation) and the environmental 
assumptions. Because testing alone 
is usually insufficient to establish 
properties, the case will typically combine 
evidence from testing with evidence 
from analysis. In addition, the case will 
inevitably involve appeals to the process 
by which the software was developed—
for example, to argue that the software 
deployed in the field is the same software 
that was subjected to analysis or testing.

• Expertise. Expertise—in software 

development, in the domain under 
consideration, and in the broader 
systems context, among other things—is 
necessary to achieve dependable systems. 
Flexibility is an important advantage of 
the proposed approach; in particular the 
developer is not required to follow any 
particular process or use any particular 
method or technology. This flexibility 
allows experts freedom to employ new 
techniques and to tailor the approach to 
the system’s application and domain. But 
the requirement to produce evidence is 
highly demanding and likely to stretch 
today’s best practices to their limit. It will 
therefore be essential that developers are 
familiar with best practices and deviate 
from them only for good reason. 

These prescriptions shape any 
particular development approach only in 
outline and give considerable freedom 
to developers in their choice of methods, 
languages, tools, and processes. This 
approach is not, of course, a silver bullet. 
There are no easy solutions to the problem 
of developing dependable software, and 
there will always be systems that cannot be 
built to the required level of dependability 
even using the latest methods. But, the 
approach recommended is aimed at 
producing certifiably dependable systems 
today, and the committee believes it holds 
promise for developing the systems that 
will be needed in the future. 

In the overall context of engineering, 
the basic tenets of the proposed approach 
are not controversial, so it may be a 
surprise to some that the approach is 
not already commonplace. Nor are the 
elements of the approach novel; they have 
been applied successfully for more than 
a decade. Nevertheless, this approach 
would require radical changes for most 
software development organizations 
and is likely to demand expertise that is 
currently in short supply. 

Systems engineering approach

Complementing “the three Es” are 
several systems engineering ideas that 
provide an essential foundation for the 
building of dependable software systems:

• Systems thinking. Engineering fields 
with long experience in building complex 
systems (for example, aerospace, 
chemical, and nuclear engineering) 
have developed approaches based on 
“systems thinking.” These approaches 
focus on properties of the system as a 
whole and on the interactions among its 
components, especially those interactions 
(often neglected) between a component 
being constructed and the components of 
its environment. As software has come to 
be deployed in—indeed has enabled—
increasingly complex systems, the system 
aspect has come to dominate in questions 
of software dependability.  

• Software as a system component. 
Dependability is not an intrinsic 
property of software. The committee 
strongly endorses the perspective of 
systems engineering, which views the 
software as one engineered artifact in 
a larger system of many components, 
some engineered and some given, and 
views the pursuit of dependability as 
a balancing of costs and benefits and 
a prioritization of risks. A software 
component that may be dependable in 
the context of one system might not be 
dependable in the context of another.

• Humans as components. People—
the operators and users (and even 
the developers and maintainers) of a 
system—may also be viewed as system 
components. If a system meets its 
dependability criteria only if people act 
in certain ways, then those people should 
be regarded as part of the system, and an 
estimate of the probability that they will 
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behave as required should be part of the 
evidence for dependability. 

• Real-world properties. The properties 
of interest to the user of a system are 
typically located in the physical world: 
that a radiotherapy machine deliver a 
certain dose, that a telephone transmit 
a sound wave faithfully, that a printer 
make appropriate ink marks on paper, 
and so on. The software, on the other 
hand, is typically specified in terms of 
properties at its interfaces, which usually 
involve phenomena that are not of direct 
interest to the user: that the radiotherapy 
machine, telephone, or printer send or 
receive certain signals at certain ports, 
with the inputs related to the outputs 
according to some rules. It is important, 
therefore, to distinguish the requirements 
of a software system, which represent 
these properties in the physical world, 
from the specification of a software 
system, which characterizes 
the behavior of the software 
system at its interface with 
the environment. When the 
software system is itself only 
one component of a larger 
system, the other components 
in the system (including 
perhaps, as explained above, 
the people who work with the system) 
will be viewed as part of the environment. 
The dependability properties of a software 
system, therefore, should be expressed 
as requirements, and the dependability 
case should demonstrate how these 
properties follow from the combination 
of the specification and the environmental 
assumptions. 

Coping with complexity

The need for evidence of 
dependability and the difficulty of 
producing such evidence for complex 
systems have a straightforward but 

profound implication. Any component 
for which compelling evidence of 
dependability has been amassed at 
reasonable cost will likely be small by 
the standards of most modern software 
systems. Every critical specification 
property, therefore, will have to be 
assured by one, or at most a few, small 
components. Sometimes it will not be 
possible to separate concerns so cleanly, 
and in that case, the dependability case 
may be less credible or more expensive 
to produce. 

As a result, one key to achieving 
dependability at reasonable cost is a 
serious and sustained commitment to 
simplicity, including simplicity of critical 
functions and simplicity in system 
interactions. This commitment is often 
the mark of true expertise. An awareness 
of the need for simplicity usually comes 
only with bitter experience and the 

humility gained from years of practice. 
There is no alternative to simplicity. 
Advances in technology or development 
methods will not make simplicity 
redundant; on the contrary, they will 
give it greater leverage. To achieve high 
levels of dependability in the foreseeable 
future, striving for simplicity is likely to 
be by far the most cost-effective of all 
interventions. Simplicity is not easy or 
cheap, but its rewards far outweigh its costs. 

The most important form 
of simplicity is that produced by 
independence, in which particular 
system-level properties are guaranteed by 

individual components much smaller than 
the system as a whole, which can preserve 
these properties despite failures in the 
rest of the system. Independence can be 
established in the overall design of the 
system, with the support of architectural 
mechanisms. Its effect is to dramatically 
reduce the cost of constructing a 
dependability case for a property, since 
only a relatively small part of the system 
needs to be considered. 

Appropriate simplicity and 
independence cannot be accomplished 
without addressing the challenges of 
“interactive complexity” and “tight 
coupling.” Both interactive complexity, 
where components may interact in 
unanticipated ways, and tight coupling, 
wherein a single fault cannot be isolated 
but brings about other faults that cascade 
through the system, are correlated 
with the likelihood of system failure. 

Software-intensive systems tend to have 
both attributes. Careful attention should 
therefore be paid to the risks of interactive 
complexity and tight coupling and the 
advantages of modularity, isolation, 
and redundancy. The interdependences 
among components of critical software 
systems should be analyzed to ensure that 
there is no fault propagation path from 
less critical components to more critical 
components, that modes of failure are 
well understood, and that failures are 
localized to the greatest extent possible. 
The reduction of interactive complexity 
and tight coupling can contribute not 

“Testing is indispensable, 
and no software system can be regarded as dependable 
if it has not been extensively tested...”
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only to the improvement of system 
dependability but also to the development 
of evidence and analysis in the service of 
a dependability case. 

Rigorous process and preserving 
the chain of evidence

Generating a dependability case 
after the fact, when a development is 
largely complete, might be possible 
in theory. But in practice, at least with 
today’s technology, the costs of doing so 
would be high, and it will be practical to 
develop a dependability case only if the 
system is built with its construction in 
mind. Each step in developing the software 
needs to preserve the chain of evidence on 
which will be based the argument that the 
resulting system is dependable. 

At the start, the domain and 
environmental assumptions and the 
required properties of the system should 
be made explicit; they should be expressed 
unambiguously and in a form that permits 
systematic analysis to ensure that there 
are no unresolvable conflicts between 
the required properties. Each subsequent 
stage of development should preserve 
the evidence chain—that these properties 
have been carried forward without being 
corrupted—so each form in which the 
requirements, design, or implementation 
is expressed should support analysis 
to permit checking that the required 
properties have been preserved. What 
is sufficient will vary with the required 
dependability, but preserving the evidence 
chain necessitates that the checks are 
carried out in a disciplined way, following 
a documented procedure, and leaving 
auditable records. 

The roles of testing, analysis, 
and formal methods

Testing is indispensable, and no 
software system can be regarded as 
dependable if it has not been extensively 

tested, even if its correctness has been 
proven mathematically. Testing may 
find flaws that elude analysis because 
it exercises the system in its entirety, 
whereas analysis must typically make 
assumptions about the execution 
platform, the external environment, and 
operator responses, any of which may 
turn out to be unwarranted. At the same 
time, it is important to realize that testing 
alone is rarely sufficient to establish high 
levels of dependability. It is erroneous 
to believe that a rigorous development 
process, in which testing and code review 
are the only verification techniques used, 
justifies claims of extraordinarily high 
levels of dependability. Some certification 
schemes, for example, associate higher 
safety integrity levels with more 
burdensome process prescriptions and 
imply that following the processes 
recommended for the highest integrity 
levels will ensure that the failure rate is 
minuscule. In the absence of a carefully 
constructed dependability case, such 
confidence is misplaced. 

Because testing alone will not be 
sufficient for the foreseeable future, 
the dependability claim will also 
require evidence produced by analysis. 
Moreover, because analysis links the 
software artifacts directly to the claimed 
properties, the analysis component of the 
dependability case will usually contribute 
confidence at a lower cost than testing 
for the highest levels of dependability. A 
dependability case will generally require 
many forms of analysis, including (1) the 
validation of environmental assumptions, 
use models, and fault models; (2) the 
analysis of fault tolerance measures 
against fault models; (3) schedulability 
analysis for temporal behaviors; (4) 
security analysis against attack models; 
(5) verification of code against module 
specifications; and (6) checking that 

modules in aggregate achieve appropriate 
system-level effects. These analyses will 
sometimes involve informal argument 
that is carefully reviewed; sometimes 
mechanical inference (as performed, for 
example, by “type checkers” that confirm 
that memory is used in a consistent way 
and that boundaries between modules are 
respected); and, sometimes, formal proof. 
Indeed, the dependability case for even 
a relatively simple system will usually 
require all of these kinds of analysis, and 
they will need to be fitted together into a 
coherent whole. 

Traditional software development 
methods rely on human inspection and 
testing for validation and verification. 
Formal methods also use testing, but 
they employ notations and languages 
that are amenable to rigorous analysis, 
and they exploit mechanical tools 
for reasoning about the properties of 
requirements, specifications, designs, and 
code. Practitioners have been skeptical 
about the practicality of formal methods. 
Increasingly, however, there is evidence 
that formal methods can yield systems 
of very high dependability in a cost-
effective manner, at least for small- to 
medium-sized critical systems. Although 
formal methods are typically more 
expensive to apply when only low levels 
of dependability are required, the cost of 
traditional methods rises rapidly with the 
level of dependability and often becomes 
prohibitive. When a highly dependable 
system is required, therefore, a formal 
approach may be the most cost effective. 

Certification, 
transparency, 
and accountability

A variety of certification regimes 
exist for software in particular application 
domains. For example, the Federal 
Aviation Authority (FAA) itself certifies 



The Next Wave n Vol 19 No 1 n 2011   41

FEATURE

new aircraft (and air-traffic management) 
systems that include software, and this 
certification is then relied on by the 
customers who buy and use the aircraft; 
the National Information Assurance 
Partnership (NIAP) licenses third-party 
laboratories to assess security software 
products for conformance to the Common 
Criteria. Some large organizations have 
their own regimes for certifying that 
the software products they buy meet the 
organization’s quality criteria, and many 
software product manufacturers have 
their own criteria that each version of 
their product must pass before release. 

Few, if any, existing certification 
regimes encompass the combination 
of characteristics recommended in this 
report—namely, explicit dependability 
claims, evidence for those claims, and 
a rigorous argument that demonstrates 
that the evidence is sufficient to 
establish the validity of the claims. To 
establish that a system is dependable 
will involve inspection and analysis of 
the dependability claim and the evidence 
offered in its support. Where the customer 
for the system is not able to carry out that 
work itself (for lack of time or lack of 
expertise) it may need to involve a third 
party whose judgment it can rely on to 
be independent of commercial pressures 
from the vendor. Certification can take 
many forms, from self-certification by the 
supplier at one extreme, to independent 
third-party certification by a licensed 
certification authority at the other. No 
single certification regime is suitable for 
all circumstances, so a suitable scheme 
should be chosen for each circumstance. 
Industry groups and professional societies 
should consider developing model 
certification schemes appropriate to their 
domains, taking account of the detailed 
recommendations in this report. 

When choosing suppliers and 
products, customers and users can make 
informed judgments only if the claims 
are credible. Such claims are unlikely to 
be credible if the evidence underlying 
them is not transparent. Economists have 
established that if consumers cannot 
reliably observe quality before they buy, 
sellers may get little economic benefit 
from providing higher quality than their 
competitors, and overall quality can 
decline. Sellers are concerned about 
future sales, and “reputation effects” 
compel them to strive to maintain a 
minimum level of quality. If consumers 
rely heavily on branding, though, it 
becomes more difficult for new firms to 
enter the market, and quality innovations 
spread more slowly. 

Those claiming dependability for 
their software should therefore make 
available the details of their claims, 
criteria, and evidence. To assess the 
credibility of such details effectively, an 
evaluator should be able to calibrate not 
only the technical claims and evidence 
but also the organization that produced 
them, because the integrity of the 
evidence chain is vital and cannot easily 
be assessed without supporting data. This 
suggests that in some cases data of a more 
general nature should be made available, 
including the qualifications of the 
personnel involved in the development; 
the track record of the organization in 
providing dependable software; and 
the process by which the software was 
developed. The willingness of a supplier 
to provide such data, and the clarity and 
integrity of the data that the supplier 
provides, will be a strong indication of its 
attitude to dependability. 

Where there is a need to deploy 
software that satisfies a particular 
dependability claim, it should always be 

explicit who is accountable for any failure 
to achieve it. Such accountability can be 
made explicit in the purchase contract, 
or as part of certification of the software, 
or as part of a professional licensing 
scheme, or in other ways. Since no single 
solution will suit all the circumstances 
in which certifiably dependable software 
systems are deployed, accountability 
regimes should be tailored to particular 
circumstances. At present, it is common 
for software developers to disclaim, 
so far as possible, all liability for 
defects in their products, to a greater 
extent than customers and society 
expect from manufacturers in other 
industries. Clearly, no software should 
be considered dependable if it is supplied 
with a disclaimer that withholds the 
manufacturer’s commitment to provide a 
warranty or other remedies for software 
that fails to meet its dependability claims. 
Determining the appropriate scale of 
remedies, however, was beyond the scope 
of this study and would require a careful 
analysis of benefits and costs, taking 
into account not only the legal issues but 
also the state of software engineering, 
the various submarkets for software, 
the economic impact, and the effect on 
innovation. 

Key findings and 
recommendations

Presented below are the committee’s 
findings and recommendations, each 
of which is discussed in more detail in 
Chapter 4. (The full report is available at: 
http://www.nap.edu/catalog.php?record_
id=11923 )

Findings

Improvements in software 
development are needed to keep pace 
with societal demands for software. 
Avoidable software failures have already 
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been responsible for loss of life and for 
major economic losses. The quality 
of software produced by the industry 
is extremely variable, and there is 
inadequate oversight in several critical 
areas. More pervasive deployment of 
software in the civic infrastructure may 
lead to catastrophic failures unless 
improvements are made. Software has 
the potential to bring dramatic benefits 
to society, but it will not be possible to 
realize these benefits—especially in 
critical applications—unless software 
becomes more dependable. 

More data is needed about 
software failures and the efficacy of 
development approaches. Assessment 
of the state of the software industry, the 
risks posed by software, and progress 
made is currently hampered by the lack 
of a coherent source of information about 
software failures. 

Recommendations to builders 
and users of software

Make the most of effective 
software development technologies 
and formal methods. A variety of 
modern technologies—in particular, safe 
programming languages, static analysis 
(analysis of software and source code 
done without actually executing the 
program), and formal methods— are 
likely to reduce the cost and difficulty of 
producing dependable software. 

Follow proven principles for 
software development. The committee’s 
proposed approach also includes 
adherence to the following principles: 

• Take a systems perspective. Here the 
dependability of software is viewed not 
in terms of intrinsic properties (such as 
the incidence of bugs in the code) but 
rather in terms of the system as a whole, 
including interactions among people, 
process, and technology.

• Exploit simplicity. If dependability 
is to be achieved at reasonable cost, 
simplicity should become a key goal, and 
developers and customers must be willing 
to accept the compromises it entails. 

Make a dependability case for a 
given system and context: evidence, 
explicitness, and expertise. A software 
system should be regarded as dependable 
only if sufficient evidence of its explicitly 
articulated properties is presented to 
substantiate the dependability claim. 
This approach gives considerable leeway 
to developers to use whatever practices 
are best suited to the problem at hand. 
In practice the challenges of developing 
dependable software are sufficiently great 
that developers will need considerable 
expertise, and they will have to justify 
any deviations from best practices.

Demand more transparency, so 
that customers and users can make more 
informed judgments about dependability. 
Customers and users can make informed 
judgments when choosing suppliers 
and products only if the claims, criteria, 
and evidence for dependability are 
transparent.

Make use of but do not rely solely 
on process and testing. Testing will be an 
essential component of a dependability 
case, but will not in general suffice, 
because even the largest test suites 
typically used will not exercise enough 
paths to provide evidence that the software 
is correct nor will it have sufficient 
statistical significance for the levels of 
confidence usually desired. Rigorous 
process is essential for preserving the 
chain of dependability evidence but is not 
per se evidence of dependability. 

Base certification on inspection 
and analysis of the dependability claim 
and the evidence offered in its support. 
Because testing and process alone are 

insufficient, the dependability claim will 
require, in addition, evidence produced 
by other modes of analysis. Security 
certification in particular should go 
beyond functional testing of the security 
components of a system and assess the 
effectiveness of measures the developer 
took to prevent the introduction of 
security vulnerabilities. 

Include security considerations 
in the dependability case. Security 
vulnerabilities can undermine the case 
made for dependability properties 
by violating assumptions about how 
components behave, about their 
interactions, or about the expected 
behavior of users. The dependability 
case must therefore account explicitly 
for security risks that might compromise 
its other aspects. It is also important to 
ensure that security certifications give 
meaningful assurance of resistance to 
attack. New security certification regimes 
are needed that can provide confidence 
that most attacks against certified products 
or systems will fail. Such regimes can be 
built by applying the other findings and 
recommendations of this report, with an 
emphasis on the role of the environment—
in particular, the assumptions made about 
the potential actions of a hostile attacker 
and the likelihood that new classes of 
vulnerabilities will be discovered and 
new attacks developed to exploit them.  

Demand accountability and make it 
explicit. Where there is a need to deploy 
certifiably dependable software, it should 
always be made explicit who or what is 
accountable, professionally and legally, 
for any failure to achieve the declared 
dependability. 

Recommendations to agencies 
and organizations that support 
software education and research

The committee was not constituted 
or charged to recommend budget levels 
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or to assess trade-offs between software 
dependability and other priorities. 
However, it believes that the increasing 
importance of software to society and 
the extraordinary challenge currently 
faced in producing software of adequate 
dependability provide a strong rationale 
for investment in education and research 
initiatives. 

Place greater emphasis on 
dependability—and its fundamental 
underpinnings—in the high school, 
undergraduate, and graduate education of 
software developers. Many practitioners 
do not have an adequate appreciation of the 
software dependability issues discussed 
in this report, are not aware of the most 
effective development practices available 
today, or are not capable of applying them 
appropriately. Wider implementation of 
the committee’s recommended approach, 
which goes beyond today’s state of 
the practice, implies a need for further 
education and training activities. 

Federal agencies that support 
information technology research and 
development should give priority to basic 
research to further software-enabled 
system dependability, emphasizing a 
systems perspective and evidence. In 
keeping with this report’s approach, such 
research should emphasize a systems 
perspective and “the three Es” (explicit 
claims, evidence, and expertise) and 
should be informed by a systems view 
that attaches more importance to those 
advances that are likely to have an impact 
in a world of large systems interacting 
with other systems and operators in 
a complex physical environment and 
organizational context.  

About the report
This report was authored by the 

National Research Council’s (NRC) 
Committee on Certifiably Dependable 

Software Systems, convened under the 
auspices of the NRC’s Computer Science 
and Telecommunications Board. The 
committee consisted of 13 experts from 
industry and academia specializing in 
diverse aspects of systems dependability 
including software engineering, software 
testing and evaluation, software 
dependability, embedded systems, 
human-computer interaction, systems 
engineering, systems architecture, 
accident theory, standards setting, 
avionics, medicine, economics, security, 
and regulatory policy. Committee chair 
Daniel Jackson, a professor of Computer 
Science at MIT; committee member 
Martyn Thomas, visiting professor 
of software engineering at Oxford 
University; and Lynette Millett, senior 
staff officer at the NRC, edited the report. 

Discussions initiated by the  
High Confidence Software and 
Systems Coordinating Group (HCSS 
CG) of the National Science and 
Technology Council’s Networking and 
Information Technology Research and 
Development (NITRD) Subcommittee 
with the NRC’s Computer Science and 
Telecommunications Board resulted 
in this study on the current state of 
certification in dependable systems. 
Funding for the study was obtained from 
HCSS CG member agencies.
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Critical Code:
Software Producibility for Defense

A Short Summary

The rapid growth in the role of software in defense systems is significant and 
parallels the growing role of software in a broad range of application domains, 
ranging from financial services and health care to telecommunications, logistics, 

and transportation. This growth is reflected in recent macroeconomic studies, which 
suggest that in the US and Europe 20 percent to 25 percent of overall economic growth 
and nearly 40 percent of the increase in overall economic productivity since 1995 
are attributed to information and communications technology. It is also reflected in 
individual systems. For example, in modern automobiles, the portion of system functions 
performed in software is now 40 percent and approaching 50 percent. In the DoD, the 
growth has been even more profound—in military aircraft, for example, the percentage 
of system functions performed by software has risen to more than 80 percent. 

This growth of software in role and significance is a natural outcome of its special 
engineering characteristics: software is uniquely unbounded and flexible, having relative-
ly few intrinsic limits on the degree to which it can be scaled in complexity and capability. 
This is because software is an abstract and purely synthetic medium that, for the most 
part, lacks fundamental physical limits and natural constraints. For example, unlike 
physical hardware, software can be delivered and upgraded electronically and remotely, 
greatly facilitating rapid adaptation to changes in adversary threats, mission priorities, 
technology, and other aspects of the operating environment. The principal constraint on 
what can be accomplished is the human intellectual capacity to understand problems 
and systems, to build tools to manage them, and to provide assurance—all at ever-
greater levels of scale and complexity.

The extent of the DoD code in service has been increasing by more than an order 
of magnitude every decade, and a similar growth pattern has been exhibited within 
individual, long-lived military systems. In addition to this growth in size, there is a cor-
responding growth in overall systems capability, complexity, interconnectedness, and 
agility. This growth is enabled by the increasing power of software languages, tools, 
and practices, as well as by a significant growth in the dependence of DoD systems on 
increasingly complex, diverse, and geographically distributed supply chains. These supply 
chains include not only custom components developed for specific mission purposes, but 
also commercial and open-source ecosystems and components, such as the widely used 
infrastructures for web services, mobile devices, and graphical user interaction.

Because of the rapid growth in significance of software capability to the DoD 
overall, the Director of Defense Research and Engineering (now Assistant Secretary of 
Defense for Research and Engineering) requested the National Research Council (NRC) 
Committee for Advancing Software-Intensive Systems Producibility to undertake a study 
to address the challenges of defense software producibility, identifying the principal 
challenges and developing recommendations regarding both improvements to practice 
and priorities for research. The NRC committee just released its final report, titled 
Critical Code: Software Producibility for Defense. Full copies of the report (free PDF 
download and book purchase), along with related prior reports, are available through 
the National Academy Press at http://www.nap.edu/catalog.php?record_id=12979. 
This article summarizes the principal findings and recommendations of that report.
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The necessity of sustaining 
software innovation 

An initial question is whether 
software is indeed a strategic building 
material, worthy of special attention. This 
question has been addressed periodically 
by the Defense Science Board (DSB) 
since 1985—a 2007 DSB report, for 
example, stated that “in the Department 
of Defense, the transformational effects 
of information technology (IT—defined 
here broadly to include all forms of 
computing and communications), joined 
with a culture of information sharing, 
called Net-Centricity, constitute a 
powerful force multiplier. The DoD 
has become increasingly dependent for 
mission-critical functionality upon highly 
interconnected, globally sourced IT of 
dramatically varying quality, reliability, 
and trustworthiness.” 

Despite the strength of this statement, 
every few years speculation surfaces 
that perhaps software and information 
technology may be approaching a plateau 
of capability and performance and that 
strategic attention to these technologies is 
consequently not merited. The committee 
emphasizes that this continues to be a 
false and dangerous speculation—the 
capability and the complexity of hardware 
and software systems are both rising at an 
accelerating rate, with no end in sight. 

It is instructive, in this regard, to 
consider the publication in 1958—more 
than a half century ago—of the landmark 

paper by John Backus describing the 
first Fortran compiler. The title included 
the words “automatic programming.” 
The point of this phrase, with respect 
to Backus’s great accomplishment, 
is that there was a much more direct 
correspondence between his high-level 
programming notation—the earliest 
Fortran code—and pure mathematical 
thinking than had been the case with 
the early machine-level code. One can 
construe that it was imagined that Fortran 
enabled mathematicians to express 
their thoughts directly to computers, 
seemingly without the intervention of 
programmers. The early Fortran was 
indeed an extraordinary and historical 
breakthrough. But we know that, in the 
end, those mathematicians of 50 years 
ago soon evolved into programmers—as 
a direct consequence of their growing 
ambitions for computing applications. 

Just a few years after the Backus 
paper, Fortran was used to support list-
processing applications, typesetting 
applications, compilers for other 
languages, and other applications whose 
abstractions required some considerable 
programming sophistication (and 
representational gerrymandering) to be 
represented effectively as early Fortran 
data structures—arrays and numeric 
values. Any program that manipulated 
textual data, for example, needed to 
encode the text characters, textual strings, 
and any overarching paragraph and 

document structure very explicitly into 
numbers and arrays. A person reading 
program text would see only numerical 
and array operations because that was 
the limit of what could be explicitly 
expressed in the notation. This meant 
that programmers needed to keep track, 
in their heads or in documentation, of the 
nature of this representational encoding. 
It also meant that testers and evaluators 
needed to assess programs through this 
(hopefully) same layer of interpretation. 

As languages have evolved 
(including more modern Fortran 
versions), these additional structures 
can be much more directly expressed—
characters and strings, most obviously, 
are intrinsic in nearly all modern 
languages. It is interesting, however, that 
the claim of “automatic programming” 
continues to reappear from time to time 
as major steps are made in improved 
abstractions, for example related to 
data manipulation (the so-called 4GLs). 
These developments move us forward, 
but ironically they do not actually get 
us closer to “eliminating programmers” 
or otherwise emerging at some plateau 
of capability and near-commodity 
status. Instead, new software-manifest 
capabilities are constantly emerging—
for example, techniques for machine-
learning algorithms and highly parallel 
data-intensive analytics—that continue 
to demand considerable intellectual effort 
on the part of programmers. 
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The profound fact is that software 
capability is bounded primarily by 
our intellectual abilities—our human 
capability both to create new abstractions 
appropriate for application domains 
and to manifest those abstractions in 
languages, models, tools, and practices. 
As our understanding advances, so can 
our software capability advance with us.

As a consequence of this seeming 
unboundedness, the committee finds that 
technological leadership in software is a 
key driver of overall capability leadership 
in systems—and that at the core of the 
ability to achieve integration and maintain 
mission agility is the ability of the DoD 
to produce and evolve software. The 
committee recommends that, to avoid 
loss of leadership, the DoD take active 

steps to become more fully engaged 
in the innovative processes related to 
software producibility. In particular, 
the committee finds that industry, despite 
the extraordinary pace of innovation we 
are now witnessing, will not produce 
software innovations in areas of defense 
significance at a rate fast enough to 
allow the DoD to fully meet its software-
related requirements and remain ahead of 
potential adversaries. 

A loss of leadership could threaten 
the ability of the DoD to manifest 
world-leading capability, and also to 
achieve adequate levels of assurance 
for the diversely sourced software it 
intends to deploy. This is an important 
part of the rationale for the committee 
recommendation that the DoD reengage 
directly in the innovation processes.

The committee also finds that 
although the DoD relies fundamentally 

on mainstream commercial and open 
source components, supply chains, and 
software ecosystems, it nonetheless has 
special needs in its mission systems that 
are driven by the growing role of software 
in systems overall. The committee 
recommends that the DoD regularly 
undertake an identification of areas 
of technological need where the DoD 
has “leading demand” and where 
accelerated progress is needed.

Three goals for software-
intensive development 

The committee identified three areas 
where improvements in practice would 
materially benefit the ability of the DoD 
to develop, sustain, and assure software-
intensive systems of all kinds. Each of 
these areas is the subject of a chapter in 

the Critical Code report. (These three 
areas of practice correspond to Chapters 
2, 3, and 4. Chapter 1 of the report focuses 
on the necessary role of DoD in software 
innovation. Chapter 5 summarizes the 
research agenda related to software 
producibility.) The three areas of practice 
are summarized below:

Practice improvement 1: 
Process and measurement 

Advances related to process and 
measurement would facilitate broader 
and more effective use of incremental 
iterative development, particularly in 
the arms-length contracting situations 
common in DoD. 

Incremental development practices 
enable continuous identification and 
mitigation of engineering risks during 
a systems development process. 
Engineering risks pertain to the 
consequences of particular choices to be 

made within an engineering process—
the risks are high when the outcomes of 
immediate project commitments are both 
consequential and difficult to predict. 
Engineering risks can relate to many 
different kinds of engineering decisions—
most significantly architecture, quality 
attributes, functional characteristics, and 
infrastructure choices. 

When well managed, incremental 
practices can enable innovative 
engineering to be accomplished without a 
necessarily consequent increase of overall 
programmatic risk. (Programmatic risk 
relates to the successful completion 
of engineering projects with respect 
to expectations and priorities for cost, 
schedule, capability, quality, and other 
attributes.) This is because incremental 

practices enable engineering 
risks to be identified early 
and mitigated promptly. 
Incremental practices are 
enabled through the use 
of diverse techniques such 
as modeling, simulation, 

prototyping, and other means for early 
validation—coupled with extensions to 
earned-value models that measure and 
give credit for the accumulating body 
of evidence in support of feasibility. 
Incremental approaches include iterative 
approaches, staged acquisition, evidence-
based systems engineering, and other 
methods that explicitly acknowledge 
engineering risk and its mitigation. 

The committee finds that 
incremental and iterative methods are 
of fundamental significance to DoD 
for innovative, software-intensive 
engineering in the DoD, and they can 
be managed more effectively through 
improvements in practices and supporting 
tools. The committee recommends a 
diverse set of improvements related 
to advanced incremental development 
practice, supporting tools, and earned-
value models.

“...to avoid loss of leadership, 
the DoD [should] take active steps to become more fully engaged 
in the innovative processes related to software producibility.”
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Practice improvement 2: 
Architecture

Advances related to architecture 
practice would facilitate the early focus 
on systems architecture that is essential 
particularly for systems with demanding 
requirements related to quality attributes, 
interlinking, and planned flexibility.

Software architecture models the 
structures of a system that comprises 
software components, the externally 
visible properties of those components, 
and the relationships among the 
components. Good architecture entails 
a minimum of engineering commitment 
that yields a maximum value. In particular, 
architecture design is an engineering 
activity that is separate, for example, 
from ecosystems certification and other 
standards-related policy setting.

For complex innovative systems, 
architecture definition embodies 
planning for flexibility—defining and 
encapsulating areas where innovation 
and change are anticipated. Architecture 
definition also most strongly influences 
diverse quality attributes, ranging from 
availability and performance to security 
and isolation. Additionally, architecture 
embodies planning for the interlinking of 
systems and for product line development, 
enabling encapsulation of individual 
innovative elements of a system. 

For many innovative systems, 
therefore, it may be more effective to 
consider architecture and quality attributes 
before making specific commitments 
to functionality. Because architecture 
includes the earliest and, often, the 
most important design decisions—those 
engineering costs that are most difficult 
to change later—early architectural 
commitment (and validation) can 
yield better project outcomes with less 
programmatic risk. 

The committee finds that in highly 
complex systems with emphasis on 

quality attributes, architecture decisions 
may dominate functional capability 
choices in overall significance. The 
committee also notes that architecture 
practice in many areas of industry is 
sufficiently mature for DoD to adopt. 
The committee recommends that DoD 
more aggressively assert architectural 
leadership, with an early focus on 
architecture being essential for systems 
with innovative functionality or 
demanding quality requirements. 

Practice improvement 3: 
Assurance and security 

Advances related to assurance and 
security would facilitate achievement of 
mission assurance for systems at greater 
degrees of scale and complexity, and 
in the presence of rich supply chains 
and architectural ecosystems that are 
increasingly commonplace in modern 
software engineering. 

Assurance is a human judgment 
regarding not just functionality, but 
also diverse quality attributes related 
to reliability, security, safety, and other 

system characteristics. The weights 
given the various attributes are typically 
determined on the basis of models of 
hazards associated with the operational 
context, including potential threats. The 
process of achieving software assurance, 
regardless of sector, is generally recognized 
to account for approximately half the total 
development cost for major projects. 

In addition to overall cost, DoD 
faces several particular challenges for 
assurance. First, there is often an arms-
length relationship between a contractor 
development team and government 
stakeholders, making it difficult to develop 
and share the information necessary to 
making assurance judgments. This can 
lead to approaches that overly focus on 
post hoc acceptance evaluation, rather 
than on the emerging practice of “building 
in” evidence in support of an overall 
assurance case. Second, modern systems 
draw on components from diverse 
sources. This implies that supply-chain 
and configuration-related attacks must 
be contemplated, with “attack surfaces” 
existing within an overall application, 
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and not just at its perimeter. This has 
the consequence that evaluative and 
preventive approaches ideally must be 
integrated throughout a complex supply 
chain. A particular challenge is managing 
opaque, or “black box,” components in a 
system—this issue is addressed in the full 
report. Third, the growing role of DoD 
software in warfighting, in protection of 
national assets, and in the safeguarding 
of human lives creates a diminishing 
tolerance for faulty assurance judgments. 
Indeed, the Defense Science Board 
notes that there are profound risks 
associated with the increasing reliance 
on modern software-intensive systems: 
“this growing dependency is a source of 
weakness exacerbated by the mounting 
size, complexity, and interconnectedness 
of its software programs.” Fourth, 
losing the lead in the ability to evaluate 
software and to prevent attacks can confer 
advantage to adversaries with respect 
to both offense and defense. It can also 
force us to overly “dumb down” systems, 
restricting functionality or performance to 
a level such that assurance judgments can 
be more readily achieved.

The Defense Science Board found 
in 2007 that “it is an essential requirement 
that the United States maintain advanced 
capability for ‘test and evaluation’ of IT 
products. Reputation-based or trust-based 
credentialing of software (‘provenance’) 
needs to be augmented by direct, artifact-
focused means to support acceptance 
evaluation.” This is a significant 
challenge, due to the rapid advance of 
software technology generally and also 
the increasing pace by which potential 
adversaries are advancing their capability. 
This, coupled with the observations 
above regarding software innovation, is 
an important part of the rationale for the 
committee recommendation that the DoD 
actively and directly address its software 
producibility needs.

In the full report, the committee 
addressed a broad range of issues related 
to software assurance, including evidence-
based approaches, evaluation practices, 
and security-motivated challenges related 
to configuration integrity (particularly in 
the presence of dynamism) and separation 
(including isolation and sandboxing). 

The committee notes that traditional 
approaches based purely on testing and 
inspection, no matter how extensive, are 
often insufficiently effective for modern 
software systems. It emphasizes that 
evaluation practices that focus primarily 
on post hoc acceptance evaluation are not 
only very costly but are often insufficient 
to justify useful assurance judgments. 
That is, quality and security must be 
built in, and not “tested in”—with the 
consequence that evidence production in 
support of assurance must be integrated 
into software development.

The committee finds that assurance 
is facilitated by advances in diverse aspects 
of software engineering practice and 
technology, including modeling, analysis, 
tools and environments, traceability 
and configuration management, 
programming languages, and process 
support. The committee also finds that, 
after many years of slow progress, 
recent advances have enabled more 
rapid improvement in assurance-related 
techniques and tools. This is already 
evident in the most advanced commercial 
development practice. The committee 
also finds that simultaneous creation of 
assurance-related evidence with ongoing 
development has high potential to 
improve the overall assurance of systems. 
The committee recommends enhancing 
incentives for preventive software 
assurance practices and production of 
assurance-related evidence throughout 
the software lifecycle and through 
the software supply chain. This 
includes both contractor and in-house 
development efforts. 

The challenge of DoD 
software expertise 

The committee also took up 
the issue of software expertise that is 
specifically aligned with DoD interests. 
The committee found that DoD has a 
growing need for software expertise, 
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but that it is not able to meet this need 
through intrinsic resources. This need 
is essential for the DoD to be a smart 
software customer and program manager, 
particularly for larger-scale innovative 
software-intensive projects. In particular, 
access to DoD-aligned expertise is 
important for the DoD to be able to take 
effective action in the three areas of 
practice that are identified above. Access 
to DoD-aligned expertise has been an 
area of ongoing challenge to the DoD, 
with recommendations made by various 
panels and committees since the 1980s. 

The need to reinvigorate 
DoD software engineering 
research 

In addition to recommending 
improvements to the three areas of 
practice, as outlined above, the committee 
identified seven areas of supporting 
research for consideration by science 
and technology program managers 
(managing 6.1, 6.2, and 6.3a funds and 
equivalent). These areas are identified on 
the basis of four criteria: (1) Advances 
would yield significant potential value for 
DoD software producibility. (2) A well-
managed research program would result 
in feasible progress. (3) The goals are not 
addressed sufficiently by other federal 
agencies. (4) The pace of development 
in industry or research labs would be 
otherwise insufficient. 

In each of the seven areas, the 
committee identified specific goals for 
research and technology development 
that, in its judgment, could feasibly meet 
the four criteria. The areas and, for each, 
the identified goals are summarized 
below. (Details are in the full report.)
1. Architecture modeling and 
architectural analysis. Goals include: 
(1) Early validation for architecture 
decisions; (2) Architecture-aware systems 
management, including: Rich supply 
chains, ecosystems, and infrastructure; 

(3) Component-based development, 
including architectural designs for 
particular domains
2. Validation, verification, and analysis 
of design and code. Goals include: 
(1) Effective evaluation for critical quality 
attributes; (2) Components in large 
heterogeneous systems; (3) Preventive 
methods to achieve assurance, including 
process improvement, architectural 
building blocks, programming languages, 
coding practice, etc.
3. Process support and economic 
models for assurance. Goals include: 
(1) Enhanced process support for assured 
software development, (2) Models for 
evidence production in software supply 
chains, (3) Application of economic 
principles to process decision-making
4. Requirements. Goals include: 
(1) Expressive models, supporting tools 
for functional and quality attributes; 
(2) Improved support for traceability and 
early validation
5. Language, modeling, coding, and 
tools. Goals include: (1) Expressive 
programming languages for emerging 
challenges, (2) Exploit modern 
concurrency: shared-memory and scalable 
distributed, (3) Developer productivity 
for new development and evolution
6. Cyber-physical systems. Goals 
include: (1) New conventional 
architectures for control systems, 
(2) Improved architectures for embedded 
applications
7. Human-system interaction. Goals 
include: (1) Engineering practices for 
systems in which humans play critical 
roles. (This area is elaborated in a 
separate NRC report.)

Under the auspices of the Office of 
Science and Technology Policy (OSTP) 
and the National Science and Technology 
Council (NSTC), there is a National 
Coordination Office for the Networking 
and Information Technology Research 

and Development (NITRD) program. The 
NITRD program provides a framework 
for diverse federal agencies to coordinate 
R&D in areas related to networking and 
information technology. The framework 
includes two areas that primarily relate to 
software producibility, which are Software 
Design and Productivity (SDP) and 
High Confidence Software and Systems 
(HCSS). There is also a third area, Cyber 
Security and Information Assurance 
(CSIA) that encompasses some activities 
related to software producibility. 

The committee undertook a 
longitudinal study of sponsored R&D 
budgets as identified in NITRD reports, 
with specific focus on SDP and HCSS. 
It found that while NITRD overall has 
grown over the past decade, there has 
been a significant reduction in both 
overall and DoD-sponsored R&D in SDP 
and HCSS. The committee recommends 
that DoD take immediate action to 
reinvigorate its investment in software 
producibility research, with focus in 
the seven identified areas.  



50  Cyber-Physical Systems (CPS)

Our vision is one of fundamentally 
cyber-physical systems that exhibit 
deeply integrated computational and 
physical capability, interacting with 
humans through many new modalities. In 
this future, the ability to interact with, and 
expand capabilities of, the physical world 
through computational means will be the 
key technological multiplier. Individual 
precursors are seen in the control of 
inherently unstable systems such as flying 
wings and other extreme-performance 
aircraft, automobiles with hybrid gas-
electric or hydrogen-electric car engines 
and enhanced vehicle stability systems, 
fully autonomous urban driving, medical 
devices for deep brain stimulation, and 
prostheses that allow brain activity to 
control physical objects. A rich field of 
innovative research is envisioned that 
can advance human progress through 
the tensor product of cyber (computing, 
communication, and control) technology 
and the dynamics of natural and 

engineered physical systems—as well as 
their interactions with human participants. 

What will such future systems 
be like? Every system action will be 
engineered to exploit both cyber and 
physical capability, deeply integrated 
throughout the system. Systems will 
interact with humans in entirely new 
ways, sharing authority. They may be 
highly tailored to the requirements and 
needs of individual users and uses, hence 
highly heterogeneous. These systems 
will be extensively, even ubiquitously, 
networked. The majority of the systems 
will be configured from cooperating 
components that interoperate through 
a complex mechanical, electrical, 
biological, and/or chemical system, 
coupled with a physical environment such 
as a human. Many (perhaps most) systems 
will be safety-, life-, or mission-critical 
and must be highly dependable, available, 
and secure. They will exhibit complex 
dynamics at many spatial and temporal 

scales. They will need to be predictive, 
reactive to conditions and external events 
with predictable and accurate timing, and 
receptive to coordination and (private) 
negotiation. Control loops may need to 
be closed at various levels and scales. 
Topologies may adapt and reconfigure. 
Cyber-physical systems (CPS) will have 
to be fault tolerant and recoverable, 
satisfying potentially very high 
availability and timeliness requirements.

CPS is a vision then for developing 
a scientific and engineering foundation 
for routinely building cyber-enabled 
engineered systems in which cyber 
capability is deeply embedded at all 
scales, yet which remain safe, secure, 
and dependable—“systems you can bet 
your life on.” The CPS challenge spans 
essentially every engineering domain. It 
will require the integration of knowledge 
and engineering principles across 
many computational and engineering 
research disciplines (computing, 

Cyber-Physical 
Systems (CPS)

Over its brief history, most of the computer science and engineering field has focused on systems 
 (e.g., the Internet and Web) that enable humans through information, communication, 
and knowledge. Just as the first wave of desktop and high-performance computing technology 

revolutionized the way people interact with information and with each other, the second wave will 
revolutionize the way humans interact with their physical environment.
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networking, control, human interaction, 
learning theory, as well as electrical, 
mechanical, chemical, biomedical, nano-
bioengineering, and other engineering 
disciplines) to develop a “new CPS 
science.” 

Impact/need for the CPS 
initiative

A new foundation is required for 
future CPS. The existing science and 
engineering base does not support the 
routine, efficient, and robust design 
and development of these inherently 
complex systems. Such complex systems 
must possess trustworthy qualities that 
are lacking in much of today’s cyber 
infrastructures. Today we can produce 
(at great cost and effort) exceptionally 
complicated systems. We lack, however, 
the scientific and engineering foundations 
to securely, safely, and systematically 
understand, build, manage, and adapt CPS 
that remain reliable as they interact across 
internal subsystems, with each other, with 
human users, and with highly complex 
and uncertain physical environments. 

The design complexity of x-by-
wire for complex systems already is 
outstripping safe engineering design and 
implementation. Also, the opportunities 
for mischief in this generation of 
technology will make today’s Internet 
security problems pale by comparison. The 
consequence is inefficient, unsound, and 
potentially dangerous design outcomes, as 
well as tedious, costly, and failure-prone 
design cycles. Certification is estimated 
to consume 50 percent of the resources 
required to develop new, safety-critical 
systems in the aviation industry. Similar 
estimates are predicted for the medical 
and automotive domains. Over-design 
currently is the only path to safety and 
successful system certification, leading to 
a mindset of optimizing for a narrow task 
instead of encouraging adaptability and 

evolvability. Yet, wide design margins 
both limit performance and may vanish in 
the face of changing usage patterns. This 
lack of design discipline induces extreme 
risk in technology-impoverished sectors 
such as the electric power industry. 

The objective of an initiative would 
be to establish unified foundations and 
technologies, and exemplars for rigorous 
joint engineering of the cyber, physical, 
and human aspects of systems. This 
objective includes science and technology 
for the engineering of cyber and physical 
components that must be integrated to 
constitute such systems. Additionally, 
this objective includes the cyber-
physical characterization of complex 
environments and human action, within 
which such systems must operate and to 
which they contribute. In contrast with 
today’s artisanal approach, our objective 
is to build foundations, tools, and highly 
capable infrastructure for rigorous design 
and engineering of 21st century systems 
that are truly cyber-physical.

Today, CPS grand challenges are 
being articulated in many sectors (for 
example, net-zero energy buildings, a 
smart grid, energy management systems 
for petroleum-free energy, zero-fatality 
and zero-crash highway and vehicle 
systems, zero-prototype manufacturing,  
and the wireless and highly automated 
operating room of the future). These 
heavily computation-, control-, and 
communication-centric systems call for 
a new, unified systems science and new 
engineering technologies imagined by 
the CPS initiative. In a keynote address 
on the challenges of design automation 
for emerging vehicle technologies, 
Scott Staley, Chief Engineer, Hybrid & 
Fuel Cell Technology Development for 
Ford Motor Company argued the need 
to abandon ad hoc experimental design 
approaches and find more rigorous 
methods, saying, “…incremental 

modifications on the status quo will not 

work!” Don Winter, Vice President for 

Engineering and Information Technology, 

Boeing Phantom Works, in a hearing 

before the House Science Committee, 

called for “a national strategy in which 

long-term CPS technology needs are 

addressed by combined government and 

corporate investment.” 

A focused initiative in CPS is 

needed that would seek to maximize 

human capability and well-being through 

computationally enabled engineered and 

physical systems. The goal would be to 

usher in a new era of CPS for which we 

have end-to-end science and engineering 

principles. The extent to which such 

advances are achieved will determine 

(and can transform) the course of US 

innovation; advancement of consumer 

health, safety, and security; and gov-

ernment agency mission effectiveness.  
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