```
$oninline
GAMS program used to estimate graph efficiency.
Author: John B. Walden
     NMFS/NEFSC
     166 Water St.
     Woods Hole, MA 02543
     (508) 495-2355
     John.Walden@Noaa.Gov
Reference: Färe, R., S. Grosskopf and C.A.K. Lovell. 1994. Production Frontiers.
Cambridge University Press.
*/
/* The following line turns off listing of some elements in the GAMS listing file*/
$OFFSYMLIST OFFSYMXREF OFFUELLIST OFFUELXREF
OPTION SOLPRINT=OFF, SYSOUT=OFF, LIMROW=0, LIMCOL=0;
SET INOUT /out1*out6, fix1*fix3, var1, var2/
  OUTPUT(INOUT) /out1*out6/
  INPUT(INOUT) /fix1*fix3, var1, var2/
  OBS /1*200/
  SUBOBS(OBS) /1*82/
  ACTOBS(OBS);
/*We have allocated enough memory for 200 observations, but our data set only contains 82 observations (subobs)*/
/*Next, define an alias for the set SUBOBS */
alias (subobs, subobs1)
/* The include statement below reads in an external datafile which contains a table of observations, inputs
and outputs. The files is in comma separted value format (CSV) which can be written from, and read
into spreadsheet programs
The offlisting command means that the data won't be included in the listing file.
$OFFLISTING
TABLE ACT(OBS, INOUT) INPUT OUTPUT TABLE
$ondelim
$INCLUDE "cap1.csv"
$offdelim
```

\$ONLISTING

VARIABLES

```
efficiency score
GAMMA
weight(obs) weights
POSITIVE Variable weight;
EQUATIONS
 CONSTR1(OUTPUT, OBS) DEA constraint for each output
 CONSTR2(INPUT, OBS) DEA constraint for each input;
 CONSTR1(OUTPUT, ACTOBS).. SUM(SUBOBS, WEIGHT(SUBOBS)*ACT(SUBOBS,OUTPUT))
                                 =G= ACT(ACTOBS,OUTPUT);
 CONSTR2(INPUT, ACTOBS).. SUM(SUBOBS, WEIGHT(SUBOBS)*ACT(SUBOBS, INPUT))
                                  =L= Gamma*ACT(ACTOBS,INPUT);
/*Define a parameter to hold results for each pass through the loop*/
PARAMETER
 score1(obs) objective values
 score2(obs) efficiency scores
/*Define an external file to hold results which tell whether model solved at each iteration*/
file primal2 /te_graph_v2.txt/
/* The file te_res.txt holds information for each pass through the loop so you know the model solved at each iteration*/
MODEL TE /ALL/;
Te.solprint=2;
te.solvelink=2;
LOOP(SUBOBS1,
   ACTOBS(OBS)=NO;
   ACTOBS(SUBOBS1)=YES;
   SOLVE TE minimizing GAMMA USING LP;
   score1(subobs1)=Gamma.l;
   score2(SUBOBS1) = GAmma.1**(1/2);
  put primal2;
```

```
if ((te.modelstat eq 1 and te.solvestat eq 1),
    put @1, subobs1.tl, @10, "optimal", @20, "normal completion" /
   else
     put @1, subobs1.tl, @10, te.modelstat:>2:0,
        @20, te.solvestat:>2:0/
   );
);
/*The next file is to output results to a file to be imported into a spreadsheet program. Results could also be printed to
the listing file with the use of the display command*/
file res /'graph_crs.csv'/;
res.pc=5;
res.pw=500;
put res;
put 'Obs', 'gamma', 'efficiency';
put /
loop (subobs1,
  put /
    put subobs1.tl,score1(subobs1), score2(subobs1);
    );
putclose;
```