
NOAA Technical Memorandum NMFS-NE-160
This report series represents a secondary level of scientifiic publishing. All issues
employ thorough internal scientific review; some issues employ external scientific
review. By design, reviews are transparent collegial reviews, not anonymous peer
reviews. All issues may be cited in formal scientific communications.

U. S. DEPARTMENT OF COMMERCE
Norman Y. Mineta, Secretary

National Oceanic and Atmospheric Administration
D. James Baker, Administrator

National Marine Fisheries Service
Penelope D. Dalton, Assistant Administrator for Fisheries

Northeast Region
Northeast Fisheries Science Center

Woods Hole, Massachusetts

October 2000

1National Marine Fisheries Serv., Woods Hole Lab., Woods Hole, MA 02543
2Coll. of William & Mary, Virginia Inst. of Marine Science, Gloucester Point, VA 23062

John B. Walden1 and James E. Kirkley2

Measuring Technical Efficiency and Capacity
in Fisheries by Data Envelopment Analysis

Using the General Algebraic
Modeling System (GAMS): A Workbook

iiiPage

Contents

Introduction ... 1
Brief Overview of DEA ... 1
Input-Oriented Technical Efficiency .. 2
Output-Oriented Technical Efficiency ... 3
Output-Oriented DEA Model with Slack Variables .. 4
Measuring Capacity with an Output-Oriented DEA Model .. 5
Modeling Returns to Scale ... 6
Modeling Capacity Utilization .. 6
Summary and Conclusions .. 7
Endnotes .. 7
Acknowledgments ... 7
References Cited ... 7

Figures

Figure 1. Output-oriented DEA model ... 9
Figure 2. Input-oriented DEA model .. 9
Figure 3. Example of a GAMS program to solve an input-oriented DEA model which measures technical

efficiency .. 10
Figure 4. Example of a GAMS program to solve an output-oriented DEA model which measures technical

efficiency .. 10
Figure 5. Format of data in a Microsoft Excel file which can be read into GAMS .. 11
Figure 6. Example of a GAMS program to solve an output-oriented DEA model which measures technical

efficiency, and which allows slack variables to be included by modifying the constraints and
incorporating them explicitly ... 11

Figure 7. Example of a GAMS program to solve an output-oriented DEA model which measures capacity 12
Figure 8. Example of programming steps which can adjust the GAMS program exemplified in Figure 7 in

order to impose variable or nonincreasing returns to scale ... 12
Figure 9. Example of a GAMS program to solve an output-oriented DEA model which estimates technical

efficiency, capacity output, and capacity utilization ... 13

Tables

Table 1. Example of results from both an input- and output-oriented DEA model ... 14
Table 2. Example of results from an output-oriented DEA model, including slack variables 14
Table 3. Example of results from the capacity DEA model ... 14
Table 4. Example of results from output-oriented DEA models with different assumptions regarding

returns to scale .. 15
Table 5. Example of capacity and capacity utilization based on an output-oriented DEA model 15

Acronyms

CU = capacity utilization
CRS = constant returns to scale
CSV = comma-separated value
DEA = data envelopment analysis
DMU = decision-making unit
GAMS = General Algebraic Modeling System
NRS = nonincreasing returns to scale
VRS = variable returns to scale

1Page

INTRODUCTION

This workbook presents several programs for model-
ing production efficiency and fishing capacity which were
prepared for the National Marine Fisheries Service Work-
shop on Capacity Estimation in Marine Fisheries (�Na-
tional Capacity Workshop�) held in Silver Spring, Mary-
land, during September 29 - October 1, 1999. The pro-
grams are written in the General Algebraic Modeling Sys-
tem (GAMS) language, a mathematical programming lan-
guage used in a variety of linear, nonlinear, and mixed-
integer programming models, general equilibrium mod-
els, and network models.1

Each program in this workbook uses data envelopment
analysis (DEA) to calculate measures of productive effi-
ciency and fishing capacity. DEA was developed over 20
yr ago as a tool in management science to examine effi-
ciency in the public sector (Charnes et al. 1994). The
programs are based on a DEA model written in GAMS by
Olesen and Petersen (1996), who argue that GAMS is pref-
erable to the specialized DEA software packages currently
available because of the flexibility that GAMS offers. The
user can easily modify GAMS code to account for changes
to the �standard� DEA model, and can exert greater con-
trol over output formats, features not typically available
in the specialized packages. These features are important
in fisheries where production analysis often differs from
that available with the standard models.

The programs in this workbook are simplified versions
of those programs presented at the National Capacity
Workshop, and are designed to show the basic GAMS syn-
tax for developing DEA models. Because there was little
time at the workshop to discuss all of the programs, this
workbook was prepared. Each workbook program is pre-
ceded by a description of the mathematical model on which
it is based, and then followed by an explanation of impor-
tant program sections.

BRIEF OVERVIEW OF DEA

Charnes, Cooper, and Rhodes first introduced DEA in
1978. DEA extended the Farrell (1957) technical mea-
sure of efficiency from a single-input, single-output pro-
cess to a multiple-input, multiple-output process. Since
then, DEA has been used to assess efficiency in many dif-
ferent areas, ranging from the public sector to natural re-
source sectors such as the fishing industry.

DEA uses linear programming methods to extract in-
formation about the production process of each decision-
making unit (DMU, e.g., firm or fishing vessel). This in-
formation extraction is accomplished by calculating a
maximum performance measure for each firm, and com-
paring this measure to similarly calculated measures for
all other firms. Each firm�s performance measure traces
out a best-practice frontier, and all DMUs lie either on or
below the frontier (Charnes et al. 1994). A best-practice

frontier maps out the maximum level of output (minimum
level of input) that could be produced (used) for any given
level of input (output). Figure 1 shows a graphical repre-
sentation of an output-oriented DEA model with a single
input for 10 firms. The best-practice frontier is traced
through the points representing the maximum level of out-
put for a given input; any points below the frontier are
deemed inefficient. For example, the DMU at point (8,12)
produces 12 units of output with 8 units of input, while
the DMU at point (8,9) produces 9 units of output with 8
units of input. The second DMU is deemed to be ineffi-
cient compared to the first because only 9 units of output
(versus 12) are produced for the same level of input. In-
efficiency for any DMU is determined by comparison to
either another DMU or to a convex combination of other
DMUs on the frontier which utilize the same level of in-
put and produce the same or higher level of output. The
analysis is accomplished by requiring solutions that can
increase some outputs (decrease some inputs) without
worsening the other inputs or outputs (Charnes et al.
1994).

The one-input, one-output case can be expanded to
cases involving multiple inputs and multiple outputs.
Charnes et al. (1978) proposed a method in which the
multiple-input, multiple-output model was reduced to a
ratio with a single �virtual� input and single �virtual� out-
put by estimating a set of weights depicting each DMU in
the most favorable position relative to other DMUs. In
equation form, the model is as follows:

u,v i ioi

r rjr

i iji

r

i ioi

i

i ioi

(u,v)
v x

u y
v x

j n

u
v x

r s

v
v x

i m

Max h

1, for = 0,1,...,

, for = 1,..., and

, for = 1,...,

0

s.t.:

= ∑
∑

∑
∑

≤

∑
≥

∑
≥

u y

,

,

,

r ror

ε

ε

where:

yrj = quantity of output r produced by firm j,
xij = quantity of input i produced by firm j,
ur = weight for output r,
vi = weight for input i, and
, = small positive quantity.

The estimated ratio provides a measure of technical
efficiency for each DMU. However, there are an infinite
number of solutions because if (u*,v*) is optimal, then
($u*,$v*) is also optimal for $ > 0 (Charnes et al. 1994).
This problem is corrected by converting the ratio form
into an equivalent linear programming problem as follows:

Page 2

where:

8 = efficiency measure to be calculated for each DMU j,
ujm = quantity of output m produced by DMU j,
xjn = quantity of input n used by DMU j, and
zj = intensity variable for DMU j.

Since the variable 8 is calculated for each DMU, the
preceding formulation is estimated once for each DMU
in the data set. Equations 1 and 2 define a set of con-
straints for each output and input. If there are two outputs,
Equation 1 will define a set of constraints, one for each
output. A value of 8=1.0 means that a firm is considered
efficient, while a value 8<1.0 means a firm is inefficient.
Thus, a value of 8=0.70 means that a firm could reduce its
inputs by 30%, and produce the same level of output. An
example of the GAMS formulation for this model is shown
in Figure 3. In this example, there are two outputs, called
�spec1� and �spec2�, and four inputs, called �fix1�, �fix2�,
�var1�, and �var2�.2

Lines 1-6 define six sets to be used in the model. Sets
are the basic building blocks of GAMS, and correspond to
the m, n, and j indexes in the DEA technical efficiency
equations. Line 1 defines a set called �inout� which has as
members �spec1�, �spec2�, �fix1�, �fix2�, �var1�, and
�var2�. All inputs and outputs are defined as members of
one set initially. Lines 2 and 3 define subsets of �inout�
that contain, respectively, the outputs (m) or inputs (n),
initially included as members of �inout�. Subsets can only
contain elements which exist in a previously defined set.
Lines 4-6 define sets which correspond to index j. Line 4
defines a set called �obs� which contains 500 members.
Line 5 defines a subset of �obs�, called �subobs�, which in
this case holds the first 10 members of set �obs�. Declar-
ing �subobs� to be a subset of �obs� allows different sets
of data to be used as long as they contain between 1 and
500 observations. In GAMS syntax, the �*� operator in a
set declaration signifies all elements between 1 and 10.
This is simpler than typing in 1,2,3,...,10, especially when
there are a large number of observations. Line 6 declares
another subset of �obs�, called �actobs�, which is initially
empty. This is referred to in GAMS as a dynamic set, be-
cause its membership can change.

Line 7 is an example of an alias statement, which al-
lows the set �subobs� to be referred to using either the
name �subobs�, or �subobs1�. As shown in line 22, this is
needed for the �loop� statement. Line 8 reads the data
that will be used in the model through the use of the �table�
statement. In this example, a table �act�, with indexes �obs�
and �inout�, is declared, and the values are initialized with
the �table� statement. The rows of table �act� correspond
to observations (j), while the columns correspond to ei-
ther inputs or outputs. The column headings need to align
with the data contained in the column, so each data ele-
ment is right justified. For large data sets, it is usually
easier to read in an external file containing the data. An
example of this will be shown in a subsequent program.

u v
r ro

r

i i
i

r
r

rj i ij
i

r

i

u y

v x

u y v x

u
v

,

,

,

,
.

Max w

and

0

s.t.:

= ∑

∑ =

∑ −∑ ≤

≥
≥

0 1

0

ε
ε

Färe et al. (1994) developed a variation of the pre-
ceding linear programming approach to model efficiency,
productivity, and capacity. The models they use measure
the efficiency of individual producers by constructing a
�best-practice frontier� through a piecewise linear envel-
opment of the data generated by all producers in the group.
Estimates generated by those models are therefore �rela-
tive� measures based on the best producers within the
group.

The following sections describe several linear pro-
gramming models to estimate input and output technical
efficiency and capacity output based on the approach used
by Färe et al. (1994). Each model is accompanied by an
example and description of a GAMS program to solve the
model.

INPUT-ORIENTED TECHNICAL
EFFICIENCY

An input-oriented technical efficiency model exam-
ines the vector of inputs used in the production of any
output bundle, and measures whether a firm is using the
minimum inputs necessary to produce a given bundle of
outputs. Efficiency is measured by the maximum reduc-
tion in inputs which will still allow a given output bundle
to be produced. Figure 2 depicts the results of an input-
oriented model using a single-input, single-output example.
Firms to the right of the frontier are deemed to be ineffi-
cient because they could produce the same level of output
for less input. For example, the point (6,5) means 6 units
of input are used to produce 5 units of output. Another
firm is using 3 units of input to produce 5 units of output.
The first firm is technically inefficient compared to the
second firm because much more input is used to produce
the same level of output.

Färe et al. (1994) proposed the following input-ori-
ented DEA model to measure technical efficiency:

λ
λ

λ

,

, , ,..., ,

, , ,..., ,

, , ,... ,

z

jm j
j

J

jm

j
j

J

jn jn

j

u z u m M

z x x n N

z j J

Min

s.t.:

≤ ∑ =

∑ ≤ =

≥ =

=

=

1

1

12

12

0 12

Eq 1

Eq 2

Eq 3

3Page

Line 9 uses a semicolon to end the �table� statement. It is
generally good practice to end every GAMS statement with
a semicolon, as is shown on lines 6, 7, and 9.

Lines 10-13 define the variables to be used in the
model. Variables are sometimes referred to as activities,
columns, decision variables, or endogenous variables.
Variable values are generally unknown until after the model
is solved. The two variables in this example are called
�lambda� and �weight�. �Lambda� is the decision variable
to be optimized, while �weight� is the intensity variable
that corresponds to zj in Equations 1, 2, and 3. Line 13
declares �weight� to be a positive variable. The default
variable type in GAMS is free, meaning variables can take
on positive or negative values.3 The decision variable
�lambda� must be of type free.

Lines 14-18 define the equations used in the model.
Equations must first be declared in GAMS (lines 15 and
16) and then defined (lines 17 and 18). �Constr1� is in-
dexed over the sets �output� and �obs�, while �constr2� is
indexed over the sets input and �obs�. When the equations
are defined in lines 17 and 18, the subsets �actobs� and
�subobs� are substituted for the set �obs�. The reason will
be clear after examining programming lines 22-28. Be-
ing able to index an equation is a very powerful tool.
�Constr1� actually defines 20 different equations because
there are two outputs and 10 observations, and this is suc-
cinctly represented by one equation definition. On lines
17 and 18 immediately after the equations are found two
dots �..�; these are required by GAMS in the equation defi-
nition.

Lines 19 and 20 define a parameter �score1�, used to
hold results from the model. Line 21 defines a model
called �tedea�, which consists of two equations, �constr1�
and �constr2�. An alternative way to define this model
would be as follows: �model tedea /all/;�. This indicates
that GAMS should use all (or in this case both) of the equa-
tions in the model. By specifying which equations to in-
clude in the model, one has the ability to use several dif-
ferent model formulations in the same program.

Lines 22-28 solve the model. In a DEA model, the
linear programming problem is solved once for each DMU,
which is accomplished in GAMS through the use of the
�loop� statement (line 22). Because the subset �subobs�
is referenced in the equation definitions, the loop has to
be indexed over subset �subobs1� (which has been declared
previously to be an alias for �subobs�). In line 23, the set
�actobs� is made an empty set, which is needed for each
pass through the loop. In line 24, one observation is added
to the set �actobs�, which is the current observation of
subset �subobs1�. Referring back to the equation defini-
tions on lines 17 and 18, this has the effect of indexing
�constr1� only over the set �output�, and indexing �constr2�
only over the set input, because �actobs� only contains
one observation (j0). Comparing these equations with the
mathematical model reveals that the right- and left-hand
sides of Equation 1 have been switched and that the in-
equality has been reversed. However, the fundamental re-

lationship of the equation remains the same. Line 25 tells
GAMS to use the OSL solver to solve the LP model. The
default solver that comes with GAMS is BDMLP, but this
software was found not to solve more complex models at
each iteration. Both the OSL and the MINOS5 solvers are
able to solve most DEA problems.4 Line 26 solves the
model through the SOLVE statement, by telling GAMS to
minimize �lambda�. Line 27 stores the value of �lambda�
obtained from each solve statement in the parameter
�score1�. The �.l� extension tells GAMS to use the solu-
tion value of �lambda�. The �loop� statement is then closed
on line 28 with a �);�. Line 29 uses the display statement
in GAMS to print the values held in parameter �score1� to
the listing file.

Results from this model are shown in Table 1 (along
with the results from the output-oriented model which will
be presented in the next section). Only observation #4 is
deemed to be efficient (8=1.00). All other observations
could reduce their inputs and still produce the same level
of output, if they used their inputs as efficiently as obser-
vation #4.

OUTPUT-ORIENTED TECHNICAL
EFFICIENCY

Output technical efficiency is a measure of the poten-
tial output of a DMU given that inputs are held constant.
Färe et al. (1994) modeled the output technical efficiency
measure for any DMU using linear programming:

θ
θ

θ

,

, , ,..., ,

, , ,..., ,

, , ,...., .

z

jm j
j

J
jm

j
j

J

jn jn

j

u z u m M

z x x n N

z j J

Max

and

s.t.:

≤ ∑ =

∑ ≤ =

≥ =

=

=

1

1

12

12

0 12

where:

2 = output technical efficiency measure,
ujm = quantity of output m produced by DMU j,
xjn = quantity of input n produced by DMU j, and
zj = intensity variable for DMU j.

An example of the GAMS formulation for this model
is shown in Figure 4. This example uses the same inputs
and outputs as the previous example. A value of 2=1.0
signifies that the DMU is efficient; a value of 2>1.0 indi-
cates that the DMU is inefficient. For example, a score
of 1.25 means that it should be possible to increase all

Page 4

outputs from a DMU by 25% with the same level of in-
puts.

In Figure 4, line 1 is an example of a dollar control
operator.5 This operator allows comments to be placed
on lines using a �/*� to begin the comment and a �*/� to
end the comment. Line 2 shows an example of a com-
ment in the GAMS program. Lines 3-8 are the same as
lines 1-6 in the input-oriented program, and define the sets
used in the program.

Lines 10-13 demonstrate a way to read in data from an
external file. In this example, a comma-separated value
(CSV), Microsoft Excel file is read into the program. Line
10 names the table �act�, and defines it to consist of di-
mension �obs� and �inout�. Line 11 shows the use of the
dollar control operator �$ondelim�, which allows GAMS
to read a CSV-formatted file from Microsoft Excel. Line
12 uses the �$include� command to read into GAMS the
contents of an external file (in the format shown in Figure
5). The first column of the input file must have a heading
of �dummy� for the file to be properly read into GAMS.

Lines 14-17 define the variables used in the model,
while lines 18-22 declare the equations and then define
them. Line 25 defines an external file where results will
be written, and names this file �primal�. Lines 26-32 are
the same as in the input-oriented program, with the excep-
tion that the variable �theta� is to be maximized rather than
�lambda� minimized.

Lines 33-37 write messages to an external file indi-
cating whether the model was solved at each iteration. This
is important because the model may fail to solve some
observations but may successfully solve others. By ex-
amining these messages, the user can easily see if the
model solved at each iteration. Line 33 is telling GAMS
that the file referenced by the name �primal� is the cur-
rent file, and items referenced through further use of the
�put� statement are to be written to that file. Lines 34-37
use an �if-else� construct to determine what messages will
be written to file �primal�. Line 34 tests the return codes
from GAMS to determine if the model solved correctly.
The suffix �.modelstat� appended to �tedea� tests for a re-
turn code of �1�, which indicates that the solution is opti-
mal. The suffix �.solvestat� informs the user that the solver
terminated normally and there were no problems solving
the model when the return code is �1�. If the model solved
correctly and the solver completed normally, then line 35
instructs that the observation number, the term �optimal�,
and the term �normal completion� be written out to a file.
If these conditions do not exist, then lines 36 and 37 indi-
cate that the codes which are returned should be written to
the file.6

Lines 39-44 write the technical efficiency results to
a CSV file which can be opened in Excel. Line 40 tells
GAMS that the file will be of type �.csv�, by using the
suffix �.pc�, and setting this equal to 5.7 Lines 42 and 43
use a loop structure to print out the observation number
(or DMU) and the efficiency estimate that was stored in

parameter �score1�. Line 44 closes the open file �res�
with the �putclose� command.

Results from the output-oriented model are summa-
rized in Table 1. The inefficient firms are identical to those
found using the input-oriented model. In fact, results for
the output-oriented model are equal to 1/8.8 Theta values
from the output-oriented model indicate how much each
DMU should be able to increase output production given
that the inputs are held constant. For example, in Table 1,
firm (observation) #1 had a value of 2=1.10. This value
indicates that this firm should have been able to increase
production of both �spec1� and �spec2� by 10% (e.g.,
13,295x1.1; 27,065x1.1), if inputs were used as efficiently
as firm (observation) #4.

AN OUTPUT-ORIENTED MODEL WITH
SLACK VARIABLES

In the output-oriented technical efficiency model,
DMUs are deemed to be efficient if 2=1, and inefficient
if 2>1. For the inefficient DMUs, outputs are expanded
proportionally by multiplying theta times output. How-
ever, by incorporating slack values, nonradial levels can
be obtained which are greater then radially expanded out-
put levels. In a linear programming model, slack values
are derived by converting inequality constraints to equal-
ity constraints and adding slack variables. A full discus-
sion of slack values is given in Intriligator (1971), but the
general approach can be seen in the following simple ex-
ample from Intriligator (1971):

The non-negativity condition on the slack variables
ensures that the inequality constraints are met. Revising
the output-oriented model in the prior section yields the
following model formulation:

x
x

g x b
x

Max F()

and
0

s.t.:

() ,≤
≥

The problem is now written as :

s b g x s s s sm≡ − = ′() (, ,...,),1 2 3

x,s
x

g(x) s b
x
s

Max F

 + = ,
0, and

s.t.:

()

.
≥
≥ 0

Inequality constraints are turned into equality con-
straints by adding a vector of m slack variables:

5Page

same as obtained from the output-oriented technical effi-
ciency model. Slack values for output �spec1� are pro-
vided for each observation except #4, which is on the best-
practice frontier (2=1 and slack values are zero). For all
observations, the slack for �spec2� is zero.

MEASURING CAPACITY WITH AN
OUTPUT-ORIENTED DEA MODEL

Färe et al. (1994) developed a DEA model of capacity
based on the definition of capacity given by Johansen
(1968): Capacity is the �maximum amount that can be
produced per unit of time with existing plant and equip-
ment, provided that the availability of variable factors of
production is not restricted.� To model capacity, the in-
put vector is separated into a subvector of fixed inputs,
and a subvector of variable inputs. The subvector of fixed
inputs is bounded by observed values, while the bounds on
the variable inputs are allowed to vary. This essentially
constrains production by the fixed factors, consistent with
the Johansen definition.

The mathematical model proposed by Färe et al.
(1994) is as follows:

Equation 4 defines a set of constraints for each output
which equates theta times the observed output level for
DMU j to the sum over all DMUs of the intensity vari-
ables (zj) times each DMU�s output level, minus the slack
output level. The non-negativity constraint (Equation 7)
on the slack variable means that the variable will have a
value of zero or greater. When the left-hand side of Equa-
tion 4 equals the summation on the right-hand side, the
slack variable is zero. When the left-hand side is less than
the summation on the right-hand side, the slack variable is
positive, so that the equality constraint holds. Adding the
slack variable to each side of Equation 4 yields the fol-
lowing:

The zj variables map out the linear segments of the fron-
tier (Färe et al. 1994), and determine frontier output. By
adding the value of the slack variable sm to the term 2ujm,
the output for product m on the left-hand side of Equation
9 is exactly equal to the frontier output on the right-hand
side.

GAMS9 allows the user to display the values of the
slack variables directly, but slack variables can also be in-
cluded by modifying the constraints and incorporating them
explicitly. An example is Figure 6, which uses the origi-
nal output-oriented technical efficiency program from the
previous section.

In Figure 6, lines 1-13 set up the problem in the same
manner as the original output technical efficiency mea-
sure. Lines 14-18 define the variables to be used and in-
clude two new variables that were not in the previous ex-
ample. The variables �slack1�, to handle output slack, and
�slack2�, to handle input slack, are declared on lines 17
and 18.10 Line 19 specifies that both slack variables are
positive. Lines 23-24 define the equations that now in-
corporate the slack variables. Both equations have equal-
ity constraints rather than the inequality constraints that
were in the original output efficiency model. On line 36,
the output slack values returned by the model are stored in
parameter �score2�. Results from the program are then
written to a file on lines 45-60.

Table 2 shows results from the output-oriented DEA
model. Values of theta (the decision variable) are the

θu S z ujm m j
j

J
jm+ = ∑

=1

θ
θ

θ

, ,

, , ,..., ,

, , ,..., ,

, , ,...,
, , ,..., ,
, , ,..., .

z s

jm j
j

J

jm m

j
j

J

jn n jn

j

u z u S m M

z x S x n N

z j J,
m M
n N

Max

S and
S

s.t.:

m

n

= ∑ − =

∑ + = =

≥ =
≥ =
≥ =

=

=

1

1

12

12

0 12
0 12
0 12

Eq 4

Eq 5

Eq 6
Eq 7
Eq 8

Eq 9

where:

2 = capacity measure,
ujm = quantity of output m produced by firm j,
xjn = quantity of input n used by firm j,
n0Fx = inputs belonging to the set of fixed factors,
n0Vx = inputs belonging to the set of variable factors,
8jn = input utilization rate of variable input n by firm j, and
zj = intensity variable for firm j.

Programming of this model formulation in GAMS is
shown in Figure 7. One advantage GAMS has over other
available DEA programs is that it allows direct estimation
of 8, the variable input utilization rate. The value of lambda
is the ratio of the optimal use of each input to its actual
usage. For example, a value of 1.25 means that the vari-

θ λ
θ

θ

λ

λ

, ,

. .

, , ,..., ,

, ,

, ,

, , ,..., ,

, .

z
Max

jm j
j

J
jm

j
j

J
jn jn x

j
j

J
jn jn jn x

j

jn x

s t

u z u m M

z x x n F

z x x n V

z j J

n V

≤ =

≤ ∈

= ∈

≥ =

≥ ∈

=
∑

=
∑

=
∑

1

1

1

1 2

0 1 2

0

Page 6

able input should be increased 25% for a firm to be on the
best-practice frontier.

This GAMS model differs from the output-oriented
model in that the set of inputs is divided into two subsets
containing either fixed or variable inputs (lines 4 and 5).
Lines 6-15 are the same as in the output-oriented DEA
program, with the exception of lines 10 and 15. Line 10
instructs GAMS not to print the following lines to the list-
ing file. This is particularly useful in reducing the size of
the listing file when the data set is quite large. Line 15
instructs GAMS to resume printing to the listing file.

Lines 16-19 declare the variables used in the program.
The variable �lambda� (line 19) is declared over the set of
variable inputs. Lines 21-24 declare the model equations
with the input constraints addressed. Lines 31-44 are simi-
lar to the GAMS program used to model output-oriented
efficiency.

Lines 47-61 direct the output results to a CSV file
that can be read in Microsoft Excel. Lines 45 and 46 esti-
mate capacity in GAMS internally rather than externally.
Capacity for each DMU is calculated by multiplying theta
by each output, and then summing over all outputs. Lines
52-61 use a series of �loop� statements to write the re-
sults to a CSV file. Lines 51-54 put in header informa-
tion, while lines 55-61 write the data values and model
results to a file.

Table 3 presents the results from this model, and lists
the level of variable inputs used by each firm and the opti-
mal variable utilization rate, lambda. The optimal variable
utilization rate indicates how each firm would have to
change the use of each variable input to operate at capac-
ity. For example, for observation #2, variable input 1 would
need to be decreased to 5.04 (8x0.63), and variable input
2 would need to be increased to 185.4 (127x1.46).

MODELING RETURNS TO SCALE

The previous programs implicitly assume constant re-
turns to scale. From an economic viewpoint, allowing vari-
able returns to scale results in a less restrictive model
than that imposed by constant returns to scale. From an
operations research viewpoint, just the opposite is true
because an additional constraint, convexity, is imposed on
the model. The practical implication of �imposing� vari-
able returns to scale is that it is easier for some observa-
tions to be deemed efficient and placed on the frontier
because imposition of the convexity constraint means that
the supporting hyperplane does not have to pass through
the origin (Charnes et al. 1994).

To impose variable returns to scale, the following equa-
tion is added to the model:

Alternatively, to impose nonincreasing returns to scale
requires the following equation to be used:

Imposing variable or nonincreasing returns to scale
requires a single equation in GAMS. To show the pro-
gramming steps in GAMS, only the necessary adjustments
to the previous capacity output program are shown in Fig-
ure 8.

The DEA constraint imposing variable returns to scale
is declared on line 5, and then defined on line 9. Line 10
declares a model �tedea�, which includes all four equa-
tions. Line 9 could be modified to impose nonincreasing
returns to scale by changing the �=E=� (equality) to an
�=L=� (inequality).

Table 4 shows results from an output-oriented DEA
model under three different assumptions: 1)
nonincreasing returns to scale (NRS), 2) variable returns
to scale (VRS), and 3) constant returns to scale (CRS).
Both the NRS and CRS results are identical. With the VRS
model, it is easier for DMUs to be placed on the best-
practice frontier. This is evident in Table 4 in that more
observations have a score of 1.00 under the VRS model
then under the NRS or CRS models. Further explanation
into why this occurs can be found in Charnes et al. (1994)
and Färe et al. (1994).

MODELING CAPACITY UTILIZATION

Capacity utilization (CU) generally refers to the pro-
portion of potential capacity that is used, and is typically
measured as the ratio of actual output to capacity output
(Kirkley and Squires 1999). This ratio generally cannot
exceed 1.0. Färe et al. (1989) proposed that CU be mea-
sured as the ratio of output technical efficiency to capac-
ity output. This ratio corrects for downward bias that could
arise because actual observed output may be inefficiently
produced. Shown in Figure 9 is a GAMS program which
estimates technical efficiency, capacity output, and capac-
ity utilization.

The entire program will not be reviewed, but key lines
will be highlighted. Lines 28-31 define the four equa-
tions to be used. These equations have been previously
defined in the programs for output technical efficiency
and capacity output. A parameter �score1(obs,*)� is de-
fined on line 33, which will hold results from two differ-
ent models. The �*� allows use of explicit labels in the
parameter instead of a specific set. This is seen on line
45, where the label �TE� is used to hold the value of theta
estimated by GAMS.z j

j

J

=
∑ =

1
1

z j
j

J

=
∑ ≤

1
1

7Page

Lines 38 and 39 define two separate models. The first
(line 38) defines �tedea�, which models output technical
efficiency, and the second (line 39) defines �cap�, which
models capacity output. These models are solved in two
different �loop� statements, with the results stored in pa-
rameter �score1�. Capacity utilization is calculated in line
69, and then also stored in �score1�. Capacity for each
vessel is calculated in lines 70 and 71. The estimates of
technical efficiency, capacity output, total capacity, and
capacity utilization are written to a file in lines 72-91.

Table 5 presents the results from this program using
output-oriented DEA models with constant returns to scale.
For all observations (except observation #4), observed
capacity utilization was less than the unbiased capacity
utilization, as expected.

SUMMARY AND CONCLUSIONS

Various DEA models were presented which estimate
input-oriented technical efficiency, output-oriented tech-
nical efficiency (with and without explicit slack variables),
capacity, and capacity utilization. Each model was accom-
panied by a GAMS program. A key objective was to dem-
onstrate the flexibility of GAMS in modeling DEA prob-
lems. This is particularly important in fisheries where
production problems generally differ from the �standard�
model.

ENDNOTES

1. Information on GAMS can be obtained from the GAMS
website at www.gams.com.

2. �Spec1� and �spec2� are species landed by each ves-
sel; �fix1� and �fix2� are fixed inputs; and �var1� and
�var2� are variable inputs. The order in which vari-
ables are read into GAMS in the data table does not
matter, and the GAMS language is not case sensitive.

3. Variables can also be of type negative, binary, or inte-
ger.

4. A list of available solvers can be found at the GAMS
website, www.gams.com.

5. For a complete list of dollar control operators, see
the GAMS users guide.

6. A complete list of model status codes and solve status
codes can be found in the GAMS users guide.

7. A complete list of output file types can be found in the
GAMS users guide.

8. This result only holds when both models assume con-
stant returns to scale. Models with variable returns to
scale are discussed in a subsequent section.

9. There is a global option in GAMS which allows one to
obtain the slack values from the equation listing. In-
serting the line �option solslack=1;� forces the equa-
tion to display slack variables rather then level values.
A parameter could then be defined to hold the results
from the equation output as follows: �Parameter
score3(subobs1,output)=constr1.l(output,subobs1);�.
However, in this approach, the level values for the equa-
tions cannot be simultaneously obtained. For more
information on this, refer to the GAMS user manual.

10. Because the DEA program is being executed once per
DMU in the data set, the slack variables do not need to
be indexed over the set �obs�. An alternative formula-
tion for the output slack variable would be
�slack1(output, actobs)�.

ACKNOWLEDGMENTS

We thank Rita Curtis, Phil Logan, Barbara Rountree,
and Fred Serchuk for helpful comments and suggestions.

REFERENCES CITED

Charnes, A.; Cooper, W.; Lewin, A.; Seiford, L. 1994. Data
envelopment analysis, theory, methodology and applica-
tions. Norwell, MA: Kluwer Academic Publishers.

Charnes, A.; Cooper, W.; Rhodes, E. 1978. Measuring the
efficiency of decision making units. Eur. J. Oper. Res.
2(6):429-444.

Färe, R.; Grosskopf, S.; Kokkenlenbergl, E. 1989. Measur-
ing plant capacity utilization and technical change: a non-
parametric approach. Int. Econ. Rev. 30(1989):655-666.

Färe, R.; Grosskopf, S.; Lovell, C. 1994. Production fron-
tiers. New York, NY: Cambridge University Press.

Farrell, M.J. 1957. The measurement of productive effi-
ciency. J. R. Stat. Soc. Ser. A 120(3):253-290.

Intrilligator, M.D. 1971. Mathematical optimization and
economic theory. Englewood Cliffs, NJ: Prentice-Hall.

Johansen, L. 1968. Production functions and the concept of
capacity. In: Recent research on the function of produc-
tion. Namur, France: Namur University Center for Study
and Research.

Kirkley, J.; Squires, D. 1999. Capacity and capacity utiliza-
tion in fishing industries. [Unpubl. manuscr.]. Gloucester
Point, VA: Virginia Institute of Marine Science.

Olesen, O.B.; Petersen, N.C. 1996. A presentation of GAMS
for DEA. Comput. Oper. Res. 23(4):323-339.

Page 8

9Page

Figure 1. Output-oriented DEA model.

Figure 2. Input-oriented DEA model.

Page 10

1. Sets inout /spec1, spec2, fix1, fix2, var1, var2/
2. Output(inout) /spec1, spec2/
3. Input(inout) /fix1, fix2, var1, var2/
4. Obs /1*500/
5. Subobs(obs) /1*10/
6. Actobs(obs);
7. Alias (subobs, subobs1);
8. Table act(obs,inout) input output table

Spec1 Spec2 Fix1 Fix2 Var1 Var2

1 13295 27065 55 60 4 94
2 13255 10090 63 70 8 127
3 614 3427 59 59 6 35
4 106461 58705 63 69 5 185
5 3540 9130 53 60 5 46
6 602 6900 62 74 5 37
7 12920 18128 69 78 6 133
8 8312 5145 65 63 8 162
9 3276 4430 70 62 3 24
10 4143 8486 63 61 5 81

9. ;

10. Variables
11. Lambda efficiency score
12. Weight(obs) intensity variable;
13. Positive variable weight;
14. Equations
15. Constr1(output,obs) DEA constraint for each output
16. Constr2(input,obs) DEA constraint for each input;
17. Constr1(output,actobs).. sum(subobs,

weight(subobs)*act(subobs, output)) =G= act(actobs,output);
18. Constr2(input,actobs).. sum(subobs,

weight(subobs)*act(subobs,input)) =L= lambda*act(actobs,input);
19. Parameter
20. Score1(obs) efficiency scores;
21. Model tedea /constr1, constr2/;
22. Loop (subobs1,
23. Actobs(obs)=no;
24. Actobs(subobs1)=yes;
25. Option LP=OSL;
26. Solve tedea minimizing lambda using LP;
27. Score1(subobs1)=lambda.l;
28.);
29. Display score1;

Figure 3. Example of a GAMS program to solve an input-oriented DEA model which measures technical efficiency.

1. $oninline
2. /*next define inputs and outputs*/
3. Set inout /spec1, spec2, fix1, fix2, var1, var2/
4. Output(inout) /spec1, spec2/
5. Input(inout) /fix1, fix2, var1, var2/
6. Obs /1*500/
7. Subobs(obs) /1*10/
8. Actobs(obs);
9. Alias (subobs, subobs1)
10. Table act(obs,inout) input output table
11. $ondelim
12. $include "data.csv"
13. $offdelim
14. Variables
15. Theta efficiency score
16. Weight(obs) weights;
17. Positive variable weight;
18. Equations
19. Constr1(output,obs) DEA constraint for each output
20. Constr2(input,obs) DEA constraint for each input;
21. Constr1(output, actobs).. sum(subobs,weight(subobs)*act(subobs,

output)) =G= theta*act(actobs,output);
22. Constr2(input, actobs).. sum(subobs,

weight(subobs)*act(subobs,input)) =L= act(actobs, input);
23. Parameter
24. Score1(obs) efficiency scores;
25. File primal /teout_res.txt/;
26. Model tedea /constr1, constr2/;
27. Loop (subobs1,
28. Actobs(obs)=no;
29. Actobs(subobs1)=yes;
30. Option LP=OSL;
31. Solve tedea maximizing theta using LP;
32. Score1(subobs1)=theta.l;
33. Put primal;
34. If ((tedea.modelstat eq 1 and tedea.solvestat eq 1),
35. Put @1, subobs1.tl, @10, "optimal", @20, "normal completion"/
36. Else put @1, subobs1.tl, @10, tedea.modelstat:>2:0,
37. @20, tedea.solvestat:>2:0/);
38.);
39. File res /teoutput.csv/;
40. Res.pc=5;
41. Put res;
42. Loop (subobs1,
43. Put subobs1.tl, score1(subobs1)/);
44. Putclose;

Figure 4. Example of a GAMS program to solve an output-oriented DEA model which measures technical efficiency.

11Page

Dummy Spec1 Spec2 Fix1 Fix2 Var1 Var2

1 13295 27065 55 60 4 94

2 13255 10090 63 70 8 127

3 614 3427 59 59 6 35

4 106461 58705 63 69 5 185

5 3540 9130 53 60 5 46

6 602 6900 62 74 5 37

7 12920 18128 69 78 6 133

8 8312 5145 65 63 8 162

9 3276 4430 70 62 3 24

10 4143 8486 63 61 5 81

Figure 5. Format of data in a Microsoft Excel file which can be read into GAMS.

1. Set inout /spec1, spec2, fix1, fix2, var1, var2/
2. Output(inout) /spec1, spec2/
3. Input(inout) /fix1, fix2, var1, var2/
4. Obs /1*500/
5. Subobs(obs) /1*10/
6. Actobs(obs);
7. Alias (subobs, subobs1)
8. $offlisting
9. Table act(obs,inout) input output table
10. $ondelim
11. $Include "data.csv"
12. $offdelim
13. $onlisting
14. Variables
15. Theta efficiency score
16. Weight(obs) weights
17. Slack1(output) output slack
18. Slack2(input) input slack;
19. Positive variable weight, slack1, slack2;
20. Equations
21. Constr1(output,obs) DEA constraint for each output
22. Constr2(input,obs) DEA constraint for each input;
23. Constr1(output,actobs).. sum(subobs,

weight(subobs)*act(subobs, output))-slack1(output) =E=
theta*act(actobs, output);

24. Constr2(input, actobs)..
sum(subobs,weight(subobs)*act(subobs,input)) +slack2(input)
=E= act(actobs, input);

25. Parameter
26. Score1(obs) efficiency scores
27. Score2(obs,output) output slack values;
28. File primal /teout_res.txt/;
29. Model tedea /constr1, constr2/;

30. Loop (subobs1,
31. Actobs(obs)=no;
32. Actobs(subobs1)=yes;
33. Option LP=OSL;
34. Solve tedea maximizing theta using LP;
35. Score1(subobs1)=theta.l;
36. Score2(subobs1,output)=slack1.l(output);
37. Put primal;
38. If ((tedea.modelstat eq 1 and tedea.solvestat eq 1),
39. Put @1, subobs1.tl, @10, "optimal", @20, "normal completion"/
40. Else
41. Put @1, subobs1.tl, @10, tedea.modelstat:>2:0,
42. @20, tedea.solvestat:>2:0/
43.);
44.);
45. File res /teslack.csv/;
46. Res.pc=5;
47. Res.pw=160;
48. Put res;
49. Put 'obs', 'theta',
50. Loop (output,
51. Put output.tl);
52. Put 'sp1slack', 'sp2slack',
53. Loop (subobs1,
54. Put /
55. Put subobs1.tl, score1(subobs1),
56. Loop (output,
57. Put act(subobs1,output));
58. Loop (output,
59. Put score2(subobs1,output));
60.);
61. Putclose;

Figure 6. Example of a GAMS program to solve an output-oriented DEA model which measures technical efficiency, and which allows slack variables
to be included by modifying the constraints and incorporating them explicitly.

Page 12

1. $oninline
2. Set inout /spec1, spec2, fix1, fix2, var1, var2/
3. Output(inout) /spec1, spec2/
4. Fixed(inout) /fix1, fix2/
5. Var(inout) /var1, var2/
6. Obs /1*500/
7. Subobs(obs) /1*10/
8. Actobs(obs);
9. Alias (subobs, subobs1)
10. $offlisting
11. Table act(obs,inout) input output table
12. $ondelim
13. $include "data.csv"
14. $offdelim
15. $onlisting
16. Variables
17. Theta efficiency score
18. Weight(obs) weights
19. Lambda(obs, var);
20. Positive variable weight, lambda;
21. Equations
22. Constr1(output, obs) DEA constraint for each output
23. Constr2(fixed, obs) DEA constraint for fixed inputs
24. Constr3(var, obs) DEA constraint for variable inputs;
25. Constr1(output, actobs)..

sum(subobs,weight(subobs)*act(subobs, output)) =G=
theta*act(actobs, output);

26. Constr2(fixed, actobs).. sum(subobs,
weight(subobs)*act(subobs,fixed)) =L= act(actobs, fixed);

27. Constr3(var, actobs).. sum(subobs,
weight(subobs)*act(subobs,var)) =E=
lambda(actobs,var)*act(actobs,var);

28. Parameter
29. Score1(obs) theta estimates
30. Score2(obs,var) hold variable input levels;

31. File capdea /grcapres.txt/;
32. Model tedea /constr1, constr2, constr3/
33. Loop (subobs1,
34. Actobs(obs)=no;
35. Actobs(subobs1)=yes;
36. Option LP=OSL;
37. Solve tedea maximizing theta using LP;
38. Score1(subobs1)=theta.l;
39. Score2(subobs1,var)=lambda.l(subobs1,var);
40. Put capdea;
41. If ((tedea.modelstat eq 1 and tedea.solvestat eq 1),
42. Put @1, subobs1.tl, @10, "optimal", @20, "normal completion"/
43. Else put @1, subobs1.tl, @10, tedea.modelstat:>2:0, @20, tedea.

solvestat:>2:0/)
44.);
45. Parameter capest(subobs1) capacity estimate;
46. Capest(subobs1)=sum(output,

score1(subobs1)*act(subobs1,output));
47. File res /cap_inp.csv/;
48. Res.pc=5;
49. Res.pw=160;
50. Put res;
51. Put "obs", "theta", "capacity",
52. Loop (output, put output.tl);
53. Loop (var, put var.tl);
54. Put "var1o", "var2o"
55. Loop (subobs1,
56. Put /
57. Put subobs1.tl, score1(subobs1), capest(subobs1),
58. Loop (output, put act(subobs1,output));
59. Loop (var, put act(subobs1, var));
60. Loop (var, put score2(subobs1,var));
61.);
62. Putclose;

Figure 7. Example of a GAMS program to solve an output-oriented DEA model which measures capacity.

1. Equations
2. Constr1(output,obs) DEA constraint for each output
3. Constr2(fixed,obs) DEA constraint for fixed inputs
4. Constr3(var,obs) DEA constraint for variable inputs
5. Constr4 DEA constraint for variable returns to scale;
6. Constr1(output,actobs).. sum(subobs,weight(subobs)*act

(subobs,output)) =G= theta*act(actobs,output);

7. Constr2(fixed,actobs)..
sum(subobs,weight(subobs)*act(subobs,fixed)) =L= act(actobs,fixed);

8. Constr3(var,actobs).. sum(subobs,weight(subobs)*act(subobs,var))
=E= lambda(actobs,var) *act(actobs,var);

9. Constr4.. sum(subobs,weight(subobs)) =E= 1;
10. Model tedea /constr1,constr2,const

Figure 8. Example of programming steps which can adjust the GAMS program exemplified in Figure 7 in order to impose variable or nonincreasing
returns to scale.

13Page

1. $oninline;
2. Set inout /spec1, spec2, fix1, fix2, var1, var2/
3. Output(inout) /spec1, spec2/
4. Input(inout) /fix1, fix2, var1, var2/
5. Fixed(inout) /fix1, fix2/
6. Var(inout) /var1, var2/
7. Obs /1*500/
8. Subobs(obs) /1*10/
9. Actobs(obs);
10. /*next, define an alias for the set subobs*/
11. Alias (subobs, subobs1)
12. $offlisting
13. Table act(obs,inout) input output table
14. $ondelim
15. $include "data.csv"
16. $offdelim
17. $onlisting
18. Variables
19. Theta efficiency score
20. Weight(obs) weights
21. Lambda(obs, var);
22. Positive variable weight, lambda;
23. Equations
24. Constr1(output,obs) DEA constraint for each output
25. Constr2(input,obs) DEA constraint for all inputs
26. Constr3(fixed,obs) DEA constraint for fixed inputs
27. Constr4(var,obs) DEA constraint for variable inputs;
28. Constr1(output, actobs).. sum(subobs,weight(subobs)*act

(subobs,output)) =G= theta*act(actobs, output);
29. Constr2(input, actobs).. sum(subobs,

weight(subobs)*act(subobs,input)) =L= act(actobs, input);
30. Constr3(fixed, actobs).. sum(subobs,

weight(subobs)*act(subobs,fixed)) =L= act(actobs, fixed);
31. Constr4(var, actobs).. sum(subobs,

weight(subobs)*act(subobs,var)) =E=
lambda(actobs,var)*act(actobs,var);

32. Parameter
33. Score1(obs,*) theta estimates
34. Score2(obs,var) hold variable input levels
35. ;
36. File effic /greff.txt/
37. Capmod /grcap.txt/;
38. Model tedea /constr1, constr2/
39. Model cap /constr1, constr3, constr4/
40. Loop (subobs1,
41. Actobs(obs)=no;
42. Actobs(subobs1)=yes;
43. Option LP=OSL;
44. Solve tedea maximizing theta using LP;

45. Score1(subobs1,"TE")=theta.l;
46. Put effic;
47. If ((tedea.modelstat eq 1 and tedea.solvestat eq 1),
48. Put @1, subobs1.tl, @10, "optimal", @20, "normal completion"/
49. Else
50. Put @1, subobs1.tl, @10, tedea.modelstat:>2:0, @20,
51. Tedea.solvestat:>2:0/
52.)
53.);
54. Loop (subobs1,
55. Actobs(obs)=no;
56. Actobs(subobs1)=yes;
57. Option LP=OSL;
58. Solve cap maximizing theta using LP;
59. Score1(subobs1,"cap")=theta.l;
60. Score2(subobs1,var)=lambda.l(subobs1,var);
61. Put capmod;
62. If ((tedea.modelstat eq 1 and tedea.solvestat eq 1),
63. Put @1, subobs1.tl, @10, "optimal", @20, "normal completion"/
64. Else
65. Put @1, subobs1.tl, @10, tedea.modelstat:>2:0, @20,
66. Tedea.solvestat:>2:0/
67.)
68.);
69. Score1(subobs1,�CU�)=score1(subobs1,"TE")/score1(subobs1,"cap");
70. Parameter capest(subobs1) capacity estimate;
71. Capest(subobs1)=sum(output, score1(subobs1,"cap")*act(subobs1,

output));
72. File res /caputil1.csv/;
73. Res.pc=5;
74. Res.pw=160;
75. Put res;
76. Put 'obs';
77. Loop (output,
78. Put output.tl);
79. Loop (input,
80. Put input.tl);
81. Put 'TE', 'capout', 'capacity', 'CU',
82. Loop (subobs1,
83. Put /
84. Put subobs1.tl,
85. Loop (output,
86. Put act(subobs1,output));
87. Loop (input,
88. Put act(subobs1,input));
89. Put score1(subobs1,"TE"), score1(subobs1,"cap"),
90. Capest(subobs1), score1(subobs1,"CU");
91.);
92. Putclose res;

Figure 9. Example of a GAMS program to solve an output-oriented DEA model which estimates technical efficiency, capacity output, and capacity
utilization.

Page 14

Table 1. An example of results from both an input- and output-oriented DEA model

 Technical Efficiency Measures
 Input- Output-
 Inputs Oriented Oriented
 Observations Outputs Fixed Variable Model Model
 (Obs) Spec1 Spec2 Fix1 Fix2 Var1 Var2 (Lambda) (Theta)

1 13295 27065 55 60 4 94 0.91 1.10
2 13255 10090 63 70 8 127 0.25 3.99
3 614 3427 59 59 6 35 0.31 3.24
4 106461 58705 63 69 5 185 1.00 1.00
5 3540 9130 53 60 5 46 0.62 1.60
6 602 6900 62 74 5 37 0.59 1.70
7 12920 18128 69 78 6 133 0.43 2.33
8 8312 5145 65 63 8 162 0.10 9.99
9 3276 4430 70 62 3 24 0.58 1.72

10 4143 8486 63 61 5 81 0.33 3.03

Table 2. An example of results from an output-oriented DEA model, including slack variables

 Technical
 Efficiency Variables
Observations Measure Spec1 Spec2
 (Obs) (Theta) Spec1 Spec2 Slack Slack

1 1.10 13295 27065 39441 0
2 3.99 13255 10090 20143 0
3 3.24 614 3427 18151 0
4 1.00 106461 58705 0 0
5 1.60 3540 9130 20812 0
6 1.70 602 6900 20268 0
7 2.33 12920 18128 46458 0
8 9.99 8312 5145 10176 0
9 1.72 3276 4430 8179 0

10 3.03 4143 8486 34064 0

Table 3. An example of results from the capacity DEA model

 Capacity Variable Inputs
 Observations Measure Outputs Var1 Var2
 (Obs) (Theta) Capacity Spec1 Spec2 Var1 Var2 Optimal Optimal

1 1.89 76,280 13,295 27,065 4 94 1.09 1.71
2 5.82 135,868 13,255 10,090 8 127 0.63 1.46
3 14.65 59,201 614 3,427 6 35 0.71 4.52
4 1.00 165,166 106,461 58,705 5 185 1.00 1.00
5 5.41 68,545 3,540 9,130 5 46 0.84 3.38
6 8.37 62,792 602 6,900 5 37 0.98 4.92
7 3.55 110,220 12,920 18,128 6 133 0.91 1.52
8 10.42 140,222 8,312 5,145 8 162 0.57 1.04
9 11.91 91,778 3,276 4,430 3 24 1.50 6.93

10 6.12 77,289 4,143 8,486 5 81 0.88 2.02

lgarner
Technical Efficiency Measures

15Page

Table 4. An example of results from output-oriented DEA models with different assumptions regarding
returns to scale

 Observations Nonincreasing Variable Constant
 (Obs) Returns to Scale Returns to Scale Returns to Scale

1 1.10 1.00 1.10
2 3.99 3.86 3.99
3 3.24 1.00 3.24
4 1.00 1.00 1.00
5 1.60 1.00 1.60
6 1.70 1.10 1.70
7 2.33 2.27 2.33
8 9.99 5.34 9.99
9 1.72 1.00 1.72

10 3.03 2.71 3.03

Table 5. An example of capacity and capacity utilization based on an output-oriented DEA model

Technical Capacity Observed Unbiased
 Observations Outputs Efficiency Output Capacity Capacity
 (Obs) Spec1 Spec2 Measure Measure Capacity Utilization Utilization

1 13295 27065 1.10 1.89 76,280 0.53 0.58
2 13255 10090 3.99 5.82 135,868 0.17 0.69
3 614 3427 3.24 14.65 59,201 0.07 0.22
4 106461 58705 1.00 1.00 165,166 1.00 1.00
5 3540 9130 1.60 5.41 68,545 0.18 0.30
6 602 6900 1.70 8.37 62,792 0.12 0.20
7 12920 18128 2.33 3.55 110,220 0.28 0.66
8 8312 5145 9.99 10.42 140,222 0.10 0.96
9 3276 4430 1.72 11.91 91,778 0.08 0.14

10 4143 8486 3.03 6.12 77,289 0.16 0.50

	Contents
	Acronyms
	INTRODUCTION
	BRIEF OVERVIEW OF DEA
	INPUT-ORIENTED TECHNICAL EFFICIENCY
	OUTPUT-ORIENTED TECHNICAL EFFICIENCY
	AN OUTPUT-ORIENTED MODEL WITH SLACK VARIABLES
	MEASURING CAPACITY WITH AN OUTPUT-ORIENTED DEA MODEL
	MODELING RETURNS TO SCALE
	MODELING CAPACITY UTILIZATION
	SUMMARY AND CONCLUSIONS
	ENDNOTES
	ACKNOWLEDGMENTS
	REFERENCES CITED
	Figures
	Tables

